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Abstract— In this paper, we propose an original approach
to control camera position and/or lighting conditions in an
environment using image gradient information. Our goal is to
ensure a good viewing condition and good illumination of an
object to perform vision-based task (recognition, tracking, etc.).
Within the visual servoing framework, we propose solutions to
two different issues: maximizing the brightness of the scene and
maximizing the contrast in the image. Solutions are proposed
to consider either a static light and a moving camera, eitheror a
moving light and a static/moving camera. The proposed method
is independent of the structure, color and aspect of the objects.
Experimental results on both synthetic and real images are
finally presented.

I. OVERVIEW

In this paper we investigate the problem of relative place-

ment between an object, a camera and a light source. Ensur-

ing an optimal placement of the camera or of a light source

is an essential step in the development of industrial vision

systems. Indeed good lighting conditions ensure good image

quality and thus enable to simplify or improve reliability of

vision algorithms.

Most of the research regarding illumination are focused on

shape from shading (eg, [24], light source position estimation

(eg, [9]), tracking (eg, [14], [7]). Some of these works

assume the conservation of the point luminance over the

image sequence [12] but most of them assume more complex

illumination models such as the Phong model [19] or the

Torrance-Sparrow model [22]. Nevertheless, few works have

considered lighting conditions, and especially illumination

control or camera control wrt. illumination conditions, within

robotics tasks or active vision.

Sakane and Sato [20] present an automatic planning

method of light source and camera placement to minimize

shadow caused by the surrounding environment. Cowan et

al. [2][4] extend the CAD-based system presented in [3]

in order to maintain the brightness of the object surface

within the dynamic range of the camera [2] (the surface

must not be either too bright or too dark). Furthermore light

placement has to be optimized for edge detection [4]. The

method presented in [3] is used to synthesize 3-D regions

of acceptable camera locations for the specified task. Each

criterion (spatial resolution, field of view, visibility, edge

contrast, camera dynamic range, etc.) allows to define 3-D

regions which provide the space of possible viewpoints when

they intersect. The system ICE presented in [23] determines

the best camera view and light source location to optimally
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observe a given edge and to maximize the accuracy of its

position. The camera and light positions are chosen such

that measurements data can be obtained with minimum

uncertainty. Mainly contrast on the edge is considered and

the system is based on the illumination model described

in [22]. Murase and Nayar [17] used an eigenspace-based

method to determine the illumination for which the objects

are most distinguishable for recognition purpose. More re-

cently Eltoft et al. [5] proposed a system than can optimally

enhance image features such as edges or points by active

scene illumination. More complex illumination models are

considered [11], [21]. Let us not that in most of these systems

a good knowledge of the object or of the environment has

to be known in order to evaluate off-line the various criteria

related to the specified task and to determine the best light-

source and camera location.

In the different context of 2D tracking, Hager et al.[8]

derive the interaction matrix that link the time variation of

image intensity to the 2D motion of an object. In this paper,

we also consider models used in motion analysis and deter-

mine the variation of image intensity due to camera or light

source motion. Obviously the underlying model, based on the

derivation of the optical flow constraint equation (OFCE)

is, apparently, very restrictive. Nevertheless, experimental

results show that it remains usable in many cases.

This paper presents a method to control camera position

with respect to a light source. Our goal is to ensure a

good illumination of an object or a good camera location

to be able to perform efficiently vision-based tasks. Within

the visual servoing framework, we propose solutions to two

different issues: maximizing the brightness of the scene and

maximizing the contrast or gradient in the image. Solutions

are proposed to consider either a static light and a moving

camera, or a moving light and a static/moving camera.

Thanks to the simplicity of the illumination model based

on the OFCE, the proposed method is independent of the

structure, color and aspect of the objects. Two different

goodness functions may be proposed to achieve this goal:

one is directly based on the intensity within the image while

the second is based on the intensity gradient. To outline the

issue, our primary goal will be to move the camera while

the lighting remains static (see Figure 1.a). Then, we will

propose to move the lighting while the camera remains static

(see Figure 1.b).

In the reminder of this paper we first recall the optical flow

constraint equation and show how it can be used to control

a moving camera in Section II. Goodness functions based

on brightness are shown in Section III and their integration

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeB2.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 417



a

static light

moving camera

light

static camera

R

b

Fig. 1. Controlling lighting conditions. (a) static light/moving camera (b) moving light/static camera

within a visual servoing control law presented in Section IV.

Finally, experimental results showing the validity of our

approach are presented.

II. TEMPORAL VARIATION OF THE LIGHTING

INFORMATION

a) Optical flow constraint equation: The basic hypoth-

esis assumes the temporal constancy of the brightness for a

physical point between two images. This hypothesis leads to

the so-called optical flow constraint equation (OFCE) that

links the temporal variation of the luminance to the image

point motion.

