

Abstract— We address a rearrangement task by multiple

robot in this paper. A rearrangement task has constraints
regarding the order of the start, grasping and finish time.
Calculating these constraints has a high computational cost. We
propose a rearrangement method that calculates constraints
efficiently. In our approach, not all constraints are calculated,
but some of them will be calculated step by step. The proposed
method is tested in a simulated environment with up to 4 mobile
robots. The methods are compared, and the results indicate that
the proposed method is superior.

I. INTRODUCTION
EARRANGEMENT tasks involving several objects are
fundamental for mobile robots. Such tasks have various

applications such as hazardous waste cleanup, production
systems and household maintenance. The performance of
such tasks by multiple, rather than single, mobile robots
improves reliability, expandability and flexibility.

Figure 1 is an example of a rearrangement task. If a task is
defined as the transportation of an object, a rearrangement
task can be represented as a combination of multiple tasks. In
order to start moving and transporting earlier, it is important
and fundamental requirement that each robot decide which
task each robot should execute and how to do it individually.

A rearrangement task contains constraints on the order of
task execution. Furthermore, the order of the starting,
grasping and finishing time for a task must be considered in
cases involving multiple robots. In this paper, these concerns
are called task constraints. For example, in Fig. 1, robots
must grasp object 5 before the finish time of task 2 (i.e., the
transportation of object 2). Considering these task constraints
makes it possible to shorten the task completion time, but
robots must be equipped to calculate these constraints
because they cannot be pre-programmed by the designer.
Furthermore, it takes a considerable amount of time to
calculate constraints because consideration of the path of the
robot is required.

Many researchers have studied rearrangement problems.

Most of these studies involve a single robot [1], [2]. Several
studies have involved multiple robots, but not all task
constraints are managed, and arbitrary rules are used to avoid
task constraints [3], [4]. The applied rules are only suitable
when the environment does not contain task constraints.
Otherwise, the time required to complete the task is
considerably lengthened.

 Rearrangement tasks involving multiple robots are treated
as task allocation problems for multi-robot systems. In this
discipline, many studies have been conducted [5], [6]. In
others, such as task scheduling, constraints among tasks are
also examined [7], [8]. In these studies, designers assign task
constraints

All the previous methods are applicable to rearrangement
problems in wide working environments when objects are
simply arranged so that there are no task constraints.
Otherwise, the direct application of these methods results in
an increased task completion time, and, generally, the robots
are prevented from performing all of the tasks.

This paper is original in that the rearrangement task has
many task constraints and is performed by multiple robots. A
major challenge is to shorten the task completion time. In our
proposed method, robots calculate a part of, not all, the task
constraints step by step. Naturally, the total path length can
increase, and more time is required for execution. On the
other hand, inactive times of robots are significantly reduced,
and the total time for task completion is also reduced.

Rearrangement task realization by multiple mobile robots with
efficient calculation of task constraints

Norisuke Fujii, Tsai-Lin Chou and Jun Ota
Department of Precision Engineering

The University of Tokyo, Japan
norisuke@robot.t.u-tokyo.ac.jp

chou@robot.t.u-tokyo.ac.jp
ota@robot.t.u-tokyo.ac.jp

R

(a) (b)

Fig. 1. A case including task constraints. (a) Initial state. (b) Goal state.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA1.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 8

II. PROBLEM FORMULATION AND ASSUMPTIONS

A. Problem Formulation
Alami et al. formulated a rearrangement problem for one

robot. In their research, they defined some paths in the
configuration spaces of robots and objects [9]. We expand
these definitions and formulation.

Let },,,,,,{ 11 nm MMRRWB ⋅⋅⋅⋅⋅⋅= represent a set of units
within the working environment. W represents immovable
obstacles (i.e., walls). },,{ 1 mRR ⋅⋅⋅ is a collection of robots,
where m is the number of robots; },,{ 1 nMM ⋅⋅⋅ is a
collection of movable objects, where n is the number of
objects. Every object and robot has its own configuration
space. Let iRCS denote the configuration space of robot iR ,
and let MiCS denote the configuration space of object iM .
Let CCS denote the composite configuration space of
objects and robots. The set of free configurations of CCS is
denoted by)(CCSFree . Each vector in)(CCSFree is a
composite configuration },,,,,{ 11 MnMmRR qqqqQ ⋅⋅⋅⋅⋅⋅= in
which iRq denotes the configurations of robot iR and iMq
denotes the configuration of object iM .

