
Simulation Issues in Haptics

Gianni Borghesan, Alessandro Macchelli, and Claudio Melchiorri

Abstract— In this paper, two problems related to the simula-
tion of virtual environments for haptic systems are considered.
The first problem is how to simulate, in discrete time and with
low computational effort, dynamic systems in order to preserve
their passivity properties. As a matter of fact, simulation of
complex systems in real time may lead to undesired effects, like
unstable behaviours of the haptic interface, if proper care is not
given to the definition of the simulation algorithm. An algorithm
is presented here able to maintain the passivity properties of
the physical (simulated) system with a reduced computational
complexity. The second problem discussed in this paper is the
interconnection of algorithms running at different frequencies,
i.e. the control algorithm of the haptic interface (running
typically at high frequency) and the algorithm simulating the
virtual environment (running at lower frequency). A proper
software interface, able to connect these two algorithms in an
energetic-consistent manner, is presented and discussed. The
general framework of both these techniques is the passivity
theory and the so-called port-Hamiltonian formalism.

I. INTRODUCTION

Control problems in the design of haptic interfaces (HI)

mostly address two conflicting requirements. The first is

stability, that is, in this context, the property that interaction

between the HI and a simulated virtual environment (VE)

should not generate persisting oscillations. The second is the

force rendering range, called Z-Width in [2], that determines

how “stiff” a simulated object can be.

While in very simple virtual environments the force re-

flected by the HI is computed directly by the software

simulating the VE, in case of complex environments the

computations are usually subdivided in two main tasks. The

first computes the force feedback for the HI, while the second

one computes the dynamics of the VE objects, typically by

Local Model methods that consider a simplified model of the

VE in the neighborhood of the HI position [8].

The Local Model (LM) must run at high frequency, since

performance decreases as the force feedback is computed

less frequently. For computational reasons, this lead to design

multirate systems, in which the VE is a low-frequency task,

due to the heavy computations associated to complex systems

dynamics, and the LM is a high-frequency task that assures

both stability and performance. A schematic representation

of a multirate control architecture is shown in Fig 1.

Stability problems of both single- and multi-rate simula-

tion can be approached with passivity techniques. It is well

known that if all the elements of a closed loop (including

the HI) are passive, then the whole system is passive, and

G. Borghesan, A. Macchelli, C. Melchiorri are with the DEIS,University
of Bologna,PO 40136, Italy

email: {gborghesan, amacchelli,
cmelchiorri}@deis.unibo.it

P

Haptic interface

Local Model
(high frequency)

Virtual Env.
(low frequency)

AD/DA Up/Down sampling
Continuous time Discrete time

Fig. 1. Typical control architecture of an Haptic Interface.

therefore stable, as well. In haptics, passivity theory has been

mainly adopted with two different approaches:

• to find the limits of the VE/LM stiffness, as a function

of the HI mechanical characteristics and of the A/D-

D/A signals conversion, so that the energy generated

by sampling and conversion is dissipated by mechanical

friction ([2], [3], [4], and [5]);

• to build an intrinsically passive VE/LM, that does not

rely on the properties of the HI ([6], [7], and [11]).

The interaction stability of multirate environments with a

HI is studied in [1], using the Z-transform, in order to

investigate both the stability interaction of a HI with a

VE/LM containing only springs, and the up/down sampling

connections between the VE and the LM. This approach

cannot be easily extended to more general VE due to the

intrinsic limitation of the Z-transform.

While most of the literature does not separate the stability

problems of the VE and of the HI with its controller, we

investigate separately each element and then their intercon-

nection: between continuous time and discrete time systems,

interfaced by the AD/DA in Fig. 1, and between fast and

slow rate discrete time algorithms, connected by a Up/Down

sampling interface in Fig. 1.

In particular, in this paper, we describe an algorithm able

to simulate in discrete time a continuous-time system pre-

serving its passivity properties. Main feature of this algorithm

is that the passivity properties of the continuous-time system

are maintained also if it is executed at low-frequency.

