
 
 

 

  
Abstract— One of the critical research issues for the future 
robot is the avoidance of collisions with people while it moves 
among them. Therefore, people-tracking and motion prediction 
are important. People are tracked more readily and successfully 
by using distributed sensor networks than robot's local sensors.  
Floor sensor networks, in particular, are resistant to changes in 
lighting conditions and other environmental disturbances. 
However, the problem with the system is that a person walking 
is observed as if it were being done in "rabbit hops": The signal 
is nonlinear and even nonholonomic. We tackled the problem by 
assuming that human walking is regular in terms of walking 
rhythms. Then the signal was modeled by an oscillation model 
based on four walking parameters: cycles, phases, directions, 
and strides. To adapt the parameters to irregular walking, the 
model was multi-hypothesized based upon a particle filtering 
algorithm. Experimental results showed that the 
multi-hypothesized oscillation models showed more than 80% 
tracking accuracy for four walking patterns: straight walking, 
stop-and-go, turn, and winding walking. Further, the models 
were superior to the nearest neighbor filter with regard to the 
performance of data association for two persons. 

I. INTRODUCTION 
OBOTS are expected to work in spaces where a number 
of people walk, as shown in figure 1. In order for the 

robot to move in such a space efficiently, the avoidance of 
collisions with people is an essential function. The robot has 
to know people’s locations to realize this avoidance; so a 
people-tracking technology is important. 

So far, the people-tracking function for a mobile robot has 
been performed by using its own local sensors, such as a laser 
range finder [1]. Although such a sensing technology, based 
on the first-person point of view, is important in terms of the 
robot’s autonomy, sensor networks, such as those that [2] 
propose, can track people more readily and successfully. This 
is because sensors are fixed in a global coordinate system, and 
the sensors’ locations are known. 

One of the most effective sensor networks is a 
multi-camera system [3,4]. A camera is a very common 
sensor for tracking people; however, it tends to be susceptible 
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to changes in lighting conditions and visual occlusions. 
Visual occlusions are particularly difficult because they 
require elaborated occlusion reasoning, for example [4], for 
tracking multiple persons. On the other hand, floor sensor 
networks [7−9] can avoid these difficulties because they 
detect human weight directly. 

One may think that the locations of people can be readily 
obtained by using floor sensors. This is true in the case of a 
robot because it generates a continuous signal, as shown in 
figure 2. The difference in the positions of the robot over 
consecutive time steps is small enough; therefore, it is readily 
tracked by the nearest neighbor filter [10]: One of the simplest 
tracker. However, a person uses bipedal walking, which 
results in a discrete signal, as shown in figure 3. Thus, the 
difference in the positions of the footprints over consecutive 
time steps is not negligible. We call these “rabbit hop” signals 
because the footprints jump rapidly with the alternating steps 
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Figure 1. Robots that work with people. 

 

  
Figure 2. Overlay, snapshot, and track of the continuous signal 

generated by a robot moving on four wheels. 
 

  
Figure 3. A rabbit hop signal generated by a person. 
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of the person. The dynamics of the signal is nonlinear and 
even nonholonomic. Therefore, the Kalman filter is not 
applicable. Using the nearest neighbor filter is one thought; 
however, it leads to poor data association. Therefore the point 
of this paper is to propose a human-tracking model that has a 
tight validation area for robust data association. The 
validation area is the extent of a distribution of particles 
around which observations are associated to the filter.  
 A real-time four-state switching model [8] has already been 
proposed by us for the rabbit hop signal. However, it 
employed an old type of floor sensor network; its 
spatio-temporal resolution was coarse, and observations were 
sometimes missed because of the small aperture of the sensor. 
Further, the data association of multiple persons was not 
considered to be sufficient.   
 To propose a new human-tracking model, human steps 
were first assumed to be regular in terms of walking rhythms. 
Then the signal was modeled by an oscillation model based 
on four walking parameters: cycles, phases, directions, and 
strides. To adapt the parameters to irregular walking, the 
model was multi-hypothesized based on a particle filtering 
algorithm. The following sections describe the model and 
how to multi-hypothesize it.   

