

�

Abstract— We present a fast GPU-based algorithm to

approximate the Swept Volume (SV) boundary of arbitrary

polygon soup models. Despite the extensive research on

calculating the volume swept by an object along a trajectory,

the efficient algorithms described have imposed constraints on

both the trajectories and geometric models. By proposing a

general algorithm that handles flat surfaces as well as volumes

and disconnected objects, we allow SV calculation without

resorting to pre-processing mesh repair. This is of particular

interest in the domain of Product Lifecycle Management

(PLM), which deals with industrial Computer Aided Design

(CAD) models that are malformed more often than not. We

incorporate the bounded distance operator used in path

planning to efficiently sample the trajectory while controlling

the total error. We develop a triangulation scheme that draws

on the unique data set created by an advancing front level-set

method to tessellate the SV boundary in linear time. We

analyze its performance, and demonstrate its effectiveness both

theoretically and on real cases taken from PLM.

I. INTRODUCTION

LTHOUGH Swept Volumes have been studied for

quite some time, their applications within the industrial

world of Product Lifecycle Management require a

specialized algorithm.

A. Motivation

A Swept Volume (SV) is defined as the totality of points

touched by a geometric entity while in motion. Since their

introduction in the 1960’s, SVs have proved useful in many

different areas, including numerically controlled machining

verification [1], robot workspace analysis [2], geometric

modeling [3], collision detection [4], mechanical assembly

[5], and ergonomic studies [6]. We are interested in its

applications within Product Lifecycle Management.

Product Lifecycle Management (PLM) is both a business

strategy and a technology solution to manage the entire life

span of a product, from cradle to grave. Although Computer

Aided Design (CAD) and Product Data Management (PDM)

systems have been available since the 1980’s, the concept of

an overarching information management solution

encompassing all knowledge about a product and which is

intended for all parts of a company (including marketing,

sales, and support) appeared only late in 1990’s, and is still

Jesse Himmelstein is a PhD student at LAAS-CRNS under a joint grant

with Kineo CAM, 31312 Labège FRANCE (phone: +33 (0)5 61 00 90 60;

fax: +33 (0)5 61 00 90 61; e-mail: jhimmel@laas.fr).

Etienne Ferré is with Kineo CAM, 31312 Labège FRANCE (e-mail:

ef@kineocam.com).

Jean-Paul Laumond is with LAAS-CRNS, 31077 Toulouse FRANCE

(e-mail: jpl@laas.fr).

today gathering speed [7].

PLM both draws on previous research in robotics and

poses new challenges [8]. There are two commonly

encountered industrial cases in PLM that can greatly benefit

from efficient SV calculation:

1) Mechanical assembly and disassembly— the sequence

of parts to remove and their corresponding paths can now be

calculated entirely within software, without needing to build

a physical mockup [5].

2) Ergonomic studies— designs for workspaces are often

designed to “fit” their human users. Through analysis of

kinematic modeling of the human limbs [6] (otherwise

known as “reach envelopes”) engineers can test the

feasibility of an operational task and create one or more

corresponding reaching paths.

Once the paths are generated, engineers often desire to

keep them collision-free, easing disassembly/maintenance

tasks. The SV can represent the volume of one or more

paths, and further placement of parts can be efficiently

checked for collisions against it.

PLM designs are often based around CAD data, and these

models are infamously malformed (containing degeneracies

such as cracks, intersections, wrongly oriented polygons,

etc.) [9]. Many geometric algorithms require closed 2-

manifold volumes to give meaningful results. Although

malformed models can theoretically be transformed into

proper volumes, in practice this is both a difficult and time-

consuming pre-processing step. In addition, certain models

contain flat surfaces surrounding no volume whatsoever.

Such models may be dealt with more straightforwardly as

polygon soups– unordered sets of triangles with no enforced

connectivity constraints.

For this reason, we chose to adapt a state-of-the-art SV

approximation algorithm to handle pure polygon soups.

B. Related Work

SV calculation dates back to the 1960s, originally in a 2D

context. The problem of calculating the volume is often

simplified to finding the boundary of the volume. Even so,

the mathematics can be very complex, including self-

intersections of the SV. Due to the sheer volume of the work

on the subject, we refer the interested reader to the survey by

Abdel-Malek et al. [10].

