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Abstract— In this paper, we propose a visual servoing scheme
to align an airplane with respect to a runway. A linearized
model of the airplane dynamics and decoupled visual features
are designed to build the control scheme. Simulation results are
obtained with a quite realistic flight simulator which is based
on a non linear airplane dynamic model. They show that the
airplane realizes correctly the specified task by using visual
data.

I. INTRODUCTION

Visual servoing schemes enable to control robot motion by
using visual features as feedback signal [2] [5]. The camera
can be embedded on the robot or be placed in its external
environment. Different kinds of visual features can be used
to design the control law: 2D data, directly extracted from the
image, or 3D data, provided by a preliminary pose estimation
(a mixture of the both can also be used [7]).

Using visual servoing to control aircrafts yields new
problems. Indeed, in most robotics applications, the degrees
of freedom can be assumed to be as a pure integrator leading
to kinematics control schemes. But designing visual servoing
for aircrafts requires to take into account their dynamic
constraints.

In a lot of works, camera is used to provide pose estima-
tion. The control law is then based on the position, and other
sensors such as GPS or inertial sensors can be used in the
control law. This strategie is used in [8] [11] [12] to control
helicopters. In this paper, we have chosen to not deal with
pose estimation, but to consider 2D visual servoing. The most
common 2D approach to control aircrafts is to consider state
equations and to link the state vector with the visual features.
For instance, in [14] the authors incorporate the dynamics of
a blimp in the equations of the image dynamics, and apply
a PID control. In [1] [9] [10] the state model is linearized
around an equilibrium state and the visual features are used
as output. Then standard control design such as LQR (Linear
Quadratic Regulator) can be used with the LTI (Linear Time
Invariant) system obtained. We have used a similar approach
for the longitudinal control. However, the proposed lateral
control is based on a simple constraint applied to the lateral
position.

Several strategies have already been used to follow lin-
ear structures by visual servoing. In [6], the binormalized
Plücker coordinates of the lines are used, and the dynamic
properties of helicopters are exploited to design a control
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scheme based on a Lyapunov function and backstepping
techniques. In [10] vanishing point and vanishing line have
been considered in a 2D visual servoing scheme for control-
ling a blimp. The scheme presented in [13] uses only two
lines, and the camera is thus combined with other sensors
in order to fully control the state parameters of a blimp.
Lateral position of a small autonomous aircraft with respect
to a road is performed in [3] by partial 3D pose estimation.
In our case, we have designed new decoupled visual features
in order to improve the relationship with the aircraft state.

In this paper, we consider three parallel lines, which could
belong to a road or a runway for example. The aim is to
follow this structure with constant attitude, velocity, and
altitude. An airplane equipped with a fly-by-wire system is
considered: the pilot commands are converted to electronic
signals, and flight control computers determine how best to
move the actuators to provide the desired response.

The relationship between the pilot commands and the air-
craft motion is given by a linearized model (Section II). Then
new visual features with suitable properties are designed
from the image lines parameters (Section III). They enable
to link the aircraft motion with the image motion. Finally,
the image features are related to the control inputs, and a
visual control scheme is designed in Section IV. Simulation
results are shown Section V. Instead of being performed with
the linearized model, the simulations use a more complete
and realistic flight simulator. They show that the proposed
control scheme enables the aircraft to realize correctly the
specified task.

II. AIRCRAFT MODEL

A. Control Inputs

In most of previous works, the control inputs are actuators
deflection and thrust produced by the propellers. In this
paper, the aircraft considered is equipped with a fly-by-
wire system: instead of using cables, computer-generated
electrical signals are used to transmit the pilot commands
to the flight control surfaces. The fly-by-wire system pro-
vides additionally safety control to prevent insecure pilot
commands. For safety reasons, it is thus preferable to leave
unchanged this low-level flight control system and to deal
with the pilot commands. Thus the considered inputs to
control the aircraft are the throttle position and the control
stick.