The robot can only transport an object. A robot can
transport an object only if it can grasp it. Grasping can be
performed only when robots move to predefined
configurations toward an object.

Definition 1: Such predefined configurations are called
grasping configurations, and the grasping configuration for
object iM is represented by)(iMqGrasp .

Definition 2: The transfer path of robot iR is a path in
configuration space iRCS such that there is object iM
verifying that, for any iRq on the path,)(iMiR qGraspq = .

Definition 3: The transit path of robot iR is a path in
configuration space iRCS such that there is no object
verifying that, for any iRq on the path,)(iMiR qGraspq = .

Definition 4: The manipulation path of robot iR is a path
in configuration space iRCS . This path is a finite sequence of
transit and transfer paths. Let),(10 QQP iR denote the
manipulation path of robot iR between 0Q and 1Q .

Using most of the above definitions and symbols, we
define the rearrangement problem of n objects and m robots
as follows:

Given a description of working environment B , an initial
composite configuration },,,,{ 11

S
Mn

S
M

S
mR

S
R

S qqqqQ ⋅⋅⋅⋅⋅⋅= and
a goal configuration },,,,{ 11

G
Mn

G
M

G
mR

G
R

G qqqqQ ⋅⋅⋅⋅⋅⋅= , find the
all manipulation paths)},(,),,({ 1

GS
mR

GS
R QQPQQP ⋅⋅⋅ .

B. Definition of Task
The definition of the task is provided below:
Given the current configuration iMq and goal

configuration G
iMq of object iM , find the manipulation path

of one robot to transport iM from iMq to G
iMq .

Using the definition above, a rearrangement task can be
regarded as a combination of tasks. At that time, task
constraints and tasks that other robots engage in should be
considered.

Let iMT denote the task in which a robot transports object
iM and },,{ 1 MnM TTS ⋅⋅⋅= denote the set of all tasks. Let iRT

denote the task that robot iR is now engaged in and
},,{ 1 RnRR TTS ⋅⋅⋅= denote the set of all tasks that robots are

now engaged in.

C. Assumptions
In this paper, the following assumptions are made.
• There is only one grasp configuration toward one

object.
• All robots can move in any direction, and the

orientations of objects and robots are not considered.
• All robots are equipped with the same geometry and

ability for movement, grasping and communication.
• All robots are equipped to locate objects and other

robots.
• Communication among robots can be conducted

whenever necessary.
• One object is transported by a single robot, and one

robot can grasp one object at a time.
• The robot that is unengaged in any task tries to return

to the initial position.
• The rearrangement task is completed when all tasks

are accomplished and all robots return to their initial
positions.

These assumptions simplify a rearrangement problem.

Knowledge of other research areas can help examine the more
complex versions of a rearrangement problem. In this paper,
the focus is primarily on the calculation of task constraints
and their influence on the outcome.

III. REARRANGEMENT METHOD

A. Overview
At the beginning of this subsection, we provide an

overview of a one robot process. Figure 2 is an overview of
the process. In this figure, the blue regions indicate that robots
stop in these phases. The pink ones show that robots are
moving. A robot iterates the selection of an object to be
transported and the execution of transportation until all tasks
are completed. To reflect task constraints in the selection of
an object, a robot must calculate them before making a
selection. However, it takes a considerable amount of time to
calculate all task constraints at that time. Therefore, in this
paper, robots calculate only easy constraints that can be
calculated by a test of interference between polygons and
require less computational time at that time. Difficult
constraints that require path planning and a considerable
amount of computational time are calculated when a robot
cannot find a manipulation path for a selected task (i.e., when
it fails). In the next subsection, we discuss which constraints
are easy, which are difficult and which fall under other
classifications. When a robot fails a task, there are constraints
between failed tasks and others. Therefore, robots can

WeA1.2

9

calculate the task constraints efficiently by focusing on a
specific area.