We also present an element, called the Passive Sample

and Hold, able to passively connect simulated physical

systems running at different frequencies. In particular, this

element allows to connect in an energy-consistent manner

the HI control loop, running at high frequency, with the VE

simulation algorithm, running typically at lower frequencies.

II. SIMULATION OF PORT HAMILTONIAN

SYSTEMS

Since we are interested in obtaining passive (hence stable)

elements, we adopt the Port-Hamiltonian formulation to

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA4.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 111

describe dynamical systems. The Port-Hamiltonian represen-

tation of a physical system is given by:

ẋ = [J − R]
∂H(x)

∂x
+ Gu (1)

y = GT ∂H(x)

∂x
(2)

where x ∈ R
n is the state vector, the interconnection matrix

J is skew symmetric, R ≥ 0 is the dissipation matrix, G
is the input-output matrix, and H(x) is the system energy

function. In a Port-Hamiltonian systems, the product of the

input vector u and the output vector y must be power, and

the system is passive iff H(x) ≥ Hmin, ∀x. The power

balance of the system is:

Ḣ +

(

∂H(x)

∂x

)T

R

(

∂H(x)

∂x

)

+ yT u = 0 (3)

In order to simulate complex (nonlinear) systems, a

convenient approach is to adopt a numerical integration

method. Since a real time environment is generally used

for controlling haptic systems, it is reasonable to assume

that a fixed step integration method, as the forward Euler, is

implemented. In this case, the resulting formulation for Eq.

1-2 is:

∆x(k) = [J − R]
∂H(x)

∂x

∣

∣

∣

∣

x=x(k)

+ Gu(k) (4)

x(k + 1) = x(k) + T∆x(k) (5)

y(k) = GT ∂H(x)

∂x

∣

∣

∣

∣

x=x(k)

(6)

where x(k) is the discrete-time state and u(k) the input at

t = kT , being T the simulation step. Obviously, the error

introduced by Eq. 4-6 may be relevant if T is not properly

chosen.

Example 1. Consider an autonomous spring-mass system

with:

• spring constant k ad mass m,

• state x = (q, p)T , where q is the spring elongation, and

p is the mass momentum,

• energy function H(x) = kq2/2 + p2/(2m),
• energy gradient ∂H(x)/∂x = (kq, p/m)T .

Since the system is not dissipative and the input is null,

the state should remain on a set of isoenergetic states,

represented with the solid line in Fig. 2. On the other

hand, the discrete state computed by the Euler algorithm,

Eq. 4-6, diverges (arrows), and the system energy H(x)
increases. Thus, a system simulated in this manner is not

stable, even though the original one is passive. Note that, for

computational reasons, it is preferable to select large values

of T , and therefore this type of phenomenon may be easily

introduced.

A. Discrete time Port Hamiltonian systems

In order to simulate dynamic systems and preserve their

passivity properties, it is desirable that in each integration

step the energy of the system is consistent with Eq. 3.

−1

−0.5

0

0

0.5

1

2.5

√
2−

√
2

q

p

Fig. 2. Euler integration method in state space for k = 0.5, m = 1,
x0 = (1, 0)T , T = 0.2

Therefore, if ∆H(k) = H(x(k + 1)) − H(x(k)), the

following equation must hold at each sample period:

∆H(k)/T+
[

(

∂H(x(k))

∂x

)T

R

(

∂H(x(k))

∂x

)

+ y(k)T u(k)

]

= 0
(7)

The system energy at t = (k + 1)T can be computed as:

H(k + 1) = H(k) + ∆H(k) = H(k)−

− T

[

(

∂H(x(k))

∂x

)T

R

(

∂H(x(k))

∂x

)

+ y(k)T u(k)

]

(8)

The state variable x(k + 1) should belong to a set Ik+1 in

which the energy function assumes the value H(x(k + 1)):

Ik+1 =

{x(k + 1) ∈ X | H(x(k + 1)) = H(x(k)) + ∆H(k)} (9)

From these considerations, x(k + 1) and y(k) can be com-

puted, instead of using Eq. 4-6, with the following:

Algorithm 1

1) Given the state x(k) and the input u(k), compute

∂H(x)/∂x at t = kT , and then the output y(k) Eq. 6;

2) The energy variation ∆H(k) is determined with Eq. 7;

3) The new energy level H(x(k + 1)) and the set of

eligible states Ik+1 are computed by means of Eq. 8;

4) A state is selected in Ik+1, with a proper Update

Strategy.

