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Abstract— This paper investigates target tracking using a
distributed particle filter over sensor networks. Gaussian mix-
ture model is adopted to approximate the posterior distribu-
tion of weighted particles in this distributed particle filter.
The parameters of Gaussian mixture model are exchanged
between neighbor sensor nodes. Each node can obtain the
Gaussian mixture model representing particle’s posterior dis-
tribution through the parameter exchange. With the posterior
distribution, the distributed particle filter can draw particles
from it, predicted particles and observations, update particle
weights, and re-sample particles based the predicted weights.
The parameter exchange is key to implement the distributed
operation. It is implemented by using an average consensus
filter. Through this consensus filter, each sensor node can
gradually diffuse its local statistics of weighted particles over
the entire network and asymptotically obtain the estimated
global statistics. The parameters of Gaussian mixture model can
be calculated by using the estimated global statistics. Because
the average consensus filter only requires that each sensor
node communicate with its neighbors, the proposed distributed
particle filter is scalable and robust. Simulations of tracking
tasks in a sensor network with 100 sensor nodes are given.

I. INTRODUCTION

One of the major goals in sensor networks is to detect and

track changes in the monitored environment[1][2]. Particle

filter is one of the widely used tracking algorithms due to

its applicability to non-linear and non-Gaussian dynamic sys-

tems [3][4]. Usually the energy cost related to computation in

each sensor node and communication between sensor nodes

is significant when using such algorithm in sensor networks.

Reducing the energy cost in computation and communication

can significantly increase the node lifespan[5].

Currently there are several distributed particle filters

(DPFs) that have been developed [6][7][8][9]. In these

algorithms, the distributed nature is achieved by either

transmitting local statistics of particles to a centralized unit

or using the message passing method. Transmitting local

statistics of particles to a centralized unit is not an efficient

approach. It is also not robust. Failure of the centralized unit

is vital to the entire network. In the message passing method,

the algorithms construct a path through the networks, which

passes through all nodes. Global statistics of particles are

accumulated by adding local statistics in each node through a

forward pass. Then there needs a backward pass, which runs

the important sampling and selection steps in each sensor

node by using the accumulated global statistics. In [6], the

factorized likelihood function is used and each partial like-

lihood function is updated at individual sensors using only
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local observations and partial likelihood function estimated

in the preceding sensors. The partial likelihood function is

represented by a parameterized model and the parameters

are transmitted through the path. The same strategy to

communicate the highly compact distribution is also used in

robotics for map building in [10]. In [7], a set of uncorrelated

sensor cliques is used and they are automatically constructed

according to moving target trajectories. The algorithm uses

a low dimensional Gaussian mixture model (GMM) to

describe the posterior pdf . Model parameters rather than

weighted particles are transmitted over the network. Using

a GMM to approximate the posterior distribution is also

adopted in [8] where the estimated parameters of GMM
are transmitted to a fusion center. In [9], the particles are

distributed in a sensor network, i.e. each sensor node holds

part of particles. Local statistics of particles are calculated

and transmitted to a centralized unit.

In this paper, we propose to distribute the whole particle

set evenly across the entire network and use GMM to

approximate the posterior distribution in each node. We also

propose to exchange local statistics of particles between

neighbor nodes to estimate global statistics of all particles.

Because the calculations of global statistics are in the average

form, global statistics can be estimated by using an average

consensus filter. The consensus filter can diffuse local statis-

tics over the entire network through communication with

neighbor nodes [11] [12][13] and estimate global statistics

using local statistics and neighbor’s local statistics. Based on

the estimated global statistics, an Expectation and Maximiza-

tion (EM ) algorithm is developed to estimate the GMM .

Using the estimated GMM , each node can predict the

next step particles, update weights and re-sample particles.

The consensus filter only requires local communication, i.e.

each node only needs to communicate with its neighbors

and gradually gains global statistics. Thus, this distributed

algorithm is scalable. It is also robust. Failures of any nodes

do not affect the algorithm performance given the network is

still connected. The estimated results can be accessed from

any nodes in the network.

In the rest of this paper, a centralized particle filter in sen-

sor network environment is described in Section II. Section

III presents the EM algorithm to estimate the parameters of

GMM . The average consensus filter and distributed particle

filter are given in Section IV. Section V provides simulation

results. Finally, conclusions are summarized in Section VI.