Modern analytical approaches include envelope theory

[11], singularity theory (a.k.a. Manifold Stratification or

Jacobian rank deficiency method) [1, 12, 13], and Sweep

Differential Equations [11, 14]. However, the type of data

that we are treating does not lend itself easily to

Swept Volume approximation of polygon soups

Jesse C. Himmelstein, Member, IEEE, Etienne Ferré, and Jean-Paul Laumond, Fellow, IEEE

A

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrE8.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4854

mathematical analysis.

1) Implicit Surfaces and Distance Fields

Schroeder et al [15] introduced another type of method-

manipulating numerical approximations of implicit surfaces.

They first impose a grid on the model space and assign each

grid point a value equal to its distance from the model

surface (a set of these values is called a distance field). The

workspace (a volume bounding the entire sweep) is imposed

a grid as well, with initial distance values of infinity. As the

object is swept along its trajectory, the inverse transform of

each workspace point is calculated, to find the nearest

neighbor points in model space. A new distance value is

evaluated as the trilinear interpolation of those model space

distance values. The workspace distance value is the

minimum of the old and new values (Fig. 1).
M

f(pW) = min(f(T0
-1pW), ... , f(Tn

-1pW))

W

T0

Ti

Ti+1Tn

Fig. 1 The inverse method of implicit distance calculation used by

Schroeder et al. As the model M is swept through the workspace W, a

transformation T is applied at each step. For each point pW in the

workspace, the implicit function f(pW) is assigned the minimum of all the

original distance values transformed there. Since a transformed pW will

rarely line up exactly on a pM, trilinear interpolation is used between the

closest values.

It is important to note that the distance values for grid

points lying inside the volume are given negative values.

Thus, the boundary of the SV can be approximated as an

isosurface where the distance equals zero. Finally, the

Marching Cubes algorithm [16] is used to extract this

isosurface at a certain distance value (distances other than

zero generate offset surfaces).

These distance fields can be generated through regular

sampling of a bounding volume [17]. Such sampling lends

itself naturally to the powerful parallel processing

capabilities of a graphics card, now commonly referred to as

a Graphics Processing Unit (GPU) [18].

2) GPU-based Directed Distances

Kim et al. [19] combine and extend these approaches to

quickly find the SV boundary using the GPU. They begin

with a triangulated mesh and a trajectory composed of rigid

motions. The edges and faces of the mesh are treated as

ruled and developable surfaces, and triangulated along the

trajectory within a certain error threshold. The new object

includes the SV boundary, but contains surfaces on the

interior of SV as well.

To remove the interior surfaces, the object is split into

slices, and a 2D grid is imposed onto each slice (Fig. 2).

Using the GPU, distance fields are found along the edges

between neighboring grid points. The distance fields are

directed (along the 3 major axes), rather than the scalar

values as in Schroeder et al. They are also unsigned, as there

is not yet a notion of interior and exterior.

Fig. 2 The workspace is split into slices, and depth measurements

performed for each slice. On the left, the dragon model is shown inside a

bounding box. That box is split (right), and for each slice (such as from the

front to the dashed line), distance fields are taken along the split direction.

The grid points are then classified as outside or inside the

SV using a propagating front level set method. Then the

surface of the SV is extracted using the Extended Marching

Cubes (EMC) algorithm [20], which exploits the directed

distance fields and triangle normals to provide a more

faithful triangulation than traditional Marching Cubes. The

final step is a topological check. If the surface is not

evaluated as closed and watertight, the spatial grid is refined

and the algorithm executed again.

Their algorithm represents an advancement from that of

Schroeder et al. both in performance (thanks to the GPU)

and quality (through EMC and the absence of interpolation).

However, the range of acceptable input is limited; only a

single watertight 2-manifold is allowed. This restriction is

imposed by the tessellation method and the final topological

check. To handle real cases in PLM, critical modifications

need to be made. Such modifications constitute the main

contributions of our paper.

C. Contributions

Our essential contributions are the following:

- Devising a fast GPU-based SV approximation

algorithm to accept arbitrary polygon soups as input.