More precisely, assuming that the point has a displacement

(dx, dy)T in the time interval dt, the previous hypothesis

leads to:

I(x + dx, y + dy, t + dt) = I(x, y, t). (1)

A first order Taylor expansion of this equation gives:

∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt = 0. (2)

Denoting dx
dt

= ẋ and dy
dt

= ẏ the motion of the point

in the image and ∇Ix = ∂I
∂x

and ∇Iy = ∂I
∂y

the spatial

gradient of the intensity and ∂I
∂t

= İ the temporal variation

of the luminance, we finally obtain the optical flow constraint

equation given by:

İ = −∇Ixẋ −∇Iy ẏ (3)

b) Interaction matrix associated to the luminance: Our

goal is to link the temporal variation of the luminance to the

time variation of the camera pose (or kinematic screw v =
(v,ω) where v is the instantaneous linear velocity and ω

is the instantaneous angular camera velocity). This is in fact

straightforward knowing the interaction matrix associated to

the point. We indeed have:

ẋ =
(
−1/Z 0 x/Z xy −(1 + x2) y

)
v (4)

that we can rewrite ẋ = Lxv and

ẏ =
(

0 −1/Z y/Z 1 + y2
−xy −x

)
v (5)

that we rewrite ẏ = Lyv. Using these equations and the

OFCE we have
∂I

∂t
=

∂I

∂r

dr

dt
or:

İ = − (∇IxLx + ∇IyLy) = LI(x,y)v (6)

LI(x,y) is the interaction matrix associated to the luminance

of a point in the case of a moving point and a static camera.

III. CONTROLLING LIGHTING CONDITIONS

As already stated, our goal is to control the illumination

of an object. We will then consider two informations related

to the lighting condition:

• the intensity in the image. For such task, our goal will

be to maximize the perceived luminance of the object

in the image.

• the contrast. Maximizing the luminance is not always

significant. Indeed, for some object, too much light

may suppress some information (due, for example to

specularities). Therefore, in a second time we will try

to maximize the value of the intensity gradients in the

image (which is related to a contrast information).

With respect to these specifications of “good” lighting

condition, we can propose two cost functions that reflect

these behaviors.

A. Maximizing the luminance

Our goal is to position the camera wrt. the enlightened

aspect of the object. We therefore want to maximize the

quantity of light (re)emitted by the object of interest and

perceived by the camera to ensure good lighting condition.

Applying the proposed methodology, we want to maximize

the following cost function:

hs =
∑

x

∑

y

I(x, y) (7)

where I(x, y) is the intensity of the 2D point (x, y). The

variation of the cost function hs due to camera motion, that

will be used to control camera or light source motion (see

Section IV), is then given by

∂hs

∂r
=

∑

x

∑

y

∂I(x, y)

∂r
(8)
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where r denote the camera pose (translation and rotation).
∂I(x,y)

∂r
is nothing but the interaction matrix LI(x,y) as

defined in (6). Considering equation (6) we got:

∂hs

∂r
=

∑

x

∑

y

(∇IxLx + ∇IyLy) . (9)

B. Maximizing the contraste.

If our goal is to maximize the contrast within the image,

a good criterion is to maximize the sum of the components

of the spatial intensity gradient within the image. The cor-

responding cost function is given by:

hs =
∑

x

∑

y

[
∇I2

x + ∇I2
y

]
. (10)

As in Section III-A We therefore need to compute the

gradient ∂hs

∂r
that is in fact given by:

∂hs

∂r
=

∑

x

∑

y

(
∂hs

∂x
Lx +

∂hs

∂y
Ly

)

(11)

with
∂hs

∂x
= 2

(
∂2I

∂x2

∂I

∂x
+

∂2I

∂x∂y

∂I

∂y

)

and
∂hs

∂y
= 2

(
∂2I

∂x∂y

∂I

∂x
+

∂2I

∂y2

∂I

∂y

)

After some rewriting, we finally get:

∂hs

∂r
= 2

∑

x

∑

y

[(
∂2I

∂x2
∇Ix +

∂2I

∂y∂x
∇Iy

)

Lx

+

(
∂2I

∂x∂y
∇Ix +

∂2I

∂y2
∇Iy

)

Ly

]

(12)

IV. INTRODUCING ILLUMINATION CONSTRAINTS IN

VISUAL SERVOING

In this section we study how to use the constraints

presented in Section III to control the camera or the light

source position. In both cases the method relies on the well

known visual servoing approach and takes advantage of the

redundancy framework.

A. Positionning Camera wrt. Visual Targets

The image-based visual servoing consists in specifying

a task as the regulation in the image of a set of visual

features[6][10]. A good review and introduction to visual

servoing can be found in [13].