II. PARTICLE FILTER TRACKING IN SENSOR NETWORKS

We consider a network of M sensors, which is used to

track a moving object. The moving object is modeled by a
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discrete state equation:

xk = f(xk−1) + vk−1 (1)

where xk is the nx dimensional state vector and vk is the

Gaussian noise with mean zero and covariance Qk. The

state is also modeled as a Markov process with initial dis-

tribution p(x0) ∼ N (x0, Q0) and state transition probability

p(xk|xk−1).
Each sensor m can make a nz dimensional observation

zm,k(m = 1, . . . ,M) at time k. The observation state

equation is assumed as follows:

zm,k = hm(xk) + wk (2)

where wk is the Gaussian noise with mean zero and covari-

ance Rk. The observation equation (2) is also modeled as a

likelihood function p(zm,k|xk). It is assumed that the state

noise and observation noise are independent, E[vkw
T
k ] = 0.

We build up a centralized particle filter (CPF ) for the

tracking purpose first in this section. Let x0:k denote {xt, t =
0, . . . , k} and zm,1:k denote {zm,t, t = 0, . . . , k}. Then, the

tracking purpose of a particle filter is to estimate the posterior

pdf p(x0:k|zm,1:k), or p(xk|zm,1:k).
In CPF , observations from all sensors are transmitted to

a centralized unit. It is assumed that the centralized unit

receives only one observation from one sensor at each k,

The centralized unit maintains a set of weighted particles

(x
(n)
k , ω

(n)
k ). When the centralized unit receives an observa-

tion zm,k at k, it uses the CPF to predict particles x
(n)
k

and update weights ω
(n)
k , (n = 1, . . . , N), where N is the

number of particles.

Let {x(n)
0:k , ω

(n)
k }N

n=1 denote a random measure that char-

acterizes the posterior pdf p(x0:k|zm,1:k), where the weights

are normalized,
∑N

n=1 ω
(n)
k = 1. The posterior pdf at k can

be approximated by

p(x0:k|zm,1:k) ≈
N

∑

n=1

ω
(n)
k δ(x0:k − x

(n)
0:k ) (3)

where δ denotes the Dirac delta function. Expectation of a

function g(xk) can be approximated by

E[g(x0:k)] ≈
N

∑

n=1

g(x
(n)
0:k )p(x

(n)
0:k |zm,1:k)

=

N
∑

n=1

ω
(n)
k g(x

(n)
0:k ) (4)

Since it is often impossible to sample directly from the

posterior pdf , it is a normal practice to sample from a known

proposal distribution q(x0:k|zm,1:k), x
(n)
0:k ∼ q(x

(n)
0:k |zm,1:k).

Therefore, the weights in (3) are defined to be

ω
(n)
k ∝ p(x

(n)
0:k |zm,1:k)

q(x
(n)
0:k |zm,1:k)

(5)

Assume the proposal distribution meets the following

condition:

q(xk|x0:k−1, zm,1:k) = q(xk|xk−1, zm,1:k) (6)

Then, we have

q(x0:k|zm,1:k)

= q(xk|x0:k−1, zm,1:k)q(x0:k−1|zm,1:k−1)

= q(xk|xk−1, zm,1:k)q(x0:k−1|zm,1:k−1) (7)

The weight updating equation (5) can be rewritten in a

recursive form:

ω
(n)
k ∝ ω

(n)
k−1

p(zm,k|x(n)
k )p(x

(n)
k |x(n)

k−1)

q(x
(n)
k |x(n)

k−1, zm,k)
(8)

Finally, the filtering posterior pdf p(xk|zm,1:k) can be

approximated as

p(xk|zm,1:k) ≈ ω
(n)
k δ(xk − x

(n)
k ) (9)

And expectation of a function g(xk) can be approximated as

follows:

E[g(xk)] ≈
N

∑

n=1

ω
(n)
k g(x

(n)
k ) (10)

The choice of the proposal distribution is one of the

important steps in particle filters. The most popular practice

is to choose the state transition probability as the proposal

distribution.

q(xk|xk−1, zm,1:k) = p(xk|xk−1) (11)

This choice minimizes the variance of the importance

weights [4]. By this choice, the weights updating equation

(8) can be easily implemented:

ω
(n)
k ∝ ω

(n)
k−1p(zm,k|x(n)

k ) (12)

III. EM ALGORITHM FOR GAUSSIAN MIXTURES

To implement a distributed particle filter (DPF ), particles

and weights are distributed over entire network. Each sensor

should maintain N particles x
(n)
m,k and weights ω

(n)
m,k. Ideally,

particles and weights from all sensor nodes should represent

the posterior distribution to be estimated.