Next, we explain some specific points regarding our
method.

1. Robots select one task to be executed at a time.
2. When a robot completes or fails a task, all robots

reselect an object to be transported.

Regarding point 1, in a rearrangement task, robots cannot

estimate the movement of other robots correctly. To avoid
collisions, robots must change their paths as warranted;
therefore, it is difficult to estimate the completion time of a
task. According to the classification of an allocation problem
by Gerkey, such tasks should be allocated one by one [10].
This is so because less information is available about future
tasks and whether task constraints are satisfied.

Regarding point 2, the task constraints and priorities of all
tasks can change when a robot completes or fails a task.
Therefore, all robots must determine which tasks are to be
executed. The robot that completes or fails a task sends a
message to the other robots, and the robots that receive a
message must reselect a task.

B. Calculating Task Constraints
In our method, we treat with just a part of task constraints,

not all constraints. Task constraints can be classified
primarily into three groups, as defined below:

1. Constraints prescribed by the arrangement of an
object.

2. Constraints prescribed by the motion of the robots.
3. Constraints prescribed by the combination of items 1

and 2.

For the purposes of this paper, the focus is on item 1, and

other constraints will not be discussed. Furthermore, the
constraints discussed here are classified as easy and hard
according to their calculation cost.

1) Easy Constraints
Easy constraints can be calculated by a test to determine

whether two regions occupied by robot and object overlap or
not. For example, the completion time of task 2 must be
earlier than that of task 1. This is because, if task 1 is
completed first, a robot could not be located at the grasping
configuration of object 2. In a case in which initial and goal
configurations are relatively near, task constraints could be
calculated by testing the interference between polygons. A
comparatively less computational cost is required in such a
case. All easy constraints between tasks 1 and 2 could be
calculated as follows:

• If object 1 at the initial configuration and a robot
grasping object 2 at the initial configuration interfere,
the grasping time of object 1 must be earlier than the
grasping time of object 2.

• If object 1 at the goal configuration and a robot
grasping object 2 at the initial configuration interfere,
the grasping time of object 2 must be earlier than the
completion time of object 1.

• If object 1 at the initial configuration and a robot
grasping object 2 at the goal configuration interfere,
the grasping time of object 1 must be earlier than the
completion time of object 2.

• If object 1 at the goal configuration and a robot
grasping object 2 at the goal configuration interfere,
the completion time of object 2 must be earlier than
that of object 1.

2) Hard Constraints
To calculate hard constraints, the iteration of path planning

is required. In Fig. 4, the grasping time of task 2 must be
earlier than the completion time of task 1. This kind of
constraint cannot be calculated unless robots attempt to
develop a path plan. Therefore, a comparatively higher
computational cost is required. All hard constraints between
tasks 1 and 2 can be calculated as follows:

• If there are no robots or other objects with the
exception of object 1 at the initial configuration, a
transfer path could be generated to transport object 2.
If there is no path, the time of grasping object 1
should be earlier than the completion time of task 2.

• If there are no robots or other objects with the
exception of object 1 at the goal configuration, a
transfer path could be generated to transport object 2.

(a) (b)

Fig. 3. An example of easy constraints. (a) Initial state. (b) Goal state.
Fig. 2. An overview of our method.

WeA1.2

10

If there is no path, the time of grasping object 2
should be earlier than the completion time of task 1.

3) Number of Constraints to be Scanned
As noted at the beginning of this section, robots calculate

easy constraints before the selection of an object to be
transported, and difficult ones are calculated when a robot
fails a task. Regarding easy constraints, robots calculate all
constraints between every two tasks. If there are n objects,
the number of combinations is 2/)1(−nn . Regarding hard
constraints, robots attempt to calculate some of the
constraints between a failed task and other tasks because it is
more likely that there will be undiscovered constraints. The
number of combinations is 1−n .

C. Selecting the Object to be Transported
The selection of an object to be transported is carried out

basically based on the priority of tasks. The more prior the
task is, the sooner robots should execute that. In our method,
priority value and performance value control selections. In
addition to these values, we set a special selection rule in
order to observe task constraints.
1) Selection Rule

The calculated task constraints must be observed in order
to successfully rearrange the task. When a robot attempts to
disobey a task constraint, a rearrangement task will fail.
Precise estimates of the starting, grasping and finishing times
are difficult to discern; therefore, a selection rule should be
simple and independent of such estimates.