- Creating a specialized tessellation algorithm to

generate meshes in linear time.

- Defining a unified error bound of both mesh size and

trajectory sampling based upon the bounded move

operator.

D. Outline

The rest of the paper is organized into 7 sections. In

Section II, we discuss how the trajectory can be sampled to

tightly control error. In Section III, we develop an

alternative level-set method to detect the SV surface. Section

IV introduces our specialized triangulation algorithm. We

FrE8.5

4855

analyze the error and complexity of the complete procedure

in Section V. Section VI presents our results, and we

conclude with ideas for future work in Section VII.

II. TRAJECTORY SAMPLING

Rather than creating a swept mesh through ruled and

developable surfaces as with Kim et al [19], we decided to

sample the surface at a certain number of intervals. A naïve

approach would be to sample the trajectory along regular

intervals. However, arbitrary motions can lead to situations

where certain points sweep large paths while others barely

move. To limit error in this case, it would be necessary to

impose a large number of intervals, many of which would be

wasted on more constant movements. Additionally,

determining the error bound implied by a given number of

samples is not trivial (Fig. 3).

A response to this problem lies in [21], where the authors

define a bounded distance operator on robot paths in the

spirit of [22]. Given the set of points in the model :, and a

continuous function of configurations q(s), then we can state

that the distance between two configurations q(si) and

q(si+1) is bounded by distance 0 if:

� � '�$�� ³
�

dss
ds

dP
P

i

i

s

s

1

)q(/

In other words, the trajectory is bounded by distance û if

no point in the model moves more than û between two

successive configurations.
d1

d2

(a) (b) (c)
Fig. 3 Problems with regular path sampling. In (a) and (b), a simple straight

arm is rotated about one end. Sampling this trajectory uniformly would

result in very different error bounds for d1 in (a) and d2 in (b). This problem

is only aggravated further when kinematic chains, such as (c), are

introduced. The bounded distance operator aims at controlling the maximum

error.

The bounded distance operator provides a robust and

convenient way to control error while minimizing the

number of required samples, even with multiple complex

objects of arbitrary geometry, such as polygon soups and

kinematic chains.

III. GRID COMPUTATION

In implicit modeling, a field function f(p) defines a value

for each point p in space. Surfaces are therefore equivalent

to contours sharing a field value. In our case, f(p) returns the

distance to one of the polygons drawn by the GPU.

However, f(p) will be zero for surfaces lying within the SV

as well as along the boundary.

When dealing with volumes, it suffices to negate f(p) for

all p within the SV. As long as at least one grid point falls

within the volume, it creates a difference that can be

detected by the discrete surface extraction procedure.

However, when dealing with surfaces that do not contain

any volume (Fig. 4) this method fails to find the contour.

(a) (b) (c)
Fig. 4 These three surfaces are treated differently by traditional isosurface

extraction. The volume in (a) will be found correctly, but since the surface

in (b) does not contain any volume, it will be ignored, as will the volume

with a hole found in (c).

To properly detect these surfaces, we modified the fast

marching level-set method presented by Lin et al. (and in

turn based upon [23]). Whereas they use it to simply classify

grid points as inside or outside, we employ it to detect the

surface itself, and to generate 3D points that are used later

by our specialized triangulation algorithm.

All grid points are tagged with a state and a membership,

each of which having 3 possible values. The state is initially

Far, meaning that it has not been reached by the advancing

front. A point in the front is in the Trial state, and once a

point has been analyzed it is Known. The membership of

untreated points is Inside. Once a point is reached by the

front, it might be Superficial if it lies next to the surface, or

Outside otherwise.

(a) (b) (c)
Fig. 5 The advancing front enters holes, rendering Marching Cubes useless.

The front, represented by grey circles, starts at the upper left corner in (a),

moving down and to the right. In (b), the front has advanced up to the hole

in the volume. By the time the front is exhausted, in (c), it has completely

filled the space. By labeling all the visited points Outside, it is impossible to

recover the correct surface. Although the hole is exaggerated here for the

purposes of example, the same phenomenon is found with the smallest of

imperfections in common PLM models.