Let u = (δm, δl, δT ) denote the input vector. δm ∈ [−1; 1]
is the control stick forward-backward position, and it mainly
controls the angle of attack. δl ∈ [−1; 1] is the control stick
left-right position, and it mainly induces rotation around the
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longitudinal axis. Finally δT ∈ [0; 1] is the throttle position,
and it is related to thrust level. However, due to the aircraft
dynamics, these movements are coupled and induce other
trajectory or attitude modifications.

B. State Components and other Notations

Let Ra denote the aircraft frame, and Rf a fixed re-
ference frame (Fig. 1). The aircraft pose is defined by
the translation and the rotation between Ra and Rf . Let
(X,Y,Z) denote the three components of the translation, and
(φ, θ, ψ) denote the roll-pitch-yaw angles of the rotation. Let
P = (X,Y,Z, φ, θ, ψ) denote the pose vector.

The primary way for a pilot to change the airplane
direction is to change the aircraft attitude. Let va =
(υax

, υay
, υaz

, ωax
, ωay

, ωaz
) denote the aircraft instanta-

neous velocity (see Fig. 1.a), and υa = (υax
, υay

, υaz
) its

translational velocity, υa its module, and υ̇a the module of
the acceleration. Note that in most cases the velocity vector
υa and the aircraft longitudinal axis xa have not the same
direction. Let α denote the angle of attack, between these
two directions (see Fig. 1.b).

(a) (b)

Fig. 1. (a) Aircraft frame and associated rotations, (b) Angles definitions

C. Linearized Model

The airplane dynamics model which links the pilot inputs
and the aircraft motions have been provided by the French
company Dassault Aviation. We have first linearized this
model to design the control scheme, but the real one has
been used to validate the control scheme. For that, the
classical hypothesis of small perturbations around a trim
flight is considered. Since the objective is to align the aircraft
with the runway axis, the rotation matrix fRa between the
fixed frame and the aircraft frame is assumed to be close
to identity, which allows the following approximation to be
done:

Ṗ = va. (1)

Finally the aircraft model can be represented by the
following state space equation: ẋ = Ax + Bu with x =
(φ̇, ψ̇, ψ, Y, α, θ̇, θ, υa, υ̇a, Z). This model can be decoupled
between the lateral motion in the horizontal plane (2), and
the longitudinal motion in the vertical plane (3), where w̃ =
w − w∗ represents the variation between the current value
w and the equilibrium value w∗ for any w parameter. The
constants a1, ..., a21, b1, ..., b4 are determined from aircraft
constants and state equilibrium values.
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˜̈
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˜̇
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˜̇Z




=
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0 0 0 0 1 0
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Z̃




+




0 0
b3 0
0 0
0 0
0 b4
0 0




[
δ̃m
δ̃T

]
(3)

III. VISUAL FEATURES

Visual features based on the measurements that can be
extracted from the image of a runway are considered: they
are its two border lines and its central line. These three
lines are parallel in the 3D space, but due to the perspective
projection model they intersect in the image plane at the
vanishing point.

Since the objective is to align the aircraft with the runway
axis, the desired camera pose is chosen as shown on Fig. 2:
the optical axis is aligned with the runway axis and the image
plane is orthogonal to the runway plane. The camera frame
and the frame of reference Rf are depicted on Fig. 2. Let
H denote the camera altitude and L the runway width. Ll

is the left border line, Lr the right one, and Lc the central
one.

Fig. 2. Desired camera position

Let s denote a visual feature. The relationship be-
tween s and the camera instantaneous velocity vc =
(υcx

, υcy
, υcz

, ωcx
, ωcy

, ωcz
) is defined by the well-known

interaction matrix Ls [2] such that:

ṡ = Lsvc. (4)

A. Straight Lines

Each runway line projects as a straight line in the image
plane, which is represented by the (ρ, θ) parameters such
that x cos θ + y sin θ − ρ = 0 (see Fig. 3).

A 3D line can be defined in the camera frame as the
intersection of two planes:{

A1X +B1Y + C1Z +D1 = 0 (h1)
A2X +B2Y + C2Z +D2 = 0 (h2).

