
 
 

 

 
Abstract— We address a rearrangement task by multiple 

robot in this paper. A rearrangement task has constraints 
regarding the order of the start, grasping and finish time.  
Calculating these constraints has a high computational cost. We 
propose a rearrangement method that calculates constraints 
efficiently. In our approach, not all constraints are calculated, 
but some of them will be calculated step by step. The proposed 
method is tested in a simulated environment with up to 4 mobile 
robots. The methods are compared, and the results indicate that 
the proposed method is superior. 

I. INTRODUCTION 
EARRANGEMENT tasks involving several objects are 
fundamental for mobile robots. Such tasks have various 

applications such as hazardous waste cleanup, production 
systems and household maintenance. The performance of 
such tasks by multiple, rather than single, mobile robots 
improves reliability, expandability and flexibility. 

Figure 1 is an example of a rearrangement task. If a task is 
defined as the transportation of an object, a rearrangement 
task can be represented as a combination of multiple tasks. In 
order to start moving and transporting earlier, it is important 
and fundamental requirement that each robot decide which 
task each robot should execute and how to do it individually. 

A rearrangement task contains constraints on the order of 
task execution. Furthermore, the order of the starting, 
grasping and finishing time for a task must be considered in 
cases involving multiple robots. In this paper, these concerns 
are called task constraints. For example, in Fig. 1, robots 
must grasp object 5 before the finish time of task 2 (i.e., the 
transportation of object 2). Considering these task constraints 
makes it possible to shorten the task completion time, but 
robots must be equipped to calculate these constraints 
because they cannot be pre-programmed by the designer. 
Furthermore, it takes a considerable amount of time to 
calculate constraints because consideration of the path of the 
robot is required. 

Many researchers have studied rearrangement problems. 

Most of these studies involve a single robot [1], [2]. Several 
studies have involved multiple robots, but not all task 
constraints are managed, and arbitrary rules are used to avoid 
task constraints [3], [4]. The applied rules are only suitable 
when the environment does not contain task constraints. 
Otherwise, the time required to complete the task is 
considerably lengthened. 

 Rearrangement tasks involving multiple robots are treated 
as task allocation problems for multi-robot systems. In this 
discipline, many studies have been conducted [5], [6]. In 
others, such as task scheduling, constraints among tasks are 
also examined [7], [8]. In these studies, designers assign task 
constraints 

All the previous methods are applicable to rearrangement 
problems in wide working environments when objects are 
simply arranged so that there are no task constraints. 
Otherwise, the direct application of these methods results in 
an increased task completion time, and, generally, the robots 
are prevented from performing all of the tasks. 

This paper is original in that the rearrangement task has 
many task constraints and is performed by multiple robots. A 
major challenge is to shorten the task completion time. In our 
proposed method, robots calculate a part of, not all, the task 
constraints step by step. Naturally, the total path length can 
increase, and more time is required for execution. On the 
other hand, inactive times of robots are significantly reduced, 
and the total time for task completion is also reduced. 
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Fig. 1.  A case including task constraints. (a) Initial state. (b) Goal state.
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II. PROBLEM FORMULATION AND ASSUMPTIONS 

A. Problem Formulation 
Alami et al. formulated a rearrangement problem for one 

robot. In their research, they defined some paths in the 
configuration spaces of robots and objects [9]. We expand 
these definitions and formulation. 

Let },,,,,,{ 11 nm MMRRWB ⋅⋅⋅⋅⋅⋅=  represent a set of units 
within the working environment. W represents immovable 
obstacles (i.e., walls). },,{ 1 mRR ⋅⋅⋅  is a collection of robots, 
where m  is the number of robots; },,{ 1 nMM ⋅⋅⋅  is a 
collection of movable objects, where n  is the number of 
objects. Every object and robot has its own configuration 
space. Let iRCS  denote the configuration space of robot iR , 
and let MiCS  denote the configuration space of object iM . 
Let CCS  denote the composite configuration space of 
objects and robots. The set of free configurations of CCS  is 
denoted by )(CCSFree . Each vector in )(CCSFree  is a 
composite configuration },,,,,{ 11 MnMmRR qqqqQ ⋅⋅⋅⋅⋅⋅=  in 
which iRq  denotes the configurations of robot iR  and iMq  
denotes the configuration of object iM . 