B. State update strategy

A key point in the procedure for computing the state

x(k + 1) is the state update strategy, i.e. the selection of a

proper state in Ik+1 (step 4 in Algorithm 1). For this purpose,

it is useful to define the level curves and the field lines in

the space state plane:

• The level curves are the parametric expression of the

sets Ik of all the states with the same energy.

• The field lines are the curves obtained by integration of:

dx(s)

ds
=

∂H(x)

∂x
(10)

where s is an independent variable that parameterizes

the field line (x(s) : R → R
n). The field lines are

WeA4.3

112

x

x(k)

x1(k + 1)x2(k + 1)

∆H(k)H(x(k))

H(x(k + 1))

H(x)

Fig. 3. Graphical representation of state update for systems with one state
variable.

always tangent to the co-vector field ∂H(x(t))/∂x(t)
and intersect perpendicularly the level curves.

In systems with one state variable only (e.g. a mass) the state

x(k+1) can be found by the energy function and the desired

energy value. In most cases, multiple solutions belonging to

a numerable set may be found, see Fig. 3, and the criteria

for the choice can be quite simple.

On the other hand, systems with more than one state variable

present in general an infinite cardinality set of states for

each energy level. In the following, only linear systems

are considered, since linearity guarantees that the energy

is a quadratic function of the state and that all the field

lines intersect all the level curves. The latter property is

fundamental for the proof of the algorithm convergence.

Consider a system with only one state variable, as a spring

or a mass. Its energy is a state function H(x) : R → R
+.

For any non-negative given value of H , there are only two

possible states. Given the state x(k), then x(k+1) is chosen

as the ’nearest’ to the actual one. If some ambiguity emerges,

the sign of the derivative of the state (from Eq. 1) can be

considered. Fig. 3 shows the update strategy for this kind

of systems, where Ik+1 = {x1(k + 1), x2(k + 1)} and

x1(k + 1) is the new state. In any case, only the definition

of a metric permits to determine which is the ’nearest’ state

in the set Ik+1. In general, in case of systems with non

homogeneous state variables, the only metrics that appear

physically consistent are those based on energy. On the other

hand, in this case each point of the level curve Ik+1 is

equidistant from any given state x(k). Thus, a metric based

only on energy is not suitable since the result is not unique.

As pointed out, the new state x(k+1) must be selected in

the set Ik+1. For this purpose, starting from x(k) the most

obvious update strategies are to move:

1) along the field lines;

2) along the direction of ẋ.

Example 2. Suppose to consider the system of Example 1,

i.e. a mass linked to a spring, with state x = (q, p)T where

q is the elongation of the spring and p the momenta of the

mass. Consider an initial state x0(q0, 0) and a null input force

(i.e. H(x(k)) = H(x(0)) and Ik = I0, ∀k ≥ 0).

The first update strategy moves the state along the field lines:

since the field lines are perpendicular to the level curves, the

only eligible state will be x0. Conversely, with the second

update strategy, the state moves along the direction of ẋ, that

intersects I0 only in x0. Therefore strategies fail to update

the state according to the physical behaviour, as shown in

Fig. 4a.

Example 3. Suppose now that some energy flows out from

the system. The next state x(1) will belong to I1, a set of

states with an energy lower than x0 encircled by I0. If we

move along the field lines, a new state x(1) = (q1, 0) is

determined. This means that the spring has moved towards

its rest length, but without any velocity variation of the mass.

Moreover, the input influences the energetic level I , but does

not help in the state selection in the eligible set. If we move

along ẋ, that depends by u(1), the intersection between the

direction of ẋ and I1 is not assured. For these reasons, these

two state update strategies do not seem to be completely

satisfactory.

The solution proposed here is to use a two-step procedure.

First, the traditional time integration of ODE (e.g. forward

Euler) is used, in order both to keep track of how the system

state evolves and to reflect the input effects on the state

evolution. In this manner, an intermediate state x(k + 1) =
x(k)+∆x(k)T is reached, with ∆x(k) computed as in Eq. 4.