(5)

Then the corresponding interaction matrix is given by [2]:

Lθ = [λ cos θ λ sin θ − λρ − ρ cos θ − ρ sin θ − 1], (6)

where λ = (Ai sin θ − Bi cos θ)/Di. If we exclude the
degenerated case where the projection center belongs to the
straight line (D1 = D2 = 0), we can choose Di �= 0.
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Fig. 3. (ρ, θ) parameters

If the lines are defined by using the horizontal plane
(equation Y − H = 0 in the desired camera frame, thus
(A,B,C,D) = (0, 1, 0,−H)), the interaction matrix can
be written as:
Lθl

= [ 1
H

c2θl
1
H

cθlsθl − 1
H
ρlcθl −ρlcθl −ρlsθl −1]

Lθr = [ 1
H

c2θr
1
H

cθrsθr − 1
H
ρrcθr −ρrcθr −ρrsθr −1]

Lθc = [ 1
H

c2θc
1
H

cθcsθc − 1
H
ρccθc −ρccθc −ρcsθc −1]

(7)

where cθ = cos θ, sθ = sin θ, and c2θ = (cos θ)2.
Instead of using the horizontal plane, we can choose the

vertical planes: equation X+L/2 = 0 for Ll, and X−L/2 =
0 for Lr in the desired camera frame. (Note that the vertical
plane can not be used for the central line, because the optical
center belongs to the plane X = 0, and thus D = 0). This
choice enables to obtain the parameter L instead of H in
the interaction matrix. It is interesting in practice since H is
variable and has to be estimated, on the contrary to L which
is constant and can be assumed to be known. The interaction
matrix can be written as
Lθl

= [ 2
L

sθlcθl
2
L

s2θl − 2
L
ρlsθl −ρlcθl −ρlsθl −1]

Lθr =[− 2
L

sθrcθr − 2
L

s2θr
2
L
ρrsθr −ρrcθr −ρrsθr −1].

(8)

Note that, in the desired position of the camera, H and
L are related by θl = arctan

(
L

2H

)
and θr = −arctan

(
L

2H

)
which gives

H =
L

2 tan( θl−θr

2 )
. (9)

The desired values of the lines parameters are (see Fig. 2):
ρ∗c = ρ∗l = ρ∗r = 0, θ∗c = 0, and θ∗l = −θ∗r = arctan

(
L

2H

)
.

In order to obtain interaction matrices with good decou-
pling properties, new visual features are defined from θr, θl

and θc:

δ = θl + θr − 2θc, (10)

σ = θl − θr. (11)

Recalling (7) and using the desired values of the lines pa-
rameters, we obtain only one non-zero term in the interaction
matrix Lδ computed for the desired airplane pose:

L∗
δ = [ 1

H (c2θl + c2θr − 2) 0 0 0 0 0] (12)

where the altitude H is either estimated using (9) or given
by other sensors.

Then, recalling (8) and using the desired values of the
lines parameters, we obtain also only one non-zero term in
the desired interaction matrix L∗

σ:

L∗
σ = [ 0 2

L (s2θl + s2θr) 0 0 0 0 ]. (13)

B. Vanishing Point

The vanishing point is well known to be invariant with
respect to any 3D translational motion. This property is
particularly interesting to design visual features able to
control the rotational motions.

The relationship between the camera velocity and the van-
ishing point coordinates (xf , yf ) is given by the interaction
matrix Lxf

and Lyf
[10]:

Lxf
= [ 0 0 0 xfyf −(1 + x2

f ) yf ]
Lyf

= [ 0 0 0 (1 + y2
f ) −xfyf −xf ] . (14)

The desired values of the vanishing point coordinates are
(x∗f , y

∗
f ) = (0, 0) (see Fig. 2). The desired interaction matrix

can then be written as:

L∗
xf

= [ 0 0 0 0 −1 0 ]
L∗

yf
= [ 0 0 0 1 0 0 ] . (15)

IV. VISUAL SERVOING

We now link the airplane dynamic model, presented in
Section II, and the visual features model, presented in the
last section, to design a visual servoing control scheme.

A. From Camera Velocity to Aircraft Velocity

Fig. 4. Camera position on the aircraft

The camera is fixed on the front of the aircraft, as can
be seen on Fig. 4. Let cRa and cta denote respectively the
rotation matrix and the translation vector between aircraft
frame and camera frame.