The robot can only transport an object. A robot can 
transport an object only if it can grasp it. Grasping can be 
performed only when robots move to predefined 
configurations toward an object.  

Definition 1: Such predefined configurations are called 
grasping configurations, and the grasping configuration for 
object iM  is represented by )( iMqGrasp . 

Definition 2: The transfer path of robot iR  is a path in 
configuration space iRCS  such that there is object iM  
verifying that, for any iRq  on the path, )( iMiR qGraspq = . 

Definition 3: The transit path of robot iR  is a path in 
configuration space iRCS  such that there is no object 
verifying that, for any iRq  on the path, )( iMiR qGraspq = . 

Definition 4: The manipulation path of robot iR  is a path 
in configuration space iRCS . This path is a finite sequence of 
transit and transfer paths. Let ),( 10 QQP iR  denote the 
manipulation path of robot iR  between 0Q  and 1Q . 

Using most of the above definitions and symbols, we 
define the rearrangement problem of n  objects and m  robots 
as follows: 

Given a description of working environment B , an initial 
composite configuration },,,,{ 11

S
Mn

S
M

S
mR

S
R

S qqqqQ ⋅⋅⋅⋅⋅⋅=  and 
a goal configuration },,,,{ 11

G
Mn

G
M

G
mR

G
R

G qqqqQ ⋅⋅⋅⋅⋅⋅= , find the 
all manipulation paths )},(,),,({ 1

GS
mR

GS
R QQPQQP ⋅⋅⋅ . 

B. Definition of Task 
The definition of the task is provided below: 
Given the current configuration iMq  and goal 

configuration G
iMq  of object iM , find the manipulation path 

of one robot to transport iM  from iMq  to G
iMq . 

Using the definition above, a rearrangement task can be 
regarded as a combination of tasks. At that time, task 
constraints and tasks that other robots engage in should be 
considered. 

Let iMT  denote the task in which a robot transports object 
iM  and },,{ 1 MnM TTS ⋅⋅⋅=  denote the set of all tasks. Let iRT  

denote the task that robot iR  is now engaged in and 
},,{ 1 RnRR TTS ⋅⋅⋅=  denote the set of all tasks that robots are 

now engaged in. 

C. Assumptions 
In this paper, the following assumptions are made. 
• There is only one grasp configuration toward one 

object. 
• All robots can move in any direction, and the 

orientations of objects and robots are not considered. 
• All robots are equipped with the same geometry and 

ability for movement, grasping and communication. 
• All robots are equipped to locate objects and other 

robots. 
• Communication among robots can be conducted 

whenever necessary. 
• One object is transported by a single robot, and one 

robot can grasp one object at a time. 
• The robot that is unengaged in any task tries to return 

to the initial position. 
• The rearrangement task is completed when all tasks 

are accomplished and all robots return to their initial 
positions. 

 
These assumptions simplify a rearrangement problem. 

Knowledge of other research areas can help examine the more 
complex versions of a rearrangement problem. In this paper, 
the focus is primarily on the calculation of task constraints 
and their influence on the outcome. 