Our IT (Information Technology) society is evolving into 
an IRT (Information and Robot Technology) society. In the 
IRT society, the Internet will be extensively used by 
integrating it with robot and sensor network technologies. To 
achieve the IRT society, the Network Robot Forum, where 
major electronic and robotic enterprises are working together, 
is taking the initiative. Our work reported in this paper will 
contribute to these activities. 

I. FLOOR SENSOR NETWORK 
 Figure 4 shows the floor sensor system employed in this 
paper. It was developed by Vstone Corporation (Osaka, 
Japan)． The system is composed of 50-cm by 50-cm sensor 
  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

modules that are connected serially based on a multi-hop 
communication protocol. Each sensor module has 25 sensor 
units that are 10 cm by 10 cm in size and output binary 
pressure data. Furthermore, each sensor unit has 289 binary 
electrical contacts, a certain number of which give the sensor 
unit a pressure threshold. One hundred sensor modules were 
installed in our laboratory, as shown in figure 5. The square 
composing the meshed region represents a sensor unit. The 
total data of the 2,500 sensor units is obtained 15 times per 
second through the RS-232 interface of a personal computer. 

II. MULTI-HYPOTHESIZED OSCILLATION MODELS 

A. Assumptions 
 Floor sensors can be activated by arbitrary objects: Tables, 
chairs, luggage, robots, people, and so forth. Those objects 
have their own spatio-temporal characteristics in sensor 
signals. Therefore, they can be tracked by applying different 
tracking models. However, only the tracking of people is 
discussed in this paper.  

People’s postures are variable; standing, walking, running, 
lying, sitting and so forth. Although all of them should be 
successfully tracked, in this paper the types of postures are 
confined to standing or walking, which are common  
postures when a person communicates with a robot.  
 Tracking models for a person depend on sensor resolutions. 
The tracking model was developed assuming the sensor 
specifications shown in figure 4. The spatio–temporal 
resolution of the sensor seems to be somewhat coarse; 
however, a smaller amount of information has an advantage 
in terms of production, communication, and computational 
cost. In view of communication theory, high-resolution 
sensors can imitate low resolution sensors. Therefore, it is 
reasonable to develop tracking models with low-resolution 
sensors for versatility. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Overview of the floor sensor system. 

  
Figure 5. Layout of the sensor units. 

 

  
Figure 6. Representation of a person’s walk using a sinusoidal basis 

function. 
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B. The oscillation model 
Human walking is first assumed to be periodic in terms of 

walking rhythms. Then the rhythm is represented by a 
sinusoidal curve as shown in figure 6. The curve, fixing 
magnitude, is characterized by cycle T  and phase θ , 
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By taking the sign of the function, a sign function ( )tβ  is 
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The difference of the sign over consecutive time steps gives 
an impulse series that represents changes of the signs, 
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Then, the following function represents the rabbit hop signal, 
and this dynamics is called an oscillation model: 
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where tx represents the two-dimensional positions of a foot 
on the floor at time step t . L and Φ  are the stride and  
heading direction, respectively. The second term of the right 
side becomes nonzero only when the impulse is triggered, 
which results in the rabbit hop dynamics. This model can 
represent variable signals by altering the values of the four 
parameters. Figure 7 shows the signals produced by the 
oscillation model.  

C. Multi-hypothesizing the oscillation model 
 The oscillation model assumed regular walking. The next 
step is to adjust the parameters to irregular walking. This is 
performed by multi-hypothesizing the oscillation model. 
Figure 8 illustrates the dynamics of an aggregation of 1,000 
oscillation models, each one of which has different values for 
the parameters. The left column shows the dynamics only 
when the strides were multi-hypothesized by using Gaussian 
noise. The initial positions of the models were given to form a 
Gaussian noise that has 10-cm standard deviation. Similarly, 
the middle and right columns show the dynamics only when 
the cycles and directions were multi-hypothesized, 
respectively. Phases were not multi-hypothesized because 
they obey cycles and time. The reason for this is given in the 
next subsection.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that the parameters of oscillation models were not 
updated. Each parameter keeps a constant value given 
initially. To track dynamic human walking, parameters must 
be validated and updated every time step. The next section 
describes how parameters are updated based on a particle 
filter. 