The link between the camera velocity screw (vc) and the
aircraft velocity screw (va) is given by [2]:

vc = cSava (16)

with cSa =
[

cRa [cta]×cRa

03×3
cRa

]
. Note that 03×3 is

the null square matrix of order 3, and [cta]× is the skew
symmetric matrix such that [cta]×w = cta × w for any
vector w.

In our case, we have:

cRa =


 0 1 0

0 0 1
1 0 0


 ; cta =


 0

−D2

−D1


 .

In practice, D1 and D2 are a few meters. The correspon-
ding terms will act during the transient as small perturba-
tions: neglecting them does not imply significantly different
results.

We thus consider:

cSa =
[

cRa 03×3

03×3
cRa

]
. (17)
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B. Links between Visual Features and Aircraft State

Using the desired interaction matrix is a classical appro-
ximation in visual servoing when the considered displace-
ments are small. Using this approximation, and recalling (4)
and (16) gives:

ṡ = L∗
s
cSava. (18)

We consider the equilibrium position. Since equilibrium
rotation between Ra and Rf is assumed to be close to the
identity, recalling (1) gives:

ṡ = L∗
s
cSaṖ. (19)

Since L∗
s and cSa are constant, the above equation can

then be integrated, for small displacements around the equi-
librium position [1], [4]. We obtain:

s̃ = L∗
s
cSaP̃ (20)

where the ˜ notation represents the variation between the
current value and the equilibrium value, as introduced in
Section II-C.

Using the visual features δ, σ, xf , yf in (20), and
recalling (12), (13), (15) and (17) gives:

δ̃ =
1
H

(c2θl + c2θr − 2)Ỹ (21)

σ̃ =
2
L

(s2θl + s2θr)Z̃ (22)

x̃f = −ψ̃ (23)

ỹf = θ̃, (24)

from which we deduce directly:

˜̇xf = − ˜̇
ψ (25)

˜̇yf = ˜̇
θ. (26)

Note that two singular cases can theoretically be encoun-
tered with (21):

• H → 0: This is not a problem since in practice the
camera altitude is never null.

• (θl, θr) → (k1π, k2π): this case would occur when the
optical axis is vertical, or if the altitude H is infinite. In
practice this is not a problem since such configurations
are impossible with the aircraft.

Finally, note that the singularity that can be encountered
with (22) is the same as the previous one.

The relative lateral position Ỹ and altitude Z̃ can be linked
with visual features by inverting the equations (21) and (22):

Ỹ =
H

c2θl + c2θr − 2
δ̃, (27)

Z̃ =
L

2(s2θl + s2θr)
σ̃. (28)

By using the last line of (3), α̃ can be expressed as a
linear function of ˜̇Z, θ̃, and υ̃a. Assuming that s2θl + s2θr

is constant and deriving (28) gives a link between ˜̇Z and

˜̇σ. The link between θ̃ and ỹf is given by (24). Finally, we
obtain:

α̃ =
L

2a19(s2θl + s2θr)
˜̇σ − a20

a19
ỹf − a21

a19
υ̃a. (29)

υ̃a can not be entirely determined by using the three
parallel lines. Other visual feature should be used in order to
determine the longitudinal component of the velocity, along
the runway axis. Since none is easily available, υ̃a is assumed
to be known by mean of other sensors than the camera.

C. Control Law

1) Lateral Control: The horizontal motions are controlled
by the lateral control: when the equilibrium flight is modified
by small perturbations, the control stick left-right position
allows to drive the aircraft to the desired equilibrium roll,
heading, and lateral position. It is intuitive to see that, in the
absence of crosswind, if the lateral position Y is stabilized
to 0, the heading ψ is stabilized to 0, and that implies that
the airplane roll φ is null too. Thus the idea to design the
control law is to link the control input δl with the lateral
position Y , in order to drive it to 0.

It is well-known that the right-left position of the control
stick enables to control the roll rate. Thus we can consider
a linear link between δl and φ̇: ˜̇

φ = λδ̃l, with λ > 0.