 

III. REARRANGEMENT METHOD 

A. Overview 
At the beginning of this subsection, we provide an 

overview of a one robot process. Figure 2 is an overview of 
the process. In this figure, the blue regions indicate that robots 
stop in these phases. The pink ones show that robots are 
moving. A robot iterates the selection of an object to be 
transported and the execution of transportation until all tasks 
are completed. To reflect task constraints in the selection of 
an object, a robot must calculate them before making a 
selection. However, it takes a considerable amount of time to 
calculate all task constraints at that time. Therefore, in this 
paper, robots calculate only easy constraints that can be 
calculated by a test of interference between polygons and 
require less computational time at that time. Difficult 
constraints that require path planning and a considerable 
amount of computational time are calculated when a robot 
cannot find a manipulation path for a selected task (i.e., when 
it fails). In the next subsection, we discuss which constraints 
are easy, which are difficult and which fall under other 
classifications. When a robot fails a task, there are constraints 
between failed tasks and others. Therefore, robots can 
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calculate the task constraints efficiently by focusing on a 
specific area. 

Next, we explain some specific points regarding our 
method. 

1. Robots select one task to be executed at a time. 
2. When a robot completes or fails a task, all robots 

reselect an object to be transported. 
 
Regarding point 1, in a rearrangement task, robots cannot 

estimate the movement of other robots correctly. To avoid 
collisions, robots must change their paths as warranted; 
therefore, it is difficult to estimate the completion time of a 
task. According to the classification of an allocation problem 
by Gerkey, such tasks should be allocated one by one [10]. 
This is so because less information is available about future 
tasks and whether task constraints are satisfied. 

Regarding point 2, the task constraints and priorities of all 
tasks can change when a robot completes or fails a task. 
Therefore, all robots must determine which tasks are to be 
executed. The robot that completes or fails a task sends a 
message to the other robots, and the robots that receive a 
message must reselect a task.  

B. Calculating Task Constraints 
In our method, we treat with just a part of task constraints, 

not all constraints. Task constraints can be classified 
primarily into three groups, as defined below: 

1. Constraints prescribed by the arrangement of an 
object. 

2. Constraints prescribed by the motion of the robots. 
3. Constraints prescribed by the combination of items 1 

and 2. 
 
For the purposes of this paper, the focus is on item 1, and 

other constraints will not be discussed. Furthermore, the 
constraints discussed here are classified as easy and hard 
according to their calculation cost. 

 

1) Easy Constraints 
Easy constraints can be calculated by a test to determine 

whether two regions occupied by robot and object overlap or 
not. For example, the completion time of task 2 must be 
earlier than that of task 1. This is because, if task 1 is 
completed first, a robot could not be located at the grasping 
configuration of object 2. In a case in which initial and goal 
configurations are relatively near, task constraints could be 
calculated by testing the interference between polygons. A 
comparatively less computational cost is required in such a 
case. All easy constraints between tasks 1 and 2 could be 
calculated as follows: 

• If object 1 at the initial configuration and a robot 
grasping object 2 at the initial configuration interfere, 
the grasping time of object 1 must be earlier than the 
grasping time of object 2. 

• If object 1 at the goal configuration and a robot 
grasping object 2 at the initial configuration interfere, 
the grasping time of object 2 must be earlier than the 
completion time of object 1. 

• If object 1 at the initial configuration and a robot 
grasping object 2 at the goal configuration interfere, 
the grasping time of object 1 must be earlier than the 
completion time of object 2. 

• If object 1 at the goal configuration and a robot 
grasping object 2 at the goal configuration interfere, 
the completion time of object 2 must be earlier than 
that of object 1. 

2) Hard Constraints 
To calculate hard constraints, the iteration of path planning 

is required. In Fig. 4, the grasping time of task 2 must be 
earlier than the completion time of task 1. This kind of 
constraint cannot be calculated unless robots attempt to 
develop a path plan. Therefore, a comparatively higher 
computational cost is required. All hard constraints between 
tasks 1 and 2 can be calculated as follows: 

• If there are no robots or other objects with the 
exception of object 1 at the initial configuration, a 
transfer path could be generated to transport object 2. 
If there is no path, the time of grasping object 1 
should be earlier than the completion time of task 2. 

• If there are no robots or other objects with the 
exception of object 1 at the goal configuration, a 
transfer path could be generated to transport object 2. 

