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Abstract— The influence of viscous damping and delay on
the stability of haptic systems is studied in this paper. The
stability boundaries have been found by means of different
approaches. Although the shape of these stability boundaries
is quite complex, a new linear condition which summarizes
the relation between virtual stiffness, viscous damping and
delay is proposed. This condition is independent of the mass
of the haptic device. The theoretical results are supported by
simulations and experimental data using the DLR Light-Weight
Robot.

Index Terms— Haptic systems, Discrete-time systems, Stabil-
ity, Time delay

I. INTRODUCTION

A haptic interface can be used to link a human operator
to a virtual environment in such way that the user is able
to perceive the scene with the sense of touch. The ability of
perceiving contact forces of virtual environments is essential
in many industrial applications: virtual prototyping [1] and
maintainability analysis [2], [3], surgery training [4], [5],
driving simulators [6], etc. An elementary prerequisite for
all these applications is to preserve stability. This paper
studies the stability conditions of haptic systems and presents
a relation between virtual stiffness, viscous damping and
delay.

Section II presents a mathematical model of haptic sys-
tems and Section III summarizes previous stability and
passivity conditions for such systems. In Section IV a new
stability condition is presented. The validity of this condition
is verified in sections V-VIII by four different ways. Section
IX discusses the validity of the linear stability condition.
Important conclusions are stated in Section X.

II. SYSTEM DESCRIPTION

From the control point of view, a haptic system is a
sampled-data controlled mechatronic device. Fig. 1 shows
the model of the haptic device colliding against a virtual wall
with delay td. This time delay can be the sum of several ef-
fects: computations, communications, etc. The interface has
a mass m, a physical damping b and a Coulomb friction c. A
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Fig. 1. Model of a haptic system.

viscoelastic impedance model with stiffness K and damping
B is used to compute the force of the environment. It is
assumed that the system has no velocity sensor; therefore,
the backwards difference is used to estimate velocity. The
sampling period is T and the position sensor resolution q.

Some phenomena are not taken into account (possible
saturation and quantization in the actuators, internal vibra-
tion modes of the interface, etc.). Although the dynamics of
the user is also involved in the loop, his influence makes
the system more stable [7], [8]. Therefore, he has not been
included in the block diagram.

A simplified model of the system is shown in Fig. 2. Since
this model contains only linear phenomena, it is valid if the
Coulomb friction and the quantization are negligible. More-
over, since in [8] and [9] was found that the Coulomb friction
can dissipate the energy introduced by the quantization, it
is interesting to use the linear model as “worst case” to find
stability conditions.

Following [10], the dimensionless parameters that will be
used in this paper are shown in Table I. Although some
authors [8] have used the virtual stiffness to normalize the
parameters, we prefer to use the mass (or the inertia for
rotary degrees of freedom), because this way the values of
the device do not change with the contact force law.

Both real and dimensionless parameters can theoretically
take any value (m > 0, b > 0, T > 0 and td ≥ 0). However,
typical sampling rates in haptics are quite fast (≥ 1 kHz)
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Fig. 2. Linear model of a haptic system.

TABLE I
DIMENSIONLESS PARAMETERS

Parameter Variable Dimensionless variable

Sampling period T -

Mass m -

Physical damping b δ = bT

m

Virtual stiffness K α = KT
2

m

Virtual damping B β = BT

m

Delay td d =
td

T

and the relation between the physical damping and the mass
cannot be supposed to be arbitrarily large. For example,
some experimentally acquired values given in [8] show that
b
m

� 1 s−1 for all investigated haptic devices. Therefore, the
dimensionless physical damping δ should be quite small in
haptic systems. In this paper we will suppose that δ < 10−3.
As shown later, some conclusions of this paper can only be
stated assuming this fact.

III. PREVIOUS ANALYSES

A. Stability approaches

Classical control tools have been applied to the linear
system in order to obtain the stability conditions. In [7] it
was stated that, with no delay, d = 0, the stability condition
of the linear system (using the dimensionless parameters of
Table I) is

α < δ(δ + β)
(1 − ε)(βε + βδε − β + δ2)

(1 − ε − δε)(βε + βδ − β + δ2)
, (1)

where ε is a dimensionless number,

ε = e−
bT

m = e−δ. (2)

Stability condition (1) is consistent with [11]. Substituting
ε (2) with its Taylor approximation,

ε = 1 − δ +
1

2
δ2 −

1

6
δ3 + O(δ4), (3)

makes it possible to linearize (1) around the origin and to
obtain the following more compact stability condition [7]:

α < 2(δ + β). (4)

The fact that the dimensionless physical damping δ is
a very small number enforces the validity of this approx-
imation. Stability condition (4) was also experimentally
found in [12]. Further experimental studies confirm the

result that increasing both the physical viscous damping—
i.e. electrically [13], [14] or magnetically [15]—and the
virtual damping [16], [17] allows for larger stable stiffness
coefficients.