• Remark: Note that using the first line of (2) enables
to retry this relationship, and to determine the λ coeffi-
cient. Assuming that δl is constant and integrating the
differential equation ˜̈

φ(t) = a1
˜̇
φ(t) + b1δ̃l gives

˜̇
φ = c1e

a1t − b1
a1
δ̃l (30)

with c1 constant, and a1 < 0, b1 > 0. Since a1 < 0,
the exponential term can be neglected, and we obtain
the following linear relationship:

˜̇
φ = − b1

a1
δ̃l. (31)

Using the second line of (2), and the fact that a4 and b2
are negligible, we obtain a direct relationship between ψ̈ and
φ̇:

˜̈
ψ = a3

˜̇
φ, with a3 > 0. (32)

Then using (32) in (31) gives:

δ̃l = − a1

b1a3

˜̈
ψ. (33)

Using the last line of (2) enables to relate ψ and Ẏ :

˜̇Y = a5ψ̃, with a5 > 0. (34)

Taking its time derivative, we obtain

˜̈Y = a5
˜̇
ψ. (35)

Then deriving again yields
.̃..
Y = a5

˜̈
ψ, and recalling (33) gives

δ̃l = − a1

b1a3a5

.̃..
Y . (36)
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The following constraint is chosen:
.̃..
Y = −k1

˜̈Y −k2
˜̇Y −k3Ỹ ,

where k1, k2, k3 are chosen such that Ỹ is stable. Replacing
.̃..
Y in (36), the lateral control law can finally be written as:

δ̃l = −n1
˜̈Y − n2

˜̇Y − n3Ỹ (37)

where ni = (−kia1)/(b1a3a5).
Then the parameters can be substituted by their visual

equivalents: using (23) and (25) in (34) and (35) gives

˜̇Y = −a5x̃f (38)
˜̈Y = −a5

˜̇xf . (39)

Substituting (27), (38), and (39) in (37) gives the visual
control law:

δ̃l = n1a5
˜̇xf + n2a5x̃f − n3

H

c2θl + c2θr − 2
δ̃. (40)

We recall that the altitude H can be estimated using (9),
or measured by other sensors. As for parameter ẋf , it can
be obtained from the image using ẋf (k) = xf (k)−xf (k−1)

∆t ,
or directly measured by a gyroscope, since it is related to
the yaw rate (see (25)). All other parameters can be directly
determined from the image.

2) Longitudinal Control: The vertical motions are con-
trolled by the longitudinal control: when the equilibrium
flight is modified by small perturbations, the throttle and the
control stick forward-backward position allow to drive the
aircraft to the desired equilibrium altitude, velocity, pitch
and angle of attack.

Lateral control design is based on simple and intuitive
links between input, roll rate, heading angle, and lateral
position. Longitudinal state-space model (see (3)) shows
coupling between the two concerned inputs, and at the
view of this model, it is not easy to design simple control
laws. Since the longitudinal state-space model is linear time
invariant, the standard LQR optimal control can be used
to design the longitudinal control law. The LQR regulator
ensures the minimization of a quadratic cost function which
takes into account the evolution of the state and the energy
consumption. A state feedback matrix K can be computed
in order to drive the system from an initial position to the
trim position. With standard LQR regulator, the control law
would be:

ũlo = −Kx̃lo (41)

where x̃lo and ũlo are parts of the state vector and
the input vector related to the longitudinal motion:
x̃lo = (α̃, ˜̇θ, θ̃, υ̃a, ˜̇υa, Z̃), and ũlo = (δ̃m, δ̃T ).

Since the state vector is not directly measured, we use the
visual features presented before and their links with the state
x̃lo. Thus, recalling (29), (26), (24), and (28) the control law
becomes (see Fig. 5):

ũlo = −Ks̃ (42)

with s̃ =
[

L
2a19(s2θl + s2θr)

˜̇σ − a20
a19
ỹf − a21

a19
υ̃a, ˜̇yf , ỹf , υ̃a,

˜̇υa,
L

2(s2θl+s2θr) σ̃
]
.

As already explained, the velocity υa and the acceleration
υ̇a are both assumed to be measured by other proprioceptive
sensors. All other parameters can be determined from the
image. The derived parameters are obtained by differentiating
the corresponding values.