Let us denote s the set of selected visual features used in

the visual servoing task. To ensure the convergence of s to

its desired value s∗, we need to know the interaction matrix

Ls that links the motion of the object in the image to the

camera motion. It is defined by the classical equation [6]:

ṡ = Ls(s, Z) v (13)

where ṡ is the time variation of s (the motion of s in

the image) due to the camera motion v. The parameters

Z involved in Ls represent the depth information of the

considered objects expressed in the camera frame.

A vision-based task e1 is defined by:

e1 = C(s − s∗) (14)

where s∗ is the desired value of the selected visual features,

s is their current value (measured from the image at each

iteration of the control law), and C, called combination

matrix, has to be chosen such that CLs is full rank. It can

be defined as C = L+
s
(s,p).

For making e1 exponentially decreases and then behaves

like a first order decoupled system, the camera velocity given

as input to the robot controller is given by:

v = −λe1 (15)

where λ is the proportional coefficient involved in the

exponential convergence of e.

B. Introducing constraints within the positioning task

If the vision-based task does not constrain all the n robot

degrees of freedom, a secondary task can be performed and

we obtain the following task function:

e = W+We1 + (I6 − W+W)e2 (16)

where

• e2 is a secondary task. Usually e2 is defined as the gra-

dient of a cost function hs to be minimized (e2 = ∂hs

∂r
).

This cost function is minimized under the constraint that

e1 is realized.

• W+ and I6 − W+W are two projection operators

which guarantee that the camera motion due to the

secondary task is compatible with the regulation of

s to s∗. Indeed, thanks to the choice of matrix W,

I6 − W+W belongs to Ker Ls, which means that the

realization of the secondary task will have no effect

on the vision-based task.

The control is now given by:

v = −λe − (I6 − W+W)
∂e2

∂t
(17)

Considering redudancy in visual servoing has been already

considered [1], [18] but usualy related to robot manipulabil-

ity. Information directly extracted from the images have been

also considered (eg, in [15] for occlusion avoidance).

C. Eye-in-hand versus Eye-to-light control

To control the camera/light source relative position, we

will consider two cases. In the former one, the camera is

controlled and focused on the object while the light remains

static. This experimental context is not always the most

interesting one. Indeed, if the camera is moving the aspect of

the object will change with time. It is often more interesting

to control the light position and orientation while the camera

remains static. This is the second case that is considered.

Dealing with the former case, the camera is focused to

the object of interest using a classical visual servoing task.

If s = (x, y) defined the object center of gravity, s∗ is defined
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as s∗ = (0, 0) and the task function that enforces the focusing

task and ensures a “good” lighting of the object is given by:

e = W+WL+
s
(s − s∗) + (I − W+W)

∂hs

∂r
(18)

where ∂hs

∂r
is given by either equation (9) or (12).

Considering the second case, object is static in the image

(acquired by a camera C1) and we want to maximize

brightness or contrast by moving the light-source. Here again

we consider the visual servoing framework to point the light

toward the object of interest and to achieve good conditions.

We first add to the light a second camera C2 whose optical

axis is aligned with the light direction. The main task is

specified as a simple focusing task that constrains the virtual

camera/light system (two dof are constrained). We then

consider the redundancy to control the camera/light system

to impose a correct illumination of the object within the

image acquired by the other camera. The task function is

then defined as:

e = W+W L+
s
(s − s∗)

︸ ︷︷ ︸

main focusing task

(19)

+(I − W+W)

(
R −R[−RT t]×
0 R

)
∂hs

∂r
︸ ︷︷ ︸

secondary task defined

wrt. to the other camera

with R and t denotes the rotational and translational map-

ping of the fixed camera frame RC1
onto the moving

camera/light frame RC2
.

Let us note here that if the camera C1 is now moving, the

problem remains exactly the same as long as we know the

transformation R and t between the camera and the light

(see Result in paragraph V-B).

V. EXPERIMENTAL RESULTS

Results obtained in this section has been obtained either in

simulation using Open GL simulation tools or a real robotics

cell at IRISA. The system has been implemented using the

ViSP software [16].

A. Eye-in-hand coordination

1) Simulation: The goal of this first simulation is to

validate our approach on a simple scene. The goal is to

perform a positioning task wrt. a sphere and to control

the camera in order to see this sphere under good lighting

condition (criterion (7) is considered). In this experiment the

light-source is static and the camera is moving as described

by Figure 1a. Control law presented in equation (18) is

considered. The advantage of the sphere is that its aspect

remains the same whatever the camera position. Only the

sphere luminance will be modified. In this experiment we

considered a positional light source.

Results of this positioning task are presented on Figure 2.a.