 
(a) (b) 

Fig. 3.  An example of easy constraints. (a) Initial state. (b) Goal state.
Fig. 2.  An overview of our method. 

WeA1.2

10



 
 

 

If there is no path, the time of grasping object 2 
should be earlier than the completion time of task 1. 

3) Number of Constraints to be Scanned 
As noted at the beginning of this section, robots calculate 

easy constraints before the selection of an object to be 
transported, and difficult ones are calculated when a robot 
fails a task. Regarding easy constraints, robots calculate all 
constraints between every two tasks. If there are n  objects, 
the number of combinations is 2/)1( −nn . Regarding hard 
constraints, robots attempt to calculate some of the 
constraints between a failed task and other tasks because it is 
more likely that there will be undiscovered constraints. The 
number of combinations is 1−n . 

C. Selecting the Object to be Transported 
The selection of an object to be transported is carried out 

basically based on the priority of tasks. The more prior the 
task is, the sooner robots should execute that. In our method, 
priority value and performance value control selections. In 
addition to these values, we set a special selection rule in 
order to observe task constraints. 
1) Selection Rule 

The calculated task constraints must be observed in order 
to successfully rearrange the task. When a robot attempts to 
disobey a task constraint, a rearrangement task will fail. 
Precise estimates of the starting, grasping and finishing times 
are difficult to discern; therefore, a selection rule should be 
simple and independent of such estimates. 

The selection rule is that if there are task constraints in 
which the grasping or finishing times of task 1 are earlier 
than those of task 2, robots cannot select task 2 unless task 1 
is completed. 

This rule has redundancy; therefore, our method cannot be 
used to obtain an optimum solution. However, this rule is 
sufficiently simple, and robots will always be able to observe 
the task constraints. 
2) Priority Value and Performance Value 

We use a priority graph to calculate priority values. A 
priority graph is a directed graph. A node denotes each task, 
and a directed edge from task 1 to 2 indicates that task 2 will 
not be selected unless task 1 is completed. The priority value 
of a certain node is (outdegree) + (the total priority values of 
nodes indicated by the edges from the node). 

Figure 5 shows an example of a priority graph and values. 
In this example, task 3 should be executed before tasks 1 and 

2, and task 2 should be executed before task 1. Eventually, a 
priority graph will be constructed as shown. 

It is difficult to accurately calculate the time from start to 
finish; therefore, we approximate that time as a performance 
value instead. The performance values of robots are 1 / 
(transfer path length) supposing that there are no other objects 
or robots. 
3) Procedure of Selection 

1. Decide which tasks can be selected. In addition to the 
selection rule, the task with similar current and goal 
configurations does not require transportation; 
therefore, it cannot be selected. The tasks that have 
already been selected by other robot cannot be 
selected either. 

2. Calculate the priority values and performance values. 
3. If a robot has the highest performance value for the 

task with the highest priority value, it can be selected. 
4. If none of the tasks can be selected or all robots have 

selected tasks, the procedure can be finished. 
5. Return to step 1. 

D. Executing Transportation 
In the execution phase, the robots move along a transit path, 

grasp an object, continue along the transfer path and then 
release the object. Each robot treats other robots as stationary 
obstacles; therefore, robots should iterate the recognition of 
the environment, generate a path and move along the path. 
Robots move at a predefined speed. In this paper, we adopt 
path-planning method of Curt [11]. 

 
(a) (b) 

Fig. 4.  An example of hard constraints. (a) Initial state. (b) Goal state.

 
(a) (b) 

 
(c) 

Fig. 5.  An example of a priority graph and priority values. (a) Initial 
state. (b) Goal state. (c) Priority graph. 
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IV. SIMULATION 
In this section, we present simulation results. Our method 

is original from the viewpoint of applicability to a narrow 
working environment that contains many task constraints. 
The application of the previous method increases the task 
completion time in all cases, and, in most cases, robots cannot 
perform all tasks. 