If the system contains a delay of one sampling period,
d = 1, the stability condition that has been proposed in [18]
using the Padé approximation is

α <
2

3
(δ + β). (5)

B. Passivity approaches

Another way to guarantee the stability of the system is
ensuring its passivity [19]. The passivity condition for the
linear system without delay proposed by Colgate [20] is

α < 2(δ − |β|). (6)

The influence of the virtual damping on the passivity
condition differs from the stability one (4) for β > 0. Since
passivity is a more restrictive condition than stability, the
passive region in the (α, β)-plane is a subregion inside the
stable region. However, it is interesting to note that the same
condition for both passivity and stability can be obtained if
no virtual damping is included.

Passivity analysis has been successfully extended [8] to
the non-linear system depicted in Fig. 1, but without includ-
ing the effect of the virtual damping β. In [9] equivalent
results were obtained without the influence of the delay.

IV. STABILITY CONDITION

In this paper, we propose a stability condition for the
linear system including the effect of both, delay and virtual
damping. Our stability condition may be seen as general-
ization of previous conditions (4) and (5) for any delay,
consistent with the study of the non-linear system [8] but
including the effect of the virtual damping β:

α <
2

1 + 2d
(δ + β). (7)

Using the physical values of the parameters the proposed
stability condition is

K <
2

T + 2td
(b + B). (8)

The validity of this formula will be checked by four differ-
ent ways: 1) with theoretical analysis, 2) solving numerically
the characteristic equation and performing a graphical ap-
proach, 3) running simulations, 4) with experimental results.

Rearranging the stability equation which relates the real
parameters of the system,

K <
b + B
T
2 + td

, (9)

and taking into account that the effect of the sampling and
hold in the control loop can be approximated by a delay of
half the sampling period T

2 , we can interpret our stability
condition (7) with the following statement:

Critical stiffness =

∑

Damping
∑

Delay
. (10)
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The critical stiffness of a haptic system is equal to the
overall damping of the mentioned system divided by the total
delay of the loop. Therefore, a double viscous damping in
the system—physical plus virtual—will allow for a double
stiffness; while a double delay in the haptic loop—no matter
its nature—will half the maximum stable stiffness.

V. ROUTH-HURWITZ ANALYSIS

The methodology followed in [7] can be used to receive
the analytical stability condition from the characteristic
equation of the system. In the Z-domain, this equation
consists of a polynomial if the delay td is a multiple of
the sampling period T (then d takes natural values):

δ2(z − ε)(z − 1)zd+1 − (1 − ε − δ)(α + β)z2

+ [(1 − ε − δε)(α + β) + (1 − ε − δ)β] z

−(1 − ε − δε)β = 0. (11)

The order of this polynomial (11) increases with d

(it is d + 3) and the use of the Routh-Hurwitz criterion
becomes quite complex. In section III the analytical solution
of the stability boundary for d = 0 was presented, (1). The
following lines derive the stability condition for a delay that
is equal to the sampling period (d = 1). In this case, the
characteristic equation is

δ2z4 + (1 − ε)δ2z3 +
[

εδ2 − (1 − ε − δ)(α + β)
]

z2

+ [(1 − ε − δε)(α + β) + (1 − ε − δ)β] z

−(1 − ε − δε)β = 0. (12)

After the bilinear transformation used in [7] it is possible
to apply the Routh-Hurwitz criterion and identify the most
restrictive condition. This exact condition for stability is

a1a2a3 − a4a
2
1 − a3a

2
0 > 0, (13)

where:

a0=(1 − ε) δα
2 ,

a1=(1 − ε)(δβ + δ2 − α) + εδα,

a2=(1 − ε)(α − 2β) + δ(3δ − εδ + 3βε − β − α),

a3=(1 − ε)(α + 4β) + δ(3δ + εδ − 3βε − β − εα),

a4=−(1 − ε)(α + 2β) + δ
2 (1 + ε)(α + 2β + 2δ).

It is not possible to isolate parameter α as it was done in
(1) because some powers of this parameter appear in (13).