D. Implementation on a particle filter 
 The oscillation model shows entirely nonlinear dynamics; 
therefore, the Kalman filter, even the Extended Kalman filter, 
cannot be easily applied to update the parameters. Therefore, 
a particle filter was employed. The particle filter is a 
numerical solving method for posterior probability 
distributions. As described in [11], particle filters, bootstrap 
filters, the CONDENSATION algorithm, and the Monte 
Carlo filter are synonymous. They are Bayesian filters that 
repeat prediction and observation to calculate posterior 
probability distributions numerically. A particle filter can be 
viewed as a multi-hypothesized tracker if the particle is 
considered to maintain a hypothesis of states. The state, 
observation, prediction model, and observation model were 
implemented based on this concept.  
 The state was a four-dimensional vector that characterizes 
the oscillation model, 

[ ]T
ttttt LT θΦ=x  .                          (5) 

Note that the parameters are time varying. The observation 
was a two-dimensional vector that points to the location of a 
foot on the floor, 

[ ]T
t zz 21=z .                                  (6) 

The state transition is essentially equal to equation 4. 
However, it should be built onto an observation model for 
theoretical justice. The prediction model was a common 
diffusion model, 

ttt wxx +=+1 ,                                  (7) 
 

where tw is a noise, each entry of which is drawn from the 
following Gaussians,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Multi-hypothesized 1000 oscillation models each one of 

which was given a different set of parameter values. 
 

Figure 7. Variable walking signals demonstrated by the oscillation 
model. 
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Tw and Φw were imposed as bounding conditions given a 
priori: 
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tw ,θ is special. It represents compensation noise and depends 
on the cycle and time. It was chosen to satisfy the following 
continuity condition of the sinusoidal curve specified by 
equation 1:  
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Standard deviations of equation 8 were tuned manually to 
maximize the tracking performance of 50 walking samples: 
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Note that the frame rate was fixed at 15 fps.  
 The observation model was a conventional Gaussian 
mixture, 
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where −
tx is calculated by equation 4 based on the predicted 

state. M is the total number of active sensor units, and 
Mjj ,,1, K=z represent the position vectors of these activated 

sensor units. The covariance matrix was chosen to 
be I207.0=Σ , considering a typical foot size, and the unit 
was 2m . A threshold was applied to equation 11 to make data 
association robust. Any deviation exceeding m3.0  has a 
likelihood of zero. Figure 9 illustrates how particles fit  
human walking based on the particle filter.  It is interesting to 
note that the particles form a time varying bimodal 
distribution, each peak of which corresponds to a foot. 

E. Model switching 
Although the multi-hypothesized oscillation models adapt 

to irregular walking, they often failed to track a standing 
person because it is not periodic motion. Therefore, a 
standing model was introduced. It was a conventional 
two-dimensional Gaussian tracker as used in our former 
research [8]. The state vector and observation vector are in the 
same two-dimensional space that represents the locations on 
the floor: 

  [ ]T
t xx 21=x ,                               (13) 

  [ ]T
t zz 21=z .                               (14) 

The prediction model was a conventional diffusion model 
with Gaussian noise, 
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w
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where the covariance matrix was set to be I21.0=Σ , and the 
unit was 2m . The observation model was a Gaussian mixture, 
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The multi-hypothesized oscillation models transferred to 
the standing model if the mean of the cycles exceeded 3 sec. 
Conversely, the standing model transferred to the 
multi-hypothesized oscillation model if the location moved 
more than 30 cm within a time step.  

F. Initialization 
Activated sensor units obtained every time step were 

associated with existing tracks. A track means a particle filter 
being executed. How they were associated is mentioned in the 
following subsection. If an activated sensor unit was not 
associated with any tracks, or there were no tracks, it was 
considered to be evoked by a new person. Those units were  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Tracking a person with multi-hypothesized oscillation models.
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first segmented into circles (16 cm in radius assuming a 
typical foot size) by using a conventional clustering method.  
Then the Gaussian tracker mentioned in the preceding 
subsection was created, and the segmented sensor units were 
assigned to the tracker.  

G. Data association 
Given an observation; an activated sensor unit, the 

summation of all likelihoods of particles was calculated for 
each existing track. Then the observation was associated with 
the track that showed the highest summation. This method 
imitates the Bayes decision rule. 