The selection rule is that if there are task constraints in
which the grasping or finishing times of task 1 are earlier
than those of task 2, robots cannot select task 2 unless task 1
is completed.

This rule has redundancy; therefore, our method cannot be
used to obtain an optimum solution. However, this rule is
sufficiently simple, and robots will always be able to observe
the task constraints.
2) Priority Value and Performance Value

We use a priority graph to calculate priority values. A
priority graph is a directed graph. A node denotes each task,
and a directed edge from task 1 to 2 indicates that task 2 will
not be selected unless task 1 is completed. The priority value
of a certain node is (outdegree) + (the total priority values of
nodes indicated by the edges from the node).

Figure 5 shows an example of a priority graph and values.
In this example, task 3 should be executed before tasks 1 and

2, and task 2 should be executed before task 1. Eventually, a
priority graph will be constructed as shown.

It is difficult to accurately calculate the time from start to
finish; therefore, we approximate that time as a performance
value instead. The performance values of robots are 1 /
(transfer path length) supposing that there are no other objects
or robots.
3) Procedure of Selection

1. Decide which tasks can be selected. In addition to the
selection rule, the task with similar current and goal
configurations does not require transportation;
therefore, it cannot be selected. The tasks that have
already been selected by other robot cannot be
selected either.

2. Calculate the priority values and performance values.
3. If a robot has the highest performance value for the

task with the highest priority value, it can be selected.
4. If none of the tasks can be selected or all robots have

selected tasks, the procedure can be finished.
5. Return to step 1.

D. Executing Transportation
In the execution phase, the robots move along a transit path,

grasp an object, continue along the transfer path and then
release the object. Each robot treats other robots as stationary
obstacles; therefore, robots should iterate the recognition of
the environment, generate a path and move along the path.
Robots move at a predefined speed. In this paper, we adopt
path-planning method of Curt [11].

(a) (b)

Fig. 4. An example of hard constraints. (a) Initial state. (b) Goal state.

(a) (b)

(c)

Fig. 5. An example of a priority graph and priority values. (a) Initial
state. (b) Goal state. (c) Priority graph.

WeA1.2

11

IV. SIMULATION
In this section, we present simulation results. Our method

is original from the viewpoint of applicability to a narrow
working environment that contains many task constraints.
The application of the previous method increases the task
completion time in all cases, and, in most cases, robots cannot
perform all tasks.

A. Simulation Conditions
The proposed method and three other methods were tested
and compared. The tested methods are summarized below:
• Grasping-and-restricted (proposed method):

Calculate all easy task constraints just before the
selection of an object and calculate some of the hard
task constraints after a robot fails to execute a task.

• All: Calculate all easy and hard task constraints just
before selection.

• Restricted: Calculate some of the hard task
constraints after a robot fails to execute a task.

• No-action: Do not calculate any task constraints at all.

Next, we show other simulation conditions in Table I. All

simulations were conducted with robots of the same size,
speed, identically sized object and cells (these items are
written in black). The sizes of the working environments and
number of robots (items in red) were changed in all
simulations.

B. Results
Figure 6 shows the results. The blue bars show the

execution time. This time can be calculated from the path
length and the speed of the robots. The purple bars show the
planning time. This time is equal to the time robots remain
stationary. This figure shows the effectiveness of the
proposed method. The proposed method shows the same
level of execution time and the best result of the planning time.
The total time of task completion for the proposed method is
also the best. These results show that robots can start moving
faster and perform all tasks before they can with the other
methods. The no-action method produces the worst results.
These results show that considering task constraints is
important for planning and execution. The All method
produces worse results than the proposed and restricted

methods. These results show that the All method wastes
planning time for the calculation of task constraints and that it
does not always execute well. The robot does not need to
calculate all task constraints in a rearrangement problem, and
it is important to determine the constraints that should be
scanned. In a comparison of the proposed and restricted
methods, the proposed method produced positive results. The
proposed method requires much more time to calculate easy
constraints than the restricted method, but it may result in
good object selection. Therefore, the total completion time is
minimal.