A. Simulation Conditions 
The proposed method and three other methods were tested 
and compared. The tested methods are summarized below: 
• Grasping-and-restricted (proposed method): 

Calculate all easy task constraints just before the 
selection of an object and calculate some of the hard 
task constraints after a robot fails to execute a task. 

• All: Calculate all easy and hard task constraints just 
before selection. 

• Restricted: Calculate some of the hard task 
constraints after a robot fails to execute a task.  

• No-action: Do not calculate any task constraints at all.  
 
Next, we show other simulation conditions in Table I. All 

simulations were conducted with robots of the same size, 
speed, identically sized object and cells (these items are 
written in black). The sizes of the working environments and 
number of robots (items in red) were changed in all 
simulations. 

B. Results 
Figure 6 shows the results. The blue bars show the 

execution time. This time can be calculated from the path 
length and the speed of the robots. The purple bars show the 
planning time. This time is equal to the time robots remain 
stationary. This figure shows the effectiveness of the 
proposed method. The proposed method shows the same 
level of execution time and the best result of the planning time. 
The total time of task completion for the proposed method is 
also the best. These results show that robots can start moving 
faster and perform all tasks before they can with the other 
methods. The no-action method produces the worst results. 
These results show that considering task constraints is 
important for planning and execution. The All method 
produces worse results than the proposed and restricted 

methods. These results show that the All method wastes 
planning time for the calculation of task constraints and that it 
does not always execute well. The robot does not need to 
calculate all task constraints in a rearrangement problem, and 
it is important to determine the constraints that should be 
scanned. In a comparison of the proposed and restricted 
methods, the proposed method produced positive results. The 
proposed method requires much more time to calculate easy 
constraints than the restricted method, but it may result in 
good object selection. Therefore, the total completion time is 
minimal. 

Figure 7 shows the relationship between the planning time 
and the number of robots. The execution times were similar 
among the proposed, All and restricted methods; therefore, 
we focused on the planning time in this figure. In our 
simulator, one processor always considers multiple processes 
of multiple robots simultaneously; therefore, when more 
robots are considered, more planning time is required. The 
results show that the more robots that are considered, the 
more differences there will be between the All and proposed 
methods. These results show the effectiveness of the 
proposed method, particularly in a case in which many robots 
are working. 

Finally, a simulation in which the size of the working 
environment is 68.8 (m2) with four robots working and using 
the grasping-and-restricted method is shown in Fig. 8. 

 

TABLE I 
SIMULATION CONDITIONS 

Size of robots 0.5 m × 0.5 m 

Speed of robots 0.5 m/s 
Size of objects 0.4 m × 0.4 m 
Size of working 
environment 

17 m2, 41.5 m2, 68.8 m2 

Size of cells 0.01 m2 
Number of objects 5 
Number of robots 1, 2, 3, 4 
Total number of 
simulation times 

96 

CPU Pentium 4, 3.2 GHz 

Fig. 6.  Comparison of the tested methods.  

Fig. 7.  Relationship between planning time and the number of robots. 
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V. CONCLUSION 
In this paper, we propose a rearrangement task realization 

method considering multiple robots. The rearrangement task 
contains task constraints, and the robots should calculate 
these  constraints. The simulation results show the 
effectiveness of our method from the viewpoint of the time 
required for task completion planning. The methods proposed 
in this paper do not examine all constraints. To avoid the 
effects from these constraints, motion planning should be 
improved. Future research will be conducted to further 
explore some of these methods. 
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(a) Initial state. (b) 4 seconds later. (c) 8 seconds later. 

   
(d) 12 seconds later. (e) 16 seconds later. (f) 20 seconds later. 

   
(g) 24 seconds later. (h) 28 seconds later. (i) Goal state. 

Fig. 8.  Simulation results when the size of the working environment is 68.8 (m2) and four robots are working and using the grasping-and-restricted method.
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