III. EXPERIMENTAL RESULTS 

A. Tracking a person with variable walking 
If people walked by maintaining sufficient space between 

each other,  the nearest neighbor filter, which associates 
nearer observations on a first-come basis, would track the 
people by making the validation area (the area to search 
observations) wide. However, if people came close to each 
other, the validation areas of the respective filters would 
overlap, and the filters would fail to associate observations 
correctly. Therefore the point is how to tighten the validation 
area. The multi-hypothesized oscillation models enable this 
by using a time varying bimodal distribution as illustrated in 
figure 9.  

 It is natural that a tighter validation area makes tracking 
more difficult. Therefore, we examined whether the model is 
reliable for four common types of walking: straight walking, 
stop-and-go, turns, and winding walking as shown in figure 
10. For straight walking, test subjects were instructed to walk 
at their usual speeds. For stop-and-go, the time during which 
the subject was stopped was about three seconds. For turns, 
the test subjects were instructed to turn within two seconds. 
For winding walking, two pylons were installed at a 
three-meter interval, and the test subjects wound around them. 
For each type, 10 persons (eight men and two women 21—32 
years old, mean23.2, S.D.4.4) performed 5 walks, resulting in 
50 walking samples.  

  The rates of successful tracks from out of 50 walks for each 
walking pattern are illustrated in figure 11. The operation 
time calculated by a Pentium 4 2.8-GHz processor is also 
illustrated. Note that standard deviations of walking 
parameters were tuned in advance, and the number of 
particles was varied because it greatly affects the operation 
time; real-time processing is essential for human-robot 
interaction 

B. Tracking two persons and data association 
As mentioned before, a situation where people come close 

to each other makes data association difficult. Because the 
evaluation of the tracking performance under such a situation 
is complex, the situation was reduced to data association of 
two persons. The performance was examined about three 
common approach patterns: facing, parallel, and crossover 
approach. For facing and parallel approach, the gap of 
persons was 50cm.  

Ten sets of walks were performed for each approach 
pattern. If the tracking was successful, the tracking system 
would draw two tracks, each of which corresponds to each 
person as shown in figure 12. However, if the tracker failed, 
the two tracks would split, merge, or counterchange; the 
failure would disturb the tracks, and we could recognize the 
occurrence of mis-tracking. If tracks were never disturbed 
from initialization throughout termination, the trial was 
defined successful. A multi-hypothesized oscillation model 
and a conventional Gaussian model as described by equations 
12 through 15 were compared in terms of data association. 
Figure 13 shows the success rates of the ten trials. 

IV. DISCUSSION 

A. Tracking performance 
According to figure 11, the straight walk showed the highest 

tracking performance. That is reasonable because it highly 
satisfies the assumption of the oscillation model, where the 
values of the parameters were converged as shown in figure 
14. The other three types of walking were inhibited by a stop 
or a change of direction. However, by introducing the stop 
model and the multi-hypothesization, they showed more than 
80% tracking accuracy.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Four common types of walking. 

 

  
Figure 11. Success rates and operation time vs. number of particles.

FrE8.3

4843



 
 

 

Figure 15 shows two types of typical mis-tracking. One is 
an initialization failure. At 0 sec., two trackers are initialized. 
That indicates that both feet of the same person got onto the 
floor sensors simultaneously. That is very rare; however, the 
floor sensors sometimes missed an initial load applied by a 
person because they were protected by carpets to prevent 
physical damage. The other mis-tracking was most common: 
inappropriate distribution of particles. At time 6 sec., track 2 
missed a new signal because there was no particle whose 
likelihood became greater than zero, and track 3 assigned the 
missed signal. This type of mis-tracking can be recovered 
based on the proximity of the distance of the tracks. 
The difference between the Gaussian tracker and multi 
-hypothesized oscillation models was clear in the crossover 
approach. Basically, the Gaussian tracker is equivalent to the 
nearest neighbor filter in terms of data association if the 
number of particles is large enough; therefore it associates 
nearer observations with itself. That causes an association 
error as shown in figure 16a. On the other hand, 
multi-hypothesized oscillation models keep a proper 
distribution of particles, predicting the next position of a foot 
as shown in figure 16b. However, if there were more than two 
persons, the recovery may lose the consistency of the 
person-observation correspondence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

According to figure 13, the facing approach was successful 
both with the Gaussian tracker and multi -hypothesized 
oscillation models. This is because particles properly 
captured signals. However, the parallel approach showed 
poorer performance. The reason for this was that the gap 
between the two persons was too close when the trackers were 
initialized; observations to each person were clustered 
together, and only one tracker was initialized. However, 
whenever initialization was successful, tracking was 
successful. 