Fig. 3 shows the stability boundaries using analytical
conditions (1) and (13), for small dimensionless physical
damping (δ < 10−3). Taking different values of δ within
this range, it is quite difficult to appreciate any change in
the overall shape of the stability boundaries. Therefore, their
maximum values αd=0

max ≈ 0.686 and αd=1
max ≈ 0.144 can be

taken as constants, [21].
As could be expected, the stability region with delay is

smaller than the stability region without delay.
Although it has been stated that the overall shape of

the stability boundaries depicted in Fig. 3 nearly does not
change with δ, it is possible to detect some little but
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Fig. 3. Stability boundaries using the analytical conditions, for small
dimensionless physical damping (δ < 10−3), without delay (d = 0) and
with a delay equal to the sampling period (d = 1).
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Fig. 4. Zoom of the stability boundaries using the analytical conditions, for
small dimensionless physical damping (δ < 10−3), without delay (d = 0)
and with a delay equal to the sampling period (d = 1).

important differences for relatively small values of β. Fig. 4
summarizes this behavior (it is a zoom of Fig. 3 near the
point of origin).

The stability boundaries start at a virtual damping equal
to the negative physical one (β = −δ); so it is possible to
introduce a negative virtual damping up to this value.

Substituting the Taylor approximation (3) in stability
condition (13), yields

α <
2

3
(δ + β), (14)

where it was possible to isolate parameter α. This condition
fits the beginning of the corresponding stability boundary
in Fig. 4 and also confirms previous result (5) which was
obtained with different approximations and confirmed with
experimental results.
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Fig. 5. Stability boundaries for small dimensionless physical damping
(δ < 10−3) and delays d = [0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3].

VI. GRAPHICAL ANALYSIS

The validity of (7) is checked in this section using the
graphs of the stability boundaries. Two different ways have
been used to obtain and depict the critical stiffness of the
linear system with delay. The first one follows [7] and
directly obtains the critical stiffness for different values of
the virtual damping evaluating

α < Gm





1
zd(z−1)(z−ε)δ2

(ε−1+δ)z+1−ε−δε
+ β z−1

z



 , (15)

where Gm[.] means gain margin of the Z-transfer function.
The second method, used in [10] and [22], numerically
solves the poles of the characteristic equation (11) and finds
the stiffness coefficients which place all the poles just within
the unit circle.

Although both methods obtain the same results, the gain
margin can be computed easily in Matlab® only if the delay
is a multiple of the sampling period T , while the other
method allows for introducing fractional numbers for the
delay. Fig. 5 shows the stability boundaries for different
delays d and setting δ < 10−3; while Fig. 6 shows a zoom
of Fig. 5 near the point of origin.

The shown boundaries in Fig. 6 fit perfectly the linearized
stability condition (7),

α <
2

1 + 2d
(δ + β). (16)

The initial slope of the stability boundaries becomes
smaller with the delay. Therefore, the critical stiffness with-
out virtual damping β = 0 decreases also with the delay.
This means that, using the physical parameters, the critical
stiffness depends on both the physical damping and the
delay.

Notice that this result is a graphical analysis which just
shows the consistency of (7). It can be only considered as a
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Fig. 6. Zoom of the stability boundaries near the point of origin for
small dimensionless physical damping (δ < 10−3) and delays d =
[0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3].

proof after showing that it fits the exact analytical conditions,
like the ones presented in the previous section for d = 0 and
d = 1.

VII. SIMULATION RESULTS

Many simulations have been performed to check stability
condition (8); however, since all of them hold that condition
only few of them are shown in this paper. Table II shows
the critical virtual stiffness, for several values of delay and
virtual damping. The sampling period was set equal to 1 ms,
the mass equal to 1 kg, and the physical damping 0.1 Ns/m.

Simulations show that the virtual damping increases the
critical stiffness in the same way as the physical one does.
They also confirm that the mass of the interface does not
influence the critical stiffness of the system. All the values
obtained during the simulations hold well condition (8).

TABLE II
CRITICAL STIFFNESS VERSUS DELAY AND VIRTUAL DAMPING, WITH

m = 1 kg, b = 0.1 Ns/m AND T = 1 ms

Critical stiffness (N/m)
Virtual damping (Ns/m)

0.1 0.2 0.3 0.4

0 399.89 599.78 799.75 999.22

0.25 266.61 399.89 533.17 666.26

0.5 199.97 299.93 399.89 499.73

0.75 159.98 239.94 319.91 399.79

Delay (ms) 1 133.32 199.95 266.58 333.16

1.5 99.99 149.97 199.93 249.89

2 79.99 119.97 159.93 199.89

3 57.14 85.69 114.23 142.76

4 44.44 66.64 88.83 111.03

VIII. EXPERIMENTAL RESULTS

The DLR Light-Weight Robot III (Fig. 7) has been used to
perform some experiments [23]. Every joint has an internal
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Active joint

Fig. 7. DLR Light-Weight Robot III.

controller which compensates the gravity and the Coulomb
friction. Since high-resolution position sensors are used to
measure the link orientations (quantization q ≈ 20”), non-
linear effects can be neglected.

A bilateral virtual wall consisting of a virtual spring and
damper was implemented in the third axis of the robot
(rotating angle φ in Fig. 7). Limit stable parameter values
were obtained when sustained oscillations were observed
increasing the stiffness. The environment was implemented
using a computer connected via Ethernet to the robot. The
sampling rate was 1 kHz and the overall loop contained a
delay of 5 ms. No user was involved in the experiments.
Fig. 8 shows the experimental results introducing several
fixed values for the virtual damping. A set of experiments
was performed with only the system delay of 5 ms, while
additional delays were artificially introduced in the loop to
obtain an overall delay of 6 and 10 ms. The theoretical
behavior is depicted with dotted lines. The experimental
stability boundaries fit very well the linear condition.

A very large delay was also introduced in the system in
order to receive a curved stability boundary. Fig. 9 shows
the experimental stability boundary for an overall delay of
55 ms. The beginning of the stability boundary for a delay
of 10 ms is also shown in the same figure. The theoretical
stability curve has been computed using an inertia of the
device in the configuration selected for the experiments:
0.8 kg·m2.

IX. VALID RANGE OF THE LINEAR CONDITION

The shape of the stability boundary can be divided into
two different parts. The first one follows the linear con-
dition (8) for relatively small values of virtual damping
(Fig. 6). The second one is a curve (Fig. 5) which only
can be obtained graphically—although we know the exact
analytical conditions of two cases: without delay (1) and
with a delay of one sampling period (13). In this section we
discuss the frontier between these two parts.
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Fig. 8. Experimental stability boundaries for a delay td of 5, 6 and 10
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Fig. 9. Experimental stability boundaries for a delay td of 10 and 55 ms
(pluses and solid); and theoretical boundaries (dashed).

Fig. 10 shows the points in which the relative error of the
linearization (8) to the exact boundaries is 2% and 5% for
the two cases δ = 0 and δ = 0.01. Obviously, the linear
condition (8) presented in this paper can be used even for
high physical damping δ = 0.01; for this value the 2% error
is only violated for delay d ≥ 3 from the beginning.

Regarding the delay, several factors like computation of
the collision detection algorithms for complex virtual envi-
ronments, digital to analog conversion, amplifier dynamics,
etc. introduce a certain delay in the haptic system that is
usually equal to or less than one sampling period, d ≤ 1, [8].
Therefore, the linear condition (8) holds quite well for haptic
devices. In other kind of systems, which usually involve
longer delays (i.e. in teleoperated systems it is quite common
to suppose a delay equal to hundreds of ms), the linear
stability condition should not be used.
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where the relative error of the linear condition (8) (dashed) is equal to 2%
(circles) and equal to 5% (squares) for δ = 0 and δ = 0.01.

X. CONCLUSIONS AND FUTURE WORK

This paper studies the influence of the viscous damping
and the delay in the stability of haptic systems. The sta-
bility boundaries have been found by means of different
approaches: 1) analytically using the Routh-Hurwitz criteria;
2) numerically computing the poles of the characteristic
equation, 3) performing simulations and 4) experimentally.

Although analytical expressions of the stability boundaries
are quite complex, a linear condition between stiffness,
damping and system delay can be used for haptic systems.
This condition is independent of the mass of the device.
Furthermore, it seems that the virtual and the physical
damping have the same influence on the system inside the
valid range of the linear condition. Thus, in combination
with the delay the virtual spring causes energy gain [24],
and not the virtual damping. Comparing the linear stability
condition to the exact boundary demonstrates that it is valid
for a wide parameter range of the virtual environment.
Yet, since the analyses presented in this paper assume the
linearity of the system, its results can only be taken as
an approximation if non-linear phenomena (like Coulomb
friction and sensor resolution) are not negligible.

For future work it would be interesting to investigate these
nonlinear effects. Also examining the robustness against
uncertain physical parameters and external disturbances is
worthful.
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