The posterior distribution of particle filter is assumed to be

a GMM with C mixture probabilities αm,c, (c = 1, . . . , C).
The unobserved state of GMM is denoted as y and yc

represents y = c. For each unobserved state yc, observation

zm,k follows a Gaussian distribution with mean µc and

variance Σc:

p(zm,k|µc, Σc) =
1√

2π‖Σc‖ 1

2

e−
1

2
(zm,k−µc)

T Σ−1

c (zm,k−µc)

(13)

The Gaussian mixture distribution for observation zm,k is

p(zm,k|θ) =

C
∑

c=1

αm,cp(zm,k|µc,Σc) (14)

where θ is the set of the distribution parameters to be

estimated, θ = {αm,c, µc, Σc; c = 1, . . . , C, m = 1, . . . ,M}.

Assume all observed data from all nodes are sent to a

centralized unit where a standard EM algorithm is used
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to estimate the parameter set θ. The log-likelihood for the

observed data satisfies

L(θ|z) = log

M
∏

m=1

k
∏

j=1

p(zm,j |θ) (15)

=

M
∑

m=1

k
∑

j=1

log p(zm,j |θ)

=

M
∑

m=1

k
∑

j=1

log

(

C
∑

c=1

αm,cp(zm,j |µc,Σc)

)

In the standard EM algorithm, given observation z and

current parameter set θt where t is the time step between

two consecutive sensor observations at k and k +1, the con-

ditional expectation of joint distribution p(z,y|θ) is defined

as

Q(θ, θt) = E[log p(z, y|θ)|z, θt] (16)

As

p(zm,k, yc|θ) = p(yc|zm,k, θ)p(zm,k|µc, Σc)

= αm,kp(zm,k|µc, Σc)

then, equation (16) can be rewritten as follows:

Q(θ, θt)

=

C
∑

c=1

M
∑

m=1

k
∑

j=1

log p(zm,j , yc|θ)p(yc|zm,j , θ
t)

=

C
∑

c=1

M
∑

m=1

k
∑

j=1

log[αm,cp(zm,j |µc, Σc)]p(yc|zm,j , θ
t)

In the E step, the conditional expectation Q(θ, θt) can be

calculated by using the following equation:

αt+1
m,k,c = p(yc|zm,k, θt)

=
αt

m,cp(zm,k|µt
c, Σ

t
c)

∑C
i=1 αt

m,ip(zm,k|µt
i,Σ

t
i)

(17)

In the M step, the parameter set is updated by maximizing

θt+1 = arg max
θ

Q(θ, θt) (18)

The iteration algorithm for all parameters is

αt+1
m,c =

1

k

k
∑

j=1

αt+1
m,j,c

µt+1
c =

∑M

m=1

∑k

j=1 αt+1
m,j,czm,k

∑M
m=1

∑k
j=1 αt+1

m,j,c

(19)

Σt+1
c =

∑M

m=1

∑k

j=1 αt+1
m,j,c(zm,j − µt+1

c )(zm,j − µt+1
c )T

∑M

m=1

∑k

j=1 αt+1
m,j,c

The iteration algorithm in (19) can be further written as a

compact form:

µt+1
c =

∑M
m=1 at+1

m,c
∑M

m=1 kαt+1
m,c

(20)

Σt+1
c =

∑M

m=1 bt+1
m,c

∑M

m=1 kαt+1
m,c

where the local statistics (or called local summary quantities)

is defined as:

αt
m,c =

1

k

k
∑

j=1

αt
m,j,c

at
m,c =

k
∑

j=1

αt
m,j,czm,k (21)

bt
m,c =

k
∑

j=1

αt
m,j,c(zm,j − µt

c)(zm,j − µt
c)

T

The global statistics (or called global summary quantities)

can be defined as:

αt
c =

M
∑

m=1

kαt
m,c

at
c =

M
∑

m=1

at
m,c (22)

bt
c =

M
∑

m=1

bt
m,c

Using the global summary quantities defined above, the

estimated parameters are:

µt+1
c =

at+1
c

αt+1
c

(23)

Σt+1
c =

bt+1
c

αt+1
c

IV. DISTRIBUTED PARTICLE FILTER

In the EM algorithm mentioned above, it can be found that

the local summary quantities can be calculated locally, while

the global summary quantities can not be calculated locally.