Figure 7 shows the relationship between the planning time
and the number of robots. The execution times were similar
among the proposed, All and restricted methods; therefore,
we focused on the planning time in this figure. In our
simulator, one processor always considers multiple processes
of multiple robots simultaneously; therefore, when more
robots are considered, more planning time is required. The
results show that the more robots that are considered, the
more differences there will be between the All and proposed
methods. These results show the effectiveness of the
proposed method, particularly in a case in which many robots
are working.

Finally, a simulation in which the size of the working
environment is 68.8 (m2) with four robots working and using
the grasping-and-restricted method is shown in Fig. 8.

TABLE I
SIMULATION CONDITIONS

Size of robots 0.5 m × 0.5 m

Speed of robots 0.5 m/s
Size of objects 0.4 m × 0.4 m
Size of working
environment

17 m2, 41.5 m2, 68.8 m2

Size of cells 0.01 m2
Number of objects 5
Number of robots 1, 2, 3, 4
Total number of
simulation times

96

CPU Pentium 4, 3.2 GHz

Fig. 6. Comparison of the tested methods.

Fig. 7. Relationship between planning time and the number of robots.

WeA1.2

12

V. CONCLUSION
In this paper, we propose a rearrangement task realization

method considering multiple robots. The rearrangement task
contains task constraints, and the robots should calculate
these constraints. The simulation results show the
effectiveness of our method from the viewpoint of the time
required for task completion planning. The methods proposed
in this paper do not examine all constraints. To avoid the
effects from these constraints, motion planning should be
improved. Future research will be conducted to further
explore some of these methods.

REFERENCES
[1] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for

rearrangement tasks,” IEEE Trans. Robotics and Automat., vol. 14, no.
4, pp. 549-565, 1998.

[2] J. Ota, “Rearrangement of multiple movable objects --- Integration of
global and local planning methodology ---,” in Proc. 2004 IEEE Int.
Conf. Robotics and Automat., pp. 1962-1967.

[3] S. Cambon, F. Grabot, and R. Alami, “aSyMov:toward more realistic
robot plans,” LAAS, Toulouse, Rapport LAAS N°03472 Octobre, pp.

0-8, 2003.
[4] M. Cherif and M. Vidal, “Planning handling operations in changing

industrial plants,” in Proc. 1998 IEEE Int. Conf. Robotics and Automat.,
pp. 881-886.

[5] L. E. Parker, “ALLIANCE: An architecture for fault-tolerant
multi-robot cooperation,” IEEE Trans. Robotics and Automat., vol. 14,
no. 2, pp. 220-240, 1998.

[6] B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods for
multi-robot coordination,” IEEE Trans. Robotics and Automat., vol. 18,
no. 5, pp. 758-768, 2002.

[7] J. Modi, H. Jung, M. Shen, and W. M. Kulkarni, “A dynamic distributed
constraint satisfaction,” in Principles and Practice of Constraint
Programming - CP2001, T. Walsh, Ed. New York, Springer-Verlag,
2001, pp. 685-700.

[8] P. Brucker, Scheduling Algorithms, Berlin, Springer-Verlag, 1998.
[9] R. Alami, J. P. Laumond, and T. Simeon, “Two manipulation planning

algorithms,” in Algorithmic Foundation of Robotics, K. Goldberg, D.
Halpern, J. C. Latombe, and R. Wolson, Eds. Boston, A. K. Peters, 1995,
pp. 109-125.

[10] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” Int. J. Robotics Research, vol.
23, no. 9, pp. 939-954, September, 2004.

[11] K. Curt, “A gradient method for realtime robot control.” In Proc.
Intelligent Robotic Systems, vol. 1, 2000, pp. 639-646.

(a) Initial state. (b) 4 seconds later. (c) 8 seconds later.

(d) 12 seconds later. (e) 16 seconds later. (f) 20 seconds later.

(g) 24 seconds later. (h) 28 seconds later. (i) Goal state.

Fig. 8. Simulation results when the size of the working environment is 68.8 (m2) and four robots are working and using the grasping-and-restricted method.

WeA1.2

13