In addition, all points have a set of detected surface

samples, each of which contains 2 pieces of information:

their coordinates in the workspace, and the direction in

which they were detected by the advancing front. The

members of the starting front (e.g. the limits of the bounding

volume) are inserted into a queue and set to Trial and

Outside.

 Algorithm 1 describes the iterative procedure that

advances the front, labeling grid points as Outside or

FrE8.5

4856

Superficial as needed. For Superficial points, a set of

corresponding 3D points is generated, one for each axis

upon which the surface was detected. This set is attached to

the grid point for use during the triangulation process.

 Algorithm 1 Fast Marching Method adapted to recognize surface points

Note that this surface detection algorithm refuses to enter

closed volumes, but also recognizes non-volumic surfaces,

and is therefore appropriate for any kind of geometrical

model, polygon soup or otherwise.

IV. TRIANGULATION

Once the surface points are detected, they can be

triangulated. Tessellation has been wildly studied, and there

exists many algorithms in the literature that could be used.

In particular, algorithms that tessellate point clouds would

be appropriate [24, 25]. However, rather than dealing with

the detected surface points as a point cloud (Fig. 6), we can

exploit the known structure of data returned by the level-set

method to achieve linear-time triangulation.

(a) (b)

(d)(c)
Fig. 6 Different interpretations of a point cloud. The unorganized point

cloud in (a) could be interpreted in different ways. In (b) it represents two

different objects, whereas in (c) it is only one. The cloud could even be two

non-volumic surfaces, as in (d).

A. Building a Graph

For each surface point, we know the grid point from

which the surface was detected by the advancing front, and

in which direction. Given these two pieces of information,

we can determine the neighboring surface points that the

point under consideration should be connected to. By

connecting each point to all its neighbors, we construct an

undirected graph (Fig. 7).

The graph representation defines a valid topological

relationship between points in the cloud. Within the graph,

each detected surface point is represented by a node.

Therefore, a flat surface detected in multiple directions will

have multiple nodes corresponding to the same coordinates

in the workspace. In other words, the graph always

represents a closed 2-manifold volume, rather than a

polygon soup.
a b

c d

e f

h

g

a b

c d

e f

g

h

Fig. 7 Graph building. There are 8 points detected on the surface of the box

on the left. They are transposed onto the graph on the right, by connecting

each point to its neighbors in the grid. By respecting the orientation of

undirected edges, this graph completely describes the SV boundary. Note

that a complete graph would surround a volume and not have boundary

edges like in this example.

B. Tessellation

From here it is fairly easy to tessellate the graph. By

following the elementary cycles that do not contain any

others, we construct a simple convex loop (of up to 6 points)

that can be easily triangulated. For example, in Fig. 7, nodes

c, d, f, and e form such a cycle. The algorithm terminates

when there are no such cycles left.

With this algorithm, all objects (including those detected

to have strictly planar sections) are implicitly tessellated as

closed polyhedra (although duplicate polygons could be

filtered to preserve single-sided planar geometry). In

addition, all triangles are oriented to face out of the object.

C. Degeneracies

There are two possible degeneracies that can be created

by this process. First, a node that is connected to a neighbor

by 2 opposing directions corresponds to a non-manifold

edge. Secondly, a node that is connected to a neighbor by all

directions corresponds to an isolated line segment or single

point.

Since these degeneracies are so easily detected, they can

be removed and the edges re-worked around them before the

triangulation process is launched.

V. ANALYSIS OF ALGORITHM

To ease the following discussion, we will assume that a

cubic bounding volume of size L3 is divided into M grid

points along each axis and that there are n surface points

detected. Moreover, there is a total of p triangular

while front is not empty

 P = pop(front)

 state(P) = Known

 for each neighbor Q of P:

 u = state(Q) is not Known

s = membership(Q) is Superficial

if u or sthen

 dir = direction from P to Q

 dist = edge_length(P, Q)

 if slice_width(dir) > dist then

 membership(Q) = Outside

 state(Q) = Trial

 push(front, Q)

 else

 p = generate_3D_point(P, dir, dist)

 push(detected_surfaces(P), p)

 membership(P) = Superifical

 end if

 end if

 end foreach

end while

FrE8.5

4857

primitives, the product of the number of samples and the

number of triangles in the object.