Thus, multi-hypothesized oscillation models show higher 
tracking performance compared with the Gaussian tracker. In 
terms of computational cost, the multi-hypothesized 
oscillation model can track more than 10 persons in real-time, 
by using a common personal computer. In fact, it tracked five 
persons simultaneously, as shown in figure 17, although it 
was not always successful. Based on the above discussion, it 
is concluded that our tracking system is reliable if people 
keep more than 50-cm distances and do not enter a tracking 
area simultaneously, which may be a common tracking 
situation.  

B. Future topics of research 
We have to profess that several important things have not 

been evaluated yet because experiments were concentrated on 
showing the fundamental performance of the tracking model. 
Therefore, for example, the tracking performance of children, 
elderly people, or people with wheelchair is not evaluated. 
Further, people can sit on a bench, carry luggage, or walk 
with children. Such postures would disturb the pattern of 
sensor activation and limit the application of out system. We 
think these difficulties will be solved by data fusion with 
vision sensors. Developing more robust tracking system 
employing floor sensors, video cameras, and infrared sensors 
is one of our next topics of research.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 15. Two typical types of mis-tracking. 

 

  
Figure 16. Data association of a crossover approach. 

  
Figure 12. Three common types of approach patterns. 

 

  
Figure 13. Success rates vs. approach patterns. 

 

  
Figure 14. Conversion of the values of parameters. 
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Although this paper focuses on people tracking, our tracker 
can also track a robot with the Gaussian tracker shown in 
figure 17. So far, this kind of tracking has been performed by 
a local sensing technique, such as robot vision or a laser range 
finder mounted on the robot’s body. However, the local 
sensing technique is not robust. Using a floor sensor network 
is more pragmatic and robust because sensor modules can be 
readily calibrated. One may claim that the floor sensor 
network costs too much; however, we believe emerging 
technologies will solve this problem. Now that a robust 
people tracker has been developed, the next topic of research 
will be to develop a robot that is aware of, can work with, or 
can communicate with people by sensing their locations with 
a floor sensor network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Further, a history of people’s walking paths, as shown in 
figure 18, is interesting. People avoid obstacles such as walls, 
desks, chairs, and so forth. That implicitly teaches a robot the 
environmental structure. If a robot selects arbitrary paths, it 
will navigate successfully. Further, a robot will learn and 
predict human behaviors by employing the histories. That 
will enable the robot to communicate with people smoothly. 

V. CONCLUSION 
 This paper focused on developing a real-time 
human-tracking model employing a floor sensor network. 
Human walking looks like a “rabbit hop” when it is captured 
using floor sensors. The signal is nonlinear and even 
nonholonomic; therefore, the Kalman filter is not applicable. 
This problem was first tackled by assuming human walking to 
be regular, and the signal was modeled with four walking 
parameters: cycles, phases, directions, and strides. The model 
was then multi-hypothesized to adjust the parameters to 
irregular walking. Experimental results showed that the 
multi-hypothesized oscillation models exhibited more than 
80% tracking accuracy for four walking patterns: straight 
walking, stop-and-go, turns, and winding walking. Further, 
the models were superior to a conventional nearest neighbor 
filter with regard to data association for two persons. From 
the results, it is concluded that our tracking system is reliable 
if people keep more than a 50-cm space between them and do 
not enter the tracking area simultaneously, which may be a 
common tracking situation. 
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Figure 16 Tracking five persons simultaneously. 
 
 

 

 
Figure 17 Tracking a four-wheeled mobile robot. 

 
 
 

 
Figure 18 A history of 300 walking paths. 
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