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Abstract— We present a fast GPU-based algorithm to 

approximate the Swept Volume (SV) boundary of arbitrary 

polygon soup models. Despite the extensive research on 

calculating the volume swept by an object along a trajectory, 

the efficient algorithms described have imposed constraints on 

both the trajectories and geometric models. By proposing a 

general algorithm that handles flat surfaces as well as volumes 

and disconnected objects, we allow SV calculation without 

resorting to pre-processing mesh repair. This is of particular 

interest in the domain of Product Lifecycle Management 

(PLM), which deals with industrial Computer Aided Design 

(CAD) models that are malformed more often than not. We 

incorporate the bounded distance operator used in path 

planning to efficiently sample the trajectory while controlling 

the total error. We develop a triangulation scheme that draws 

on the unique data set created by an advancing front level-set 

method to tessellate the SV boundary in linear time. We 

analyze its performance, and demonstrate its effectiveness both 

theoretically and on real cases taken from PLM.    

I. INTRODUCTION 

LTHOUGH Swept Volumes have been studied for 

quite some time, their applications within the industrial 

world of Product Lifecycle Management require a 

specialized algorithm.  

A. Motivation 

A Swept Volume (SV) is defined as the totality of points 

touched by a geometric entity while in motion. Since their 

introduction in the 1960’s, SVs have proved useful in many 

different areas, including numerically controlled machining 

verification [1], robot workspace analysis [2], geometric 

modeling [3], collision detection [4], mechanical assembly 

[5], and ergonomic studies [6]. We are interested in its 

applications within Product Lifecycle Management. 

Product Lifecycle Management (PLM) is both a business 

strategy and a technology solution to manage the entire life 

span of a product, from cradle to grave. Although Computer 

Aided Design (CAD) and Product Data Management (PDM) 

systems have been available since the 1980’s, the concept of 

an overarching information management solution 

encompassing all knowledge about a product and which is 

intended for all parts of a company (including marketing, 

sales, and support) appeared only late in 1990’s, and is still 
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today gathering speed [7].  

PLM both draws on previous research in robotics and 

poses new challenges [8]. There are two commonly 

encountered industrial cases in PLM that can greatly benefit 

from efficient SV calculation: 

1) Mechanical assembly and disassembly— the sequence 

of parts to remove and their corresponding paths can now be 

calculated entirely within software, without needing to build 

a physical mockup [5].  

2) Ergonomic studies— designs for workspaces are often 

designed to “fit” their human users. Through analysis of 

kinematic modeling of the human limbs [6] (otherwise 

known as “reach envelopes”) engineers can test the 

feasibility of an operational task and create one or more 

corresponding reaching paths.  

Once the paths are generated, engineers often desire to 

keep them collision-free, easing disassembly/maintenance 

tasks. The SV can represent the volume of one or more 

paths, and further placement of parts can be efