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Abstract— Automated transport of suspended objects is a
subject of importance in many manufacturing, construction,
and military applications. Suppression of the natural oscillation
of payloads after a transport motion has been extensively
studied, but generalized planar motion has yet to be examined.
Obstacles in a crane or robot workspace may necessitate trans-
port using a sequence of many linear segments or by a sequence
of fewer curvilinear ones. The use of curvilinear motions in such
cases may have the following advantages: (1) less error build-
up in optimization due to the use of fewer segments, and (2)
faster transport. We investigate parametrically-defined poly-
nomial spatial paths optimized using dynamic programming.
We present simulations and experimental evaluations of these
optimizations.

I. INTRODUCTION

In transporting suspended objects, it is often desired that
oscillations of the payload be suppressed at the end of a
transport maneuver. This is an area of interest for many
industries, including manufacturing plants, construction, and
the military.

Past research has been concerned with various methods
of optimizing linear trajectories, where the issue of obstacle
avoidance may require splining together multiple trajectories
[1]. Depending on the complexity of the path required to
avoid collisions, this can greatly increase the total transport
time. The use of curvilinear trajectories can reduce transport
time and adds greater flexibility in motion planning.

Parametrically-defined trajectories are necessary for this
work because they allow for simultaneous optimization of
multiple dimensions of motion. By optimizing a single pa-
rameter, a specific spatial path can be maintained, something
that would not be possible if x and y motions were optimized
independently. The method of dynamic programming, used
in swing-free research due to its applicability to non-linear
systems, can be used to successfully suppress residual oscil-
lations of a payload transported along curvilinear paths.

A. Impulse-Convolution and Parameter Optimization

Two methods that have been used frequently in swing-
free research are impulse-convolution and parameter opti-
mization. Suppression of residual oscillation using command
trajectories was first investigated by Smith [2] and further
developed by Starr [3] and Strip [4]. The work of Singer
and Seering [5] was the beginning of the impulse-convolution
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method, an open-loop control technique wherein a sequence
of impulses is convolved with a desired trajectory in order to
minimize residual vibrations. This work has been extensively
explored and applied to two-mode systems [6], container
crane systems [7], and many other applications.

Parameter optimization is another frequently-used method
of suppressing residual motion. Utilizing basis func-
tions (usually “bang-coast-bang” piecewise functions) and
quadratic programming, this method has been applied to
vibration suppression of flexible rods [8], jib cranes [9], and
other systems.

While both of these methods have been successfully used
in swing-free research, they are not without their draw-
backs. Impulse-convolution requires linearization of non-
linear systems. This limitation eliminates most high-speed
transport maneuvers because they generate large swing an-
gles, making small-angle linearizing assumptions invalid. It
also has a tendency to generate non-smooth velocity profiles.
A problem with parameter optimization is that an accurate
initial estimate of the trajectory parameters may be required
to converge to a truly optimal solution. These issues are
discussed in greater detail by Starr et al [10].

B. Dynamic Programming

Dynamic Programming can avoid many of the aforemen-
tioned problems. It is based on the principle of optimality
and was first developed by Bellman [11]. Using the approach
of Robinett er al [12], Starr et al [3] chose objective
function matrices to enforce a minimum energy condition
for the optimization of movements by a gantry crane system
with one degree of freedom. We have applied this same
methodology to a two degree of freedom extension of the
system for investigating curvilinear motions.

II. SYSTEM AND TRAJECTORY FORMULATION

A. System and Trajectory Modeling

The system used for our investigation is a simple pendu-
lum modeled as a two degree of freedom system with a 2-1
Euler angle rotation sequence, depicted in Fig. 1. While this
rotation sequence does have singularities, they occur when
¢ = £ radians, far beyond the range of motion seen in
our simulations or experiments. Equations of motion for the
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system are as follows:

o . gsinf 1 _cosf
0 =200t - = - 1
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- j(jésinﬁsin(b + g cos ).
Fig. 1. 2-1 Euler Angle Rotation

Initially, we considered elliptical spatial trajectories for
this work. However, an angle of inclination and exactly four
points must be used to define elliptical segments, and only
a small fraction of possible point sets can be used to define
an ellipse. In addition, for spatial slope continuity between
splined segments, the proper angle of inclination for the next
elliptical arc in the sequence must be found iteratively.

For these reasons, polynomial trajectories were considered
as an alternative to elliptical arcs. Unlike ellipses, polynomi-
als can be defined by as few as two spatial coordinates (lin-
ear). The maximum number of coordinates that can be used
to define a polynomial depends on the specific coordinates
used. Some generate polynomials with undesirable higher-
order behavior, but we have used as many as ten coordinates
to define a reasonable polynomial in examining possible
trajectories. Polynomials also allow the spatial derivatives
at the end points to be explicitly defined.

The polynomial spatial formulation is:

z(y) =Y ai’ 3)
1=0

y(y) = > b, )
i=0
where « is defined as:
7 =0 (5)
Vj ==Wj41'+-\/(35‘—')(j71)2 +(Y;-Y;_1)% (6)

The set of points X, Y} are those through which the polyno-
mial must pass. An n*" order polynomial so constrained will
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pass through n+1 points. If the derivatives of the polynomial
at its end points needs to be explicitly defined, additional
contraints will apply and an n** order polynomial will only
pass through n points:

).
dr ). _o @

Zibﬂi_l
@ E
T/ y=vn

n
§ iaﬂl_l
=1

Optimization using dynamic programming requires system
discretization in state-variable form. For the purposes of this
research, we first constructed the system in the continuous
domain and then discretized it. The continuous state-variable
system, as derived from equations of motion (1)-(2) and
parametric equations (4)-(5) is given by:

X(t) = A()x(t) + B(t)u(?), 9)
where
. . T
x(t)=100 0 ¢ ¢ v 4] , (10)
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The input u(t) = 4(t), is the parameter acceleration. As
usual, s; means sinxi, c; means cos x3, efc.

B. Optimization using Dynamic Programming

Following the approach of [10], the equations of motion
(9)-(12) were discretized to form (13), and an objective
function I" was formed which is quadratic in both the input
and state:

Xp+1 = Apxy + Bruyg (13)
and
N
I'(x,u) = ka(xk, uy) (14)
k=1
where
Tk =k + XL Yk + uj 2z
1
+3 [xi Qrxy + 2% Rpuy, + uf Spuy (15)

Note that the quadratic objective function structure of (15) is

most general; in the particular application of this paper the

weighting sequences 7y, Yk, Zi, Qx, Ry are all zero.
Define the optimal value function A; as

N
A; = min );Fk(xk,uk) (16)

(u;...un
Thus A; represents the optimal objective function sequence
from intermediate sample ¢ to final sample N.
One can express this quadratic optimal value function as

T
X; W1X1

A =CG+xlvi+ 5

a7)

Note that A; is a function only of x;.
The principle of optimality may be stated as the backwards
recursion relation

Substituting (15), (16), and (17) into (18) yields the
recursive relation

T
; Wix;
C¢+X?Vz‘+¥=

T
xT Wi 1x;
Gi1 + X1 Vi1 + %H”l
+min {771' + XL yi +ulzy,
1

Introducing state equation (13) into (19) leads to

W, x

X )
i+ X Vi + === = Gy 0+ X hy

2
[xIHy;ix; + 2x] Ha;u; + ul Hyu| }

2

u;

—+ min {u?hm —+
(20)
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where we have consolidated terms

Hy; =Q; + A;WiHAi
Hy =R; + AW, B,
Hj; =S, + B/ W, 1B,
hy, =y + A;;Tvi—o—l
hs; = z; + B] viyy

Differentiating the lower expression in (20) with respect to
u; and equating to zero yields

u; = 7H3_il [Hgixi + h57] . (21)

Finally, substitution of u; from (21) into (20) and equating
coefficients of like degree in x; produces the following
recursive equations:

hl H; 'hs;
Gi=Cig1+m — 22— 2?” x (22)
v; = hy; — Hy;H3 'hy; (23)
W, = H,, — Hy,H;,'H2.. (24)

The initial values for (14)-(16) are given by

(N =N (25)
VN =YN (26)
Wy =Qu. 27

Summary of Algorithm. The procedure for applying the
dynamic programming algorithm is as follows:

1) Calculate vy and Wy using (18 and (19).
2) Calculate v; and W; recursively for ¢ = N — 1 to
i = 1 by using (15) and (16) and store the matrices
H;', HS,, and H;'hs; in the process.
3) Calculate u; and x; recursively fori =1toi =N —1
by using (13) and (5), respectively.
It should be noted that a single complete execution of the
above dynamic program is deterministic, with computational
features:

1) Order Nn? operations are required,
2) Order Nnm storage is required.

C. Application to Curvilinear Transport

The dynamic behavior of the suspended body is given
by (9)-(12), where the input in (9) is trajectory parameter
acceleration 4.

The objective function matrices were

Q=0
R,=0
S. =1,

which enforced a minimum-energy condition.
To suppress residual oscillation while achieving the de-
sired transport the final state must be (refer to (10)):

xr=1[0 0 0 0 ~ 0]". (28)
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This final constraint was enforced by adjoining it to the
objective function via a penalty weight p:

N
P (Gt oo el xil} 09

III. EXAMPLES

Four spatial trajectories were examined in simulation and
experiment: two short trajectories with path lengths As of
3.12 and 2.28 meters, respectively, and two long trajectories
with As 6.12 and 6.09 meters. The two long trajectories
were both comprised of shorter trajectories splined together
at a via point. With the 6.12 meter path, no derviative
constraints were applied at the endpoints, leading to a slope
discontinuity at the via point. Because of this, the trajectory
was constrained in the DP optimization have to zero velocity
at the via point. In the 6.09 meter trajectory, slope constraints
were applied so that there could be a non-zero velocity at
the via point without generating any velocity discontinuities.
These four trajectories are depicted in Fig. 2 through 5, along
with the points in the workspace that were used to define
the spatial path using the polynomial formulation described
previously. Fig. 4 and 5 also depict closer views of the
via points to show the difference that results when slope
continuity is enforced.

-Position (m)

Fig. 2.

Short Polynomial #1 - 3.12 meters long
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A. ADAMS Simulations

Both unoptimized and DP optimized trajectories were
simulated in MSC.ADAMS, with a model depicted in Fig. 6.
For the unoptimized trajectories, the (t) functions used were
cubic polynomials; these allow specification of endpoint
position and velocity without excessive slewing speed. Three
iterations of the DP optimization algorithm were used, with
a time step At = 8 ms. For all trajectories, including both
unoptimized and optimized cases, an average path speed
|v|m,g = 0.5 m/s was used, as this was fast enough to generate
significant swing in transit, but slow enough to not exceed the
limitations of the hardware used for experimental validation
of the procedure.
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Fig. 3. Short Polynomial #2 - 2.28 meters long

0.8 T T
Trajectary
o ) )
ngk Constraint Points 1
04F -
02t -
D L -

02F q
04t 4
T . . . / ‘ LA

0.2 0.4 06 0.8 1 1.2 1.4 1.6 1.5

#-Position (m)

Fig. 4. Long Polynomial #1 - 6.12 meters long
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Fig. 7 through 10 depict the swing angles as predicted
by the ADAMS simulations. t; = As/vq.4 depicted in these
figures is the time at which the motion of the pendulum pivot
point stops. For an ideal swing-free case, the angles 6 and
¢ should not change after that time. Table I lists numerical
values of the residual swing amplitudes for both unoptimized
(Unop.) and DP optimized (Op.) cases and percent reduction
in swing with optimization. The average percent reduction

was found to be 94.5%.