However, the global summary quantities can be viewed as

the averages of the local summary quantities from all nodes

in equation (22). This view can be made more clear by

redefining the global summary quantities in (22) as the

average as follows:

αt
c =

1

M

M
∑

m=1

kαt
m,c

at
c =

1

M

M
∑

m=1

at
m,c (24)

bt
c =

1

M

M
∑

m=1

bt
m,c

This redefinition does not affect the parameter estimation in

equation (23).
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Due to the average expressions in (24), the idea of the

average consensus filter proposed in [11][14] can be used

to estimate the global summary quantities through informa-

tion diffusion over the network. Each node exchanges the

local summary quantities with its neighbors and estimates

the global summary quantities based on neighbor’s local

summary quantities through the consensus filter.

Let ᾱt
m,c, ā

t
m,c, b̄

t
m,c denote the estimates of the global

statistics αt
c, a

t
c, b

t
c in node m. Let a vector ζt

m,c denote one

of the estimates of the global statistics, ᾱt
m,c, āt

m,c, or b̄t
m,c.

Let a vector ut
m,c denote one of the local summary quantities

kαt
m,c, at

m,c, or bt
m,c]

T . The consensus filter in node m takes

as inputs the local summary quantities ut
m,c. It outputs the

estimated global summary quantities ζt
m,c.

A sensor network can be modeled by using algebraic graph

theory. A graph can be used to represent interconnections

between sensor nodes. A vertex of the graph corresponds

to a node and edges of the graph capture the dependence

of interconnections. Formally, a graph G = (V, E) consists

of a set of vertices V = {v1, ..., vM}, indexed by nodes

in the network, and a set of edges E = {(vi, vj) ∈ V × V},

containing unordered pairs of distinct vertices. Assuming the

graph has no loops, i.e. (vi, vj) ∈ E implies vi 6= vj .

Let R denote the distance that a node can communicate

via wireless radio links. Edge (vi, vj) is connected if the

Euclidean distance dij between nodes i and j is less than or

equal to R.

A graph is connected if for any vertices (vi, vj) ∈ V , there

exists a path of edges in E from vi to vj . The set of neighbors

of vertex i is defined as Ni = {j ∈ V : (i, j) ∈ E}. The

degree of vertex i is defined as di = |Ni| and maximum

degree is dmax = maxi di. Let ∆ be the degree matrix,

∆ = diag(di). The adjacency matrix A is the integer matrix

with rows and columns indexed by the vertices, such as the

ij-entry of A is equal to the number of edges from i to j.

Following [15], Laplacian matrix of a graph G is defined as

L:

L = ∆ −A (25)

For a connected graph, Laplacian matrix L is symmetric

and positive semi-definite. Its minimum eigenvalue is 0 and

the corresponding eigenvector is 1 = [1, . . . , 1]T or L1 = 0
[15].

An average consensus filter in a sensor node m is designed

as follows in the discrete form:

ζt+1
m,c = ζt

m,c + ǫ





∑

j∈Nm

(ζt
j,c − ζt

m,c) + (ut
m,c − ζt

m,c)





(26)

where ǫ is the updating rate and should be

ǫ ≤ 1

dmax

(27)

This requirement guarantees the stability of the discrete

consensus filter according to Gersgorin theorem. ζm,c can

asymptotically converge to the average of local inputs um,c:

ζm,c → 1

M

M
∑

m=1

um,c (28)

Since ζm,c represents the estimates of the global statistics

and um,c represents the local statistics , we have:

ᾱt
m,c → αt

m,c =

M
∑

m=1

kαt
m,c

āt
m,c → at

c =

M
∑

m=1

at
m,c (29)

b̄t
m,c → bt

c =

M
∑

m=1

bt
m,c

The estimated parameters are:

µ̄t+1
c =

āt
m,c

ᾱt
m,c

(30)

Σ̄t+1
c =

b̄t
m,c

ᾱt
m,c

Once the estimated global statistics are obtained, particles

can be drawn from the Gaussian mixture distribution. Then

they should be propagated through the state transition prob-

ability to generate the predicted particles. With the predicted

particles, the weight updating step and re-sampling step are

the same as the steps in the CPF .

From the observation equation (2), the predicted observa-

tions are zm,k:

zm,k = hm(xm,k) (31)

Finally, the DPF is summarized in Algorithm 1.

V. SIMULATIONS

A sensor network with 100 nodes (M = 100) is used

for simulation. The sensors are randomly placed in a square

5m × 5m shown in figure 1. We take the communication

distance in figure 1 as R = 0.9m. This results in a

connected graph and its maximum degree is dmax = 14.

The connectivity can be verified by finding that the rank of

Laplacian matrix is 99 or (M − 1).
We assume that a moving object has a state equation:

xk = Axk−1 + Bvk−1 (32)

where A =









1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1









, B =









T 2/2 0
0 T 2/2
T 0
0 T









.