Then, from x(k + 1) the state is moved towards the set

Ik+1, in order to correct the energy error produced by the

traditional integration method. Since the field lines intersect

all the energy levels, if the state evolves from x(k+1) along

this path then it will reach the desired energy level Ik+1.

Fig. 4b illustrates the three methods in case of loss of

energy1: the movement along the co-vector field (xo →
x(1)), the uncertainty of determining a solution along ẋ, and

the proposed strategy (x0 → ẋT + x0 → x(1)). In order

ẋT + x0

x(1)

x(1)

x0x0

I0 I0

I1

qq

ppa b

along ẋ

along field lines

Fig. 4. Graphical representation of the update strategies in the phase space.

to move along a field line until the set Ik+1 is met, three

methods can be adopted:

1) if the explicit equations of field lines and level curves

are known, the new state can be found analytically;

2) if the explicit equation of the field lines is known, the

new state can be computed by iterating a bisection

method, using the energy function as cost function;

3) otherwise the state can be numerically integrated along

the field lines until Ik+1 is met.

The first method can be used in a very limited class of

problems, since the curve intersection cannot always be

computed in a closed form.

The third method is more general, but it is time consuming

1The figure represent a mass/spring system with km = 2. Level curves
are kp2 + q2/m = 2H0; field lines are p = (q/q0)kmp0, with p0, q0

generic constant states, H0 energy associated to the level curve.

WeA4.3

113

and produces an error, i.e. the state x(k+1) will not exactly

belong to the set Ik+1. On the other hand this error is known,

can be bounded, and is in the form of energy. Therefore, it

can be registered and corrected in later iterations.

The second method is easy to implement and computation-

ally fast. Also in this case an error is generated, but this can

be compensated as in the third method. For these reasons,

this technique has been adopted here.

The algorithm described above retains the passivity prop-

erties of the system, i.e. the energy errors generated by

energy leaps and numerical integration will eventually come

to zero.

C. Particular cases

There are two important particular cases that have to be

considered separately:

x

x(k)

x(k + 1)

∆H(k)

H(x(k + 1))

H(x)

H(x(k))

Fig. 5. Graphical representation of energy leap procedure in one variable
systems.

1) Energy leap, bookkeeping

If H(x(k + 1)) = H(x(k)) + ∆H < Hmin, the next state

x(k + 1) cannot be determined. A solution to this problem

has been proposed in [10]. The next state is selected in the

set I(k) (i.e. the energy level H(x(k)) does not change),

injecting in the system an energy equal to ‖∆H(x(k))‖.

This is defined an energy leap. In order to preserve the

overall passivity, the injected energy is logged (bookkept),

and dissipated in later algorithm iterations. Unfortunately, the

choice of the state x(k+1) is not unique, and depends on the

number and nature of the state variables. The only constraint

is to keep track of the introduced energy and dissipate it

in later algorithm iterations. As example of energy leap,

let consider a linear system with only one state variable.

If an energy leap occurs, an eligible next state will be

x(k +1) = −x(k), as depicted in Fig 5, where H(x(k +1))
is the energy calculated for the next state, x(k + 1) is the

next state and ‖∆H(x(k))‖ is the bookkept energy.

2) Dynamic deadlock

The second problem occurs when the state is in the energy

minimum (Hmin). In this case, for any value of u(k), the out-

put y(k) computed with Eq. 2, is null (since ∂H(x)/∂(x) =
0), and from Eq. 7 it follows that ∆H(k) is null as well.

The total system energy remains unchanged at the minimum

value, and therefore the state does not evolve. This deadlock

can be resolved by using a normal integration method for

this step, as a forward Euler, in order to force the state out

of minimum. This problem has been considered in details in

[9], [10], and [11]. Note that this solution can possibly injects

energy in the system but, since deadlock rarely happens, it

cannot bring the system to instability.