Fig. 5. Bloc diagram for longitudinal visual control

V. RESULTS

A. Experimental Conditions

The proposed control scheme has been tested in a simu-
lation software based on a library provided by the French
company Dassault Aviation. This library allows to simulate
the behaviour of an aircraft equipped with a fly-by-wire
control system. It can be controlled by the throttle and the
control stick, and it provides pose and state measures.

In order to visualize the world where the aircraft is flying
around, a visualizator is linked to the library. It allows to
put a camera in the 3D environment (for example on the
aircraft), and visualize the corresponding images (Fig. 6).

(a) (b)

Fig. 6. (a) Runway image from embedded camera. (b) Lines and vanishing
point.

The linearized model of the aircraft is the one presented
in Section II-C. It has been used with the Control System
Toolbox and the Matlab/Simulink tools to design the feedback
matrix K.

In order to test the presented control scheme, an equilib-
rium flight is considered. Perturbations are applied to drive
the aircraft to a close state and position. Then the control
laws (40) and (42) are used together to drive again the aircraft
to its equilibrium flight.

B. Results

The aircraft lateral position is initially Y � 8.7 m whereas
the runway takes place at Y ∗ = 0 m, and the initial heading
ψ = −3 deg whereas the runway heading is ψ∗ = 0 deg.
Before using the control laws, the equilibrium flight is
submitted to perturbations with inappropriate inputs on the
throttle and on the forward-backward control stick position.
Consequently the altitude, velocity, angle of attack and pitch
angle are driven close to their equilibrium state (Z∗ = −827
m, υ∗a = 83 m/s, α∗ = 0.5 deg, and θ∗ = 0.5 deg).

In order to change its heading, the aircraft has first to turn
around its longitudinal axis, to acquire roll (φ �= 0). Then the
aircraft turns: the heading ψ is modified and consequently
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the lateral position Y too (see Fig. 7). At the end of the
control, the lateral position has been driven to Y = Y ∗ = 0.
Since the lateral position Y is stabilized, the heading is null
(ψ = ψ∗ = 0). Since the heading is stabilized, the roll is
null (φ = φ∗ = 0). This motion is controlled by the right-left
position of the control stick δ̃l (see Fig.9.a), using the control
law (40) and the following gains: n1 = 4.3, n2 = 0.89, n3 =
0.045. Note that the xf coordinate of the vanishing point has
a symmetric behaviour as the heading ψ (see Fig. 7.b, 10.a,
and recall (23)).

The control law (42) enables to drive the longitudinal
parameters to there equilibrium values, ie to drive the
corresponding tilde values to zero (see Fig. 7.a, 8.a, 8.b).
The throttle input and the backward-forward position of the
control stick are used to realize correctly this task, and at the
end they reach there equilibrium values too (see Fig. 9.b).

As can be seen on Fig. 10.a, the coordinates of the
vanishing points reach their desired values. Figure 10.b
shows that the orientation of the lines are finally stabilized.
Note that they are such as θ∗c = 0, and θ∗l = −θ∗r , as
expected.

The proposed control scheme thus enables the aircraft to
correct effects of perturbations from a close state, by using
visual data.
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Fig. 7. Time evolution of the position parameters Ỹ and Z̃ (in meters)
(a), and of the orientation angles φ̃ and ψ̃ (in degrees) (b).
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Fig. 8. Time evolution of the velocity υ̃a (in meters per seconds) (a), and
of the angles α̃ and θ̃ (in degrees) (b).
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Fig. 9. Time evolution of the inputs δ̃l, δ̃T , and δ̃m

VI. CONCLUSION

In this paper, a visual servoing scheme to align an aircraft
with respect to a runway has been proposed. It uses a
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Fig. 10. Time evolution of the visual parameters: coordinates of the
vanishing point (x̃f , ỹf ) (in meters) (a), and lines orientation θl, θr, θc
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linearized model of the airplane dynamics, and decoupled
visual features. Simulation results show that the proposed
control laws enable the airplane to be aligned with respect
to the runway when its initial state and pose are close to the
desired ones. Future work will be devoted to the application
of alignment for automatic take-off and landing.
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