The state xk includes 2D coordinates and 2D speed vectors.

T is the discrete sampling time and selected as 0.05. The

observation equation is a sonar-like model, which can ob-

serve the distance and angle between a sensor positioned in

qm and the moving object.

zm,k =

[

‖xm,k − qm‖
γ(xm,k,qm)

]

+ wk (33)
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Algorithm 1 Distributed Particle Filter (DPF )

Initialization:

Draw N particles x
(n)
0 from the prior p(x0)

and ω
(n)
0 = 1/N

Importance sampling step:

Calculate the local statistics

ut
m,c = [kαt

m,c, a
t
m,c, b

t
m,c]

T using (21)

Estimate iteratively the global statistics

ᾱt
m,c, ā

t
m,c, b̄

t
m,c using (26)

Sample N particles x
(n)
m,k from the estimated

Gaussian mixtures

Calculate the predicted particles xm,k

using xk = f(xk−1)
Calculate the predicted observations zm,k using (31)

Update the importance weights using

ω
(n)
m,k = ω

(n)
m,k−1p(zm,k|x(n)

m,k)
Normalize the importance weights

ω
(n)
m,k = ω

(n)
m,k

[

∑N

n=1 ω
(n)
m,k

]−1

Selection step:

Re-sample N particles x
(n)
m,k according to ω

(n)
m,k

and ω
(n)
m,k = 1

N

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 1. Network connection

where ‖xm,k−qm‖ presents the Euclidean distance between

xm,k and qm. γ(xm,k,qm) represents the angle between

xm,k and qm. The covariances of Gaussian noises vk and wk

are Qk =

[

0.25 0
0 0.25

]

and Rk =

[

0.01 0
0 0.0004

]

.

The posterior distribution GMM is assumed to have

C = 3 mixture probabilities. The parameter estimation in the

EM algorithm is executed 10 times between two consecutive

observations.

The DPF is tested in 100 sensor nodes allocated as shown

in figure 1. The target starts from (0, 0). Each of sensor nodes

contains 50 particles and the particles are initially distributed

around (0, 0). 200 step tracking result in one of the sensor

nodes is shown in figure 2. It can be seen that the estimated

trajectory (dotted line) is very close to the true trajectory

(solid line). The estimated particles at the beginning and the

end of tracking are also shown in figure 2 (see the black dot

clusters). They represent the covariance changes from large

cluster at the beginning to small cluster at the end.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x(m)

y
(m

)

Estimated trajectory
True trajectory

Fig. 2. Tracking result in one of the sensor nodes

Next the target moving along a circle trajectory is simu-

lated. The circle trajectory is defined as follows:

xk = 5 cos(0.01(k − 1)), yk = 5 sin(0.01(k − 1)) (34)

Its initial position is (5, 0). The proposed DPF still uses

the state equation (32) and the observation equation (33) to

track this circle trajectory. Each of sensor nodes contains

50 particles and the particles are initially distributed around

(5, 0). All other parameters are the same as the first test. 600
step tracking result in one of the sensor nodes is shown in

figure 3. It can be seen that the estimated trajectory (dotted

line) can track the true trajectory (solid line). The covariance

decreases from large cluster at the beginning to small cluster

at the end.

The speeds in x and y directions during the tracking are

shown in figure 4. They are both assumed to be zero at the

beginning of the tracking. They asymmetrically converge to

sin and cos functions required in the circle tracking.

VI. CONCLUSION

This paper presents a distributed particle filter for target

tracking. The main idea is to use an average consensus filter

to estimate global statistics of particles’ posterior probability.

Due to the use of the average consensus filter, this DPF is an

approximation to the CPF . When the network connectivity

is guaranteed and the updating rate of the consensus filter

meets a condition, the estimated global statistics converge to

the true values.

This DPF only needs information exchanges between

neighbor sensor nodes. The global information can be dif-

fused over the entire network through local information
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y
(m

)

Estimated trajectory
True trajectory

Fig. 3. Circle tracking result in one of the sensor nodes

0 100 200 300 400 500 600
−1.5

−1

−0.5

0

0.5

1

1.5

k (s)

v
x
,v

y
(m

/s
)

v
x

v
y

Fig. 4. Speed results of circle tracking in one of the sensor nodes

exchanges. It is scalable as the adding of more nodes does

not affect the algorithm performance. It is also robust as it

can still produce the right results even if failures of some

nodes occur.
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