Fig. 6. Pendulum as modeled in MSC.ADAMS.
Z

Fig. 7. Short Polynomial #1
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B. Experimental Validation
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Fig. 8. Short Polynomial #2
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Fig. 9. Long Polynomial #1
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Experimentally, the system under investigation consists
of a Staiibli RX-130 manipulator from which slender cable
and a small lead weight is suspended, depicted in Fig. 11.
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Fig. 10. Long Polynomial #2
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TABLE I
RESIDUAL SWING AMPLITUDES: SIMULATION

[ Traj. Ang. || Unop. (deg)  Op. (deg) [[ Reduc. (%) |
Short Poly. 1 0 2.376 0.1221 94.9
¢ 2.837 0.1353 95.2
Short Poly. 2 0 5.147 0.4327 91.6
¢ 3.159 0.2029 93.6
Long Poly. 1 6 8.993 0.1173 98.7
¢ 7.058 0.1466 97.9
Long Poly. 2 0 22.75 0.6527 97.2
0] 2.14 0.2797 86.9

The pendulum length was [ = 0.528 meters. The Staiibli, in
conjunction with a translating Robot Transport Unit (RTU),
is used to perform maneuvers that mimic those that industrial
cranes can perform.

To test the effectiveness of the method, the aforementioned
trajectories were sampled at a time step of At = 16 ms
to match the sampling period of the Staiibli RX-130’s
controller. The motion was apportioned between the Staiibli
and RTU. All motion in the y-direction was conducted by the
Staiibli; most of the motion in the x-direction was performed
by the RTU, but some was done by the Staiibli to avoid
exceeding the RTU’s speed limit.

Because we had no explicit angle sensors available to
us, JR3 force sensors on the wrist of the robot were used
to take measurements of the residual motion. From the
force measurements, we were able determine the residual
swing amplitudes in the x- and y-directions. Using inverse
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Fig. 11.

Staiibli RX-130 and RTU

e

(a) A photograph of the Staiibli RX-130 and payload taken at the end of a
6.09 meter transport maneuver.

(b) Robot Transport Unit and two Staiibli RX-130s.

kinematics, these measurements were then used to determine
the Euler angles, 6 and ¢. Unfortunately, due to noise in the
force measurements, smaller angles in the motions could not
be determined conclusively. The angles that were able to be
measured (Exp. Unop.) are shown in Table II along with
their simulation counterparts (Sim. Unop.) for comparison.

The close agreement between simulation and experimental
residual swing in the unoptimized cases speaks well for the
accuracy of the ADAMS simulations. Though quantitative
measurements of the optimized swing angles could not be
obtained, we infer that the simulation accuracy extends to
those cases as well. Qualitative observation of the residual
swing for the optimized experimental runs did confirm that
the residual motion was much smaller than the unoptimized
cases.

Since practical application of the work will necessarily
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TABLE I
RESIDUAL SWING AMPLITUDES: EXPERIMENTAL COMPARISON
(SIGNAL TO NOISE RATIOS IN OPTIMIZED TRAJECTORY RUNS WERE TOO
SMALL TO DETERMINE ANGLES FROM FORCE MEASUREMENTS)

[1
[2]

[3]

[4]

[5]

[ Traj. Ang. ][ Exp. Unop. (deg)  Sim. Unop. (deg) [ % Diff. ]
Short Poly. 2 0 6.287 5.147 19.9
¢ 3.326 3.159 5.15
Long Poly. 1 0 9.368 8.993 4.08
¢ 6.195 7.058 133
Long Poly. 2 0 20.59 22.75 9.97

introduce uncertainty in the payload dynamics, the matter of
the sensitivity of the method to these uncertainties naturally
arises. We have not yet performed a systematic study to
characterize the sensitivity, but the work to date does indicate
that this is an issue of concern, and is a topic for future work.

IV. CONCLUSIONS AND FUTURE WORK

We have shown that dynamic programming can be suc-
cessfully applied to curvilinear transport of suspended ob-
jects. Simulations showed an average 94.5% reduction in
the residual swing angles between unoptimized and DP op-
timized maneuvers, with similar reductions experimentally.
For trajectories comprised of splined segments, little error
build-up was noticed during experimental verification.

Future work will include a closer look at trajectories com-
prised of multiple segments splined together, with the aim of
eliminating acceleration discontinuities at via points. We may
also examine spatial formulations other than elliptical arcs
and polynomials and extend the work to the full three degree
of freedom system. Finally, the sensitivity of the method to
uncertainties in payload dynamics will be characterized.
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