A. Computational Complexity

1) Constructing Bounding Volume

To create the bounding volume, we must pass by each

primitive three times, a complexity of O(p).

2) Gathering Distance Fields

Like Kim et al. [19], we will analyze the performance of

distance field generation as proportional to the number of

primitives sent to the GPU for rendering. We draw the

primitives for each of 6 slicing directions and each of M

slices. The size of the grid has an additional effect on both

rendering and read-back performance. The complexity is

thus O(M3 + Mp).

3) Advancing Front

The level-set method shows performance proportional to

the size of the grid, or O(M3).

4) Tessellation

Although, for simplicity, we presented the tessellation

process in two steps– first building the graph, then

enumerating the cycles– it is possible to combine the two.

Starting at one detected surface point, we triangulate all of

the cycles that it corresponds to. By marking the grid points

that we pass by so as to avoid regenerating the same cycles

more than once, we can demonstrate algorithmic complexity

proportional to the number of primitives. Since a cycle can

link no more than a small number of points, triangulating

can be done in constant time. The complexity is therefore

O(n).

5) Total Complexity

Taking all the steps into account, the total computational

complexity of our SV algorithm is O(M3 + Mp + n). Since n

is upper bounded by 6M3, we can further simplify the

complexity relation to O(M3 + Mp).

For comparison, the complexity of the method proposed

by Kim et al. [19] can be expressed as O(M3 + g + T), where

g is the number of triangles in the ruled and developable

surface tessellation, and T is the number of rendered

triangles. Since they cull triangles so as to render them only

for the slices that they occupy, T is likely to be much smaller

than Mp in the average case. On the other hand, g is

dependant on the given error bound, and thus difficult to

predict and compare to our method.

B. Error

There are two potential sources of sampling error in our

approximation algorithm: the distance fields and the

trajectory. We are able to control both of them with the same

parameter. There is an additional error related to hardware,

since the GPU depth buffer is used to calculate the distance

fields, and so precision is limited by the width of the buffer

(modern GPUs have at least 32 bits).

1) Distance Field Error

Consider sampling an object that doesn’t move. Given

that a measurement is taken M times along each axis of

length L., let S = L / M, i.e. the length of one side of one

cubic cell within the grid.

Between the grid lines, no measurements are taken.

Therefore the error is limited to the possible distance the

surface could move within the grid cell, which is equal to S

(Fig. 8).

S

S

Fig. 8 Distance field sampling error. In the worst case, the actual SV

boundary (heavy line) could fluctuate wildly between the grid points. The

inaccuracy of the resulting approximation (dashed line) is limited by the

size of the grid cell, S.

2) Trajectory Sampling Error

As described in Section II, we can guarantee that no point

on the object traces a path longer than û between two

sampled configurations. Assuming that the point is detected

at both configurations, the farthest it could move from the

detected surface is û / 2.

3) Total Sampling Error

We now take both sources of error into account. In the

worst case, the surface will be sampled at a distance S from

its real location. In addition, between the two sampled

configurations, the surface will have moved û / 2. The

resulting effect is the sum of the two: 0 = S + û / 2.

With this simple relation, the user has the possibility to

adjust the speed and memory use of the algorithm while

staying within a global error bound.

VI. EXPERIMENTAL RESULTS

A. Implementation

We implemented the SV algorithm in C++, with graphic

routines in OpenGL. It is designed as a module for Kineo

Path PlannerTM, and benefits from its stable implementation

of the bounded move operator. Since we use only very basic

graphic card functionality, any 2nd generation GPU

supporting z-buffer and frame-buffer readback suffices.

B. Results

All tests are conducted on a Intel Pentimum 4 PC running

at 2 GHz with 1GB RAM. The GPU is a nVidia Quadro FX

500 with 128 MB memory. The operating system is

Windows XP SP2.

We used 3 models for testing (Table I). All came from

actual PLM cases encountered by Kineo CAMTM. The

performance results are shown in Table II. To illustrate the

interplay between the two user-definable parameters, û and

0, the Exhaust Model is expanded across multiple

resolutions and bounded distances.