III. MULTIRATE PORT HAMILTONIAN SYSTEMS

In this Section, a method to passively interconnect two

‘systems’ running at different frequencies is presented. The

key element is a module that interfaces power variables

that flow between a ‘fast system’, with sample time Tf ,

and a ‘slow system’, with sample time Ts. We assume

that Ts/Tf = N, N ∈ N and that the two systems are

synchronized.

In literature, two approaches have been proposed for this

problem. The first is the method described in [9], [11], and

[10] for interfacing continuous and discrete time; this tech-

nique has been used to passively connect a haptic interface

to a virtual environment using an exact power balance at the

end of each sample periods.

ys(n)yf (k)

us(n)uf (k)
PSH

Port 1 Port 2

Local Model
(high frequency)

Virtual Env.
(low frequency)

Up/Down
samplingContinuous

time
Discrete

time

Fig. 6. Representation of the PSH element.

Somehow, this method is similar to the so-called Passivity

Observer/Passivity Controller described in [6], with the main

difference that the latter relies on a modulated damper that

dissipates energy when the observed system becomes active.

In this paper, a different solution is proposed. The interface

module is characterized by a feedforward action and by

the fact that the power error P (n) is logged (somehow,

can be considered as the power traveling in a transmission

line), and then not necessarily corrected in an iteration only.

This element, referred to as the Passive Sample and Hold

(PSH) in Fig. 6, is a dynamic system running at Tf with

two inputs, uf (k) and ys(n), and two outputs, us(n) and

yf (k), where ufyf and usys are powers, and us, ys are

updated every N steps (since they are connected to the slower

system). Without loss of generality, the power variables u
and y can be regarded as scalars (in a system with multiple

power variable couples, each couple generates an error that

can be considered individually). The discrete time steps are

indicated with k and n, with n = ⌊k/N⌋, where ⌊⌋ is the

integer part operator.

During a period Ts, the power balance is expressed by:

P (n) =
1

N

(n+1)N−1
∑

k=nN

yf (k)uf (k) − [us(n)ys(n)] (11)

where the left hand side of Eq. 11 represents the variation

of power in the PSH element, and the right hand side is the

power entering from Port 1 and exiting Port 2, during the

period Ts. The two outputs are defined as:

yf (k) = ys(n) k ∈ [nN, (n + 1)N − 1] (12)

us(n) = uf (nN) +
∆P (n)

ys(n)
(13)

WeA4.3

114

where ∆P (n) is the power that flows in a period Ts from the

power stored in the element PSH to the slow system. ∆P (n)
has to be bounded in such a way the energy stored into the

PSH module is brought to zero, without excessively distort

the input signal us(n). The critical behavior is met when

ys(n) is near zero. The proposed strategy limits the influence

of the power injected by the PSH element on the variation

of the signal us(n) (left hand term of Eq. 14), respect to the

uncorrected one (right hand term of Eq. 14).

|us(n) − us(n − 1)| ≤ |uf (nN) − us(n − 1)| (14)

Replacing Eq. 13 in Eq. 14:
∣

∣

∣

∣

∆P (n)

ys(n)
+ uf (nN) − us(n − 1)

∣

∣

∣

∣

≤ |uf (nN) − us(n − 1)|
(15)

The inverse triangle inequality states that
∣

∣|a|−|b|
∣

∣ ≤ |a+b|.
Therefore, the left hand term of Eq. 15 can be minimized

as:

∣

∣

∣

∣

∣

∣

∆P (n)

ys(n)

∣

∣

∣

∣

− |uf (nN) − us(n − 1)|
∣

∣ ≤

|uf (nN) − us(n − 1)|
(16)



































∣

∣

∣

∣

∆P (n)

ys(n)

∣

∣

∣

∣

− |uf (nN) − us(n − 1)|

≤ |uf (nN) − us(n − 1)|
∣

∣

∣

∣

∆P (n)

ys(n)

∣

∣

∣

∣

− |uf (nN) − us(n − 1)|

≥ −|uf (nN) − us(n − 1)|

(17)

These conditions reduce to

|∆P (n)| ≤ 2|uf (nN) − us(n − 1)| |ys(n)| (18)

Also, it’s desirable that E(n) goes to zero. This is obtained

if the PSH corrects, in the step of length Ts, at most all the

stored energy E(n) (Eq.19), taking care to choose the correct

sign (Eq.20); therefore, two additional constraints are added:

|∆P (n)|Ts ≤ |E(n)| (19)

sign(∆P (n)) = sign(E(n)) (20)

In comparison with [6], the PSH does not always correct

all the energy error in one step (i.e. when the condition

expressed by Eq. 18 is tighter than the one of Eq. 19), so

that us(n) does not excessively vary respect to uf (nN),
especially in some critical cases (e.g. ys ≃ 0).