It is worth noting that the average intensity increases very

smoothly (see Figure 2.b). We also plot the distance between

the camera and the object-light axis (see Figure 2.c). We can

note that this distance tends towards zero, i.e. at the end of

the positioning task, the camera is located between the sphere

and the light as can be expected (see Figure 2.d).

a

120

140

160

180

200

220

240

260

20 40 60 80 100 120

’cost’

b

0

2

4

6

8

10

12

14

16

20 40 60 80 100 120

’distance’

c

−15

−5

5

−5

5

15

0

5

y

optimizing lighting conditions

x

z

camera location
target         
light          

d

Fig. 2. [Simulation] Positioning wrt. a sphere under good lighting
conditions: (a) scene observed by the camera (illumination increases)
(b) average intensity in the image (c) distance to sphere-light axis (d)
camera/sphere/light position over time

2) Real Experiments:

a) Maximizing luminance on a sphere: The same ex-

periment was carried out on our experimental setup. A white

ball is lighted by a spot. As in the previous section the camera

mounted on the robot end-effector is focused on the ball

and controlled using equation (18) in order to maximize the

ball luminance. As expected, the luminance increases (see

Figure 3a-b-c and plot 4.c) until the camera/robot moves

between the ball and the light-source creating a “lighting

occlusion” (see Figure 3.d and the last iteration of plot 4.c).

As expected, the behavior of the system is very similar

to simulation results presented in the previous paragraph.

Similar results for this object is obtained when the contrast

goodness function is considered.

a b c d

Fig. 3. [Real experiment] Positioning wrt. a sphere (a) first image (b-
c) luminance increases (d) the camera is now between the sphere and the
light (that is the actual expected position but that in practise create a “light
occlusion”)
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Fig. 4. [Real experiment] Positioning wrt. a sphere :cost function hs that
reflects ball luminance

b) Maximizing luminance on a complex object: Same

experiment can be done with more complex object (see

Figures 5.a and 5.b). Although the shape of the object

is modified during the experiment, the average luminance

increases as specified in the task (see Figure 6 that is related

to images in Figure 5.b).

a

b

Fig. 5. Maximizing luminance on more complex object

 86

 88

 90

 92

 94

 96

 98

 100

 250  300  350  400  450  500  550  600

cost function hs

’hs.dat’

Fig. 6. Maximizing luminance (correspond to the experiments presented
on [Figure 5b]) : goodness function hs

c) Maximizing contrast on a complex object: In Fig-

ure 7 we consider the goodness function based on the

contrast information (that is maximize the norm of the

gradient in the image). As can be seen on Figure 7, the

gradient in the image increases which is due to both the

light and the modification in the object aspect due to the

camera motion. It is clear that the last image of the object

is better suitable, due the presence of important gradient, for

task such as recognition or tracking.

a

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300  350  400  450

’h_s’

b

Fig. 7. Scotch experiment: maximizing gradient/contrast (a) images of the
sequence (b) evolution of the goodness function hs

In this paragraph we considered a moving camera and a

static light-source. The consequence of such a configuration

is that it implies modifications in the aspect of the scene

which is not always suitable. In the next experiment we

consider a static camera and a moving light source.

B. Eye-in-hand/Eye-to-light coordination

As regards this issue, we first perform a positioning

experiment involving complex object. We consider, in sim-

ulation, a model of the Venus of Milo. In this experiment

we first consider a static camera and a moving light as

depicted in Figure 1b. In a second time, when a minimum

of the cost function is reached, we impose an arbitrary

motion to the camera. The light must then move in order to

maintain a correct lighted of the statue. The results presented

(see Figure 8) show the validity of our approach for both

goodness function (luminance on Figure 8a and contrast on

Figure 8b). One can see that the light trajectories around the

statue on Figure V-B.

VI. CONCLUSION

We presented a method to ensure correct viewing or

illumination of an object using a visual servoing scheme

and only luminance or gradient information. The illumination

model considered in this is indeed very coarse and is in many

cases false. Nevertheless, it allows to servo the camera or

the light source in order to achieve a “good” illumination

of the scene (at least wrt. the considered criteria). Exper-

imental results in simulation or on real scenes show the
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a

b

Fig. 8. Illuminating the Venus of Milo (a) maximizing the venus luminance (b) Maximizing the contrast. In the three first columns the camera remain
fixed then an arbitrary motion is given to the camera. The light source moves to ensure the specified task.
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Fig. 9. Illuminating the Venus of Milo : Camera and light trajectory

validity of the approach. Nevertheless, it is well known that

image luminance of a scene depend of the objects (albedo,

reflectance, ...), of relative surface camera orientation, and of

the camera/object/light source position. Future work will be

devoted to study more complex illumination models. This

may require either more information about the scene (3D

model and surface information), or the estimation of the

unknown parameters (such light source position).
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