The visual quality of the SV mesh is quite high, and

suitable for PLM purposes (Fig. 9). However, the triangle

FrE8.5

4858

count of the SV is also important, and so in our application

we pass the generated SVs directly through a simplification

procedure, such as the vertex decimation algorithm

presented in [26].
TABLE I

TEST MODELS

Model # Triangles

Seat 30765

Exhaust 32641

Human 55632

Despite their appearance, none of the test models are

watertight 2-manifold meshes. To further demonstrate the

applicability of our algorithm to non-volumic geometry, we

sweep a simple flat surface in Fig. 10.

Videos corresponding to these examples are available at

http://www.laas.fr/gepetto

VII. CONCLUSION AND FUTURE WORK

Our SV approximation algorithm successfully deals with

real challenges posed by PLM, including disassembly and

ergonomic studies. Its fast execution allows for rapid

analysis of the given paths and for subsequent collision

detection and path-planning requirements. By relaxing the

requirements of watertight 2-manifold geometry, no pre-

processing is needed to handle arbitrary CAD models.

There are several areas for future work. The intermediate

graph data structure, representing a volumic mesh, could

have potential for manipulating the object before it takes on

polygon soup form. Even algorithms that require closed

watertight geometry could be run at this point.

In addition, we would like to consider introducing sub-

sampled points when feature geometry is detected, as is

done by algorithms such as EMC. By clever use of surface

normals and local grid refinement, we could extend the

algorithm to achieve lower error bounds without resorting to

global refinement of the grid.

ACKNOWLEDGMENT

We would like to thank the development team at Kineo

CAM [27] for their excellent ideas and patient support.

REFERENCES

[1] K. Abdel-Malek, W. Seaman, and H.-J. Yeh, "NC Verification of up to

5 Axis Machining Processes Using Manifold Stratification," ASME

Journal of Manufacturing Science and Engineering, vol. 122, pp. 1-

11, 2000.

[2] S. Abrams, P. K. Allen, and K. Tarabanis, "Computing Camera

Viewpoints in an Active Robot Work Cell," International Journal of

Robotics Research, vol. 18, pp. 267-285, 1999.

[3] J. Conkey and K. I. Joy, "Using Isosurface Methods for Visualizing

the Envelope of a Swept Trivariate Solid," presented at Pacific

Graphics, Hong Kong, 2000.

[4] A. Foisy and V. Hayward, "A safe swept volume method for robust

collision detection," presented at Robotics Research, Sixth

International Symposium, 1994.

[5] C. C. Law, Lisa S Avila, and W. J. Schroeder, "Application of Path

Planning and Visualization for Industrial Design and Maintainability

Analysis," presented at Reliability and Maintainability Symposium,

1998.

[6] K. Abdel-Malek, J. Yang, R. Brand, and E. Tanbour, "Towards

Understanding the Workspace of Human Limbs," Ergonomics, vol. 47,

pp. 1386-1406, 2004.

[7] F. Ameri and D. Dutta, "Product Lifecycle Management: Closing the

knowledge loops," Computer-Aided Design and Applications, vol. 2,

pp. 577-590, 2005.

[8] J.-P. Laumond, "Motion planning for PLM: state of the art and

perspectives," International Journal of Product Lifecycle

Management, vol. 1, pp. 129-142, 2006.

[9] T. M. Murali and T. A. Funkhouser, "Consistent solid and boundary

representations from arbitrary polygonal data," presented at

SIGGRAPH Symposium on Interactive 3D Graphics, 1997.

[10] K. Abdel-Malek, D. Blackmore, and K. Joy, "Swept Volumes:

Foundations, Perspectives, and Applications," International Journal of

Shape Modeling, 2002.

[11] R. R. Martin and P. C. Stephenson, "Sweeping of Three-dimensional

Objects," Computer Aided Design, vol. 22, pp. 223-234, 1990.

[12] K. Abdel-Malek and S. Othman, "Multiple sweeping using the

Denavit-Hartenber representation method," Computer-Aided Design

and Applications, vol. 31, pp. 567-583, 1999.

[13] K. Abdel-Malek and H.-J. Yeh, "On the Determination of Starting

Points for Parametric Surface Intersections," Computer Aided Design,

vol. 29, pp. 21-35, 1997.