Once the power released by the system and its outputs

are computed, the power stored in the PSH can be updated.

From Eq. 11-13, the expression of E(n) is calculated:

E(n + 1) =E(n) + TsP (n)

=Tsys(n)





1

N

(n+1)N−1
∑

k=nN

uf (k) − uf (nN)





+ E(n) − Ts∆P (n)

E(0) =0
(21)

For the sake of convenience, instead of E(n), the quantity

E(n)/Ts is used in the algorithm implementation, that is

described by the following steps.

Algorithm 2

if ys(n) == 0

1a) ∆P (n) = 0, E(n + 1)/Ts = E(n)/Ts, and

us(n) = uf (nN),

else

1b) ∆P (n) = 2|uf (nN) − us(n − 1)| |ys(n)|,
2b) ∆P (n) = min(∆P (n), |E(n)| /Ts),
3b) if E(n)/Ts ≤ 0 then ∆P (n) = −∆P (n),
4b) us(n), E(n+1)/Ts are computed with Eq. 13,21.

IV. VALIDATION AND SIMULATION

A method to simulate both single- and multi-rate systems

that retains the passivity properties has been described. From

this perspective, the worst case is given by marginally passive

systems and, therefore, the simulation of a spring/mass sys-

tem without dissipation is presented. Two implementations

of this system are presented: the first using a single Port

Hamiltonian system with two state variables (Fig. 7a,c), the

second with two interconnected Port Hamiltonian systems,

with a state variable each (Fig. 7b,d). Moreover the simula-

tion of a spring system, whose dynamics is computed at fast

frequency, and a mass, simulated in a slow environment and

connected by the PSH element, is also presented.

0

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

−1

−1

−1

−1

−1

−2

−2

−2
−2

−2

5 10 15 20 25 30

M
o
m

en
tu

m

Time

P
o
si

ti
o
n

P
o
si

ti
o
n

PositionPosition

a b

c

d

Fig. 7. a,b: Evolution of state variables. c,d: Time evolution of positions.

A. Simulation of single rate systems

The simulation results of single rate systems, i.e. with

a single simulation step, are now illustrated. In particular,

a mass/spring system is considered with: spring stiffness

k = 1, mass m = 2, initial position p0 = 0, initial velocity

v0 = 1, null input. This system has been simulated in two

different manners: with only a single two-state variable Port

Hamiltonian system, or with two interconnected one-state

variable Port Hamiltonian systems, both with a step time of

0.1s. Fig. 7a,c reports the free evolution of the two state

WeA4.3

115

variable system, while Fig. 7b,d refers to the two-systems

simulations. The continuous line represents the evolution of

the system simulated with Algorithm 1, and the plus sign

markers the evolution of a simulation with a variable step

integration method (ode45). It is worth noticing, in Fig. 7d,

the effect of energy leaps. When the position signal crosses

the zero, an energy leap occurs generating a ”discontinuity”.

This effect is not present in the two-state system (Fig. 7c),

since the activation of the mechanisms of energy leap and the

subsequent bookkeeping happens when the system energy

(the sum of both kinetic and potential energy) is near zero,

i.e. when both velocity and position are near zero.

Both system energies are constant, in the sense that the

difference between the sum of energies and the sum of the

energy bookkept is constant. Note that both systems present

a variable delay, depending on the length of the simulation

step, but larger in the second case.

2.5 3

−2

−1

0

0

1

2

2

5 10 15 20 25 30

u
s
(n

)
(c

o
n
t.

),
u

f
(k

)
(d

.-
d
.)