[14] D. Blackmore and M. C. Leu, "A differential equation approach to

swept volumes," presented at Rensselaer's 2nd International

Conference on Computer Integrated Manufacturing, 1990.

[15] W. J. Schroeder, W. E. Lorensen, and S. Linthicum, "Implicit

modeling of swept surfaces and volumes," presented at IEEE

Visualization, 1994.

[16] W. E. Lorensen and H. E. Cline, "Marching Cubes: A high resolution

3D surface construction algorithm," presented at SIGGRAPH, 1987.

[17] J. Bloomenthal, "Polygonization of Implicit Surfaces," Computer

Aided Geometric Design, vol. 5, pp. 34 -355, 1988.

[18] I. Kenneth E. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha,

"Fast Computation of Generalized Voronoi Diagrams Using Graphics

Hardware," presented at SIGGRAPH, 1999.

[19] Y. J. Kim, G. Varadhan, M. C. Lin, and D. Manocha, "Fast swept

volume approximation of complex polyhedral models," ACM

Symposium on Solid and Physical Modeling, pp. 11-22, 2003.

[20] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel, "Feature

Sensitive Surface Extraction from Volume Data," presented at

SIGGRAPH, 2001.

[21] E. Ferré and J.-P. Laumond, "An iterative diffusion algorithm for part

disassembly," presented at International Conference on Robotics and

Automation, New Orleans (USA), 2004.

[22] F. Schwarzer, M. Saha, and J.-C. Latombe, "Exact Collision Checking

of Robot Paths," in Algorithmic Foundations of Robotics, J. D.

Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, Eds.:

Springer 2004, pp. 25-41.

[23] J. A. Sethian, "A Fast Marching Level Set Method for Monotonically

Advancing Fronts," Proceedings of the National Academy of Sciences

(USA), vol. 93, pp. 1591-1595, 1996.

[24] J. R. Sack and J. Urrutia, Handbook of Computational Geometry.

North Holland: Elsevier, 2000.

[25] J.-D. Boissonnat and M. Yvinec, Algorithmic geometry: Cambridge

University Press, 1998.

[26] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, "Decimation of

Triangle Meshes," presented at International Conference on Computer

Graphics and Interactive Techniques, 1992.

[27] J.-P. Laumond, "Kineo CAM: a success story of motion planning

algorithms," in IEEE Robotics & Automation Magazine, vol. 13, 2006,

pp. 90-93.

FrE8.5

4859

TABLE II

 PERFORMANCE AND ERROR OF TESTS

Parameters Performance (s)
Model

M û

0

Sampling
Distance

Field
Front Tessellation TOTAL

Exhaust 64 50 38.455 0.030 17.328 3.266 3.500 24.125

Exhaust 64 25 25.955 0.630 34.875 2.921 2.766 41.192

Exhaust 128 50 31.727 0.032 35.249 22.547 17.328 75.156

Exhaust 128 25 19.227 0.062 68.358 22.61 12.922 103.952

Exhaust 256 5 5.864 0.297 669.664 1016.33 70.874 1757.165

Seat 128 12 13.915 0.469 143.109 18.218 15.297 177.093

Human 128 13 13.254 1.295 170.469 59.765 9.875 241.404

Trajectory Begin Trajectory End SV Transparent SV Solid

Fig. 9 Visual quality of SV calculations on PLM extraction scenarios. For each of the three benchmark models (Exhaust, Seat, and Human) we display the

result of our SV calculation. The first two columns illustrate the beginning and ending of the trajectory, which has been generated by a path planning

procedure to extract a certain part from an assembly. The third column shows the SV as a blue transparent mesh, containing the swept model inside it (note

the in the Human case the SV includes the virtual mannequin itself). The SV is shown by itself as a solid mesh in the last column. Videos corresponding to

these examples are available at http://www.laas.fr/gepetto

Fig. 10 Flat surface example. The surface with two holes (first) is first swept along its own plane, and then orthogonally (second). The resulting SV (viewed

from bottom in third, side in fourth) displays the volume generated by the vertical motion as well as the flat surface generated by the horizontal movement.

FrE8.5

4860