1.2

1.3

1.4

1.5

1.5
Time

Time

Fig. 8. (Up) Time evolution of PSH input uf (k) and PSH output us(n),
(Down) zoom of the previous figure.

0.95

0
0

1

1.05

5 10 15 20 25 30
Time

K
in

.
+

P
o
t.

en
er

g
y

a

b

0.01

0.02

0.03

P
(n

)

Fig. 9. a: Time evolution of the kinetic and potential energy sum. b: Power
inside the PSH element.

B. Simulation of multi rate systems

The simulation of a multi rate mass/spring system con-

nected by the PSH is now discussed. The simulation is run

with the same values (m = 2, k = 1), while the time step

lengths of the fast and slow environments are Tf = 0.001s
and Ts = 0.05s respectively. As expected, the system results

to be marginally stable. Fig. 8 shows the input uf (k) (dash

dotted line) and output us(n) (continuous line) of the PSH

element; also, uf (k) is the spring force output, while us(n)
is the mass force input. Fig. 9.a shows the time evolution

of the two subsystems energies sum; the gray area is drawn

by the oscillating energy plotted at the faster sample time,

while the dashed line represents the same data set plotted at

the beginning of the slower sample time (i.e. when the PSH

operates the correction and bring the total energy systems

near the desired one, 1). Fig. 9.b represents the time evolution

of the PSH energy error E(n).

V. CONCLUSIONS

In this paper, an algorithm able to simulate continuous

time systems expressed in Port Hamiltonian form, preserving

system passivity, has been presented. The method considers

linear systems but, being the stability criteria based on

passivity, can be extended to nonlinear system. Moreover,

the design of an element able to passively interconnect

two systems running at different sample times is presented.

Future developments will investigate the nonlinear case and

how to improve the update strategy in order to have a more

physically-related response.

REFERENCES

[1] F. Barbagli, D. Prattichizzo, and K. Salisbury. A multirate approach
to haptic interaction with deformable objects single and multipoint
contacts. Int. J. Rob. Res., 24(9):703–715, 2005.

[2] J. E. Colgate and J. M. Brown. Factors affecting the z-width of a
haptic display. In Proc. IEEE ICRA ’94, pages 3205–3210, 1994.

[3] J. E. Colgate, P. E. Grafing, M. C. Stanley, and G. Schenkel. Imple-
mentation of stiff virtual walls in force-reflecting interfaces. In Proc.

IEEE Virtual Reality Symposium, pages 202–208, 1993.
[4] N. Diolaiti, G. Niemeyer, F. Barbagli, and J. K. Salisbury. A criterion

for the passivity of haptic devices. In Proc. IEEE ICRA ’05, pages
2463–2468, 2005.

[5] N. Diolaiti, G. Niemeyer, F. Barbagli, J. K. Salisbury, and C. Mel-
chiorri. The effect of quantization and coulomb friction on the stability
of haptic rendering. In Proc. IEEE World Haptics Conference, 2005.

[6] B. Hannaford and J. Ryu. Time domain passivity control of haptic
interfaces. In Proc. IEEE ICRA ’01, pages 1863–1869, 2001.

[7] B. Hannaford, J. Ryu, and Y. Kim. Touch in Virtual Environments,

Chapter 3, Stable Control of Haptics. Prentice Hall, 2001.
[8] J. G. Park and G. Niemeyer. Haptic rendering with predictive

representation of local geometry. In Proc. IEEE Haptics Symposium,
pages 331–338, 2004.

[9] S. Stramigioli, G. Blankenstein, V. Duindam, H. Bruyninckx, and
C. Melchiorri. Power-port concepts in robotics: the geometrical-
physical approach (ICRA tutorial), 2003.

[10] S. Stramigioli, C. Secchi, A. van der Schaft, , and C. Fantuzzi. A
novel theory for sample data system passivity. In Proc.IEEE IROS

’02, 2002.
[11] S. Stramigioli, C. Secchi, A. van der Schaft, and C. Fantuzzi. Sampled

data systems passivity and discrete port-hamiltonian systems. IEEE

Trans. on Robotics, 21,4:574 – 587, 2005.

WeA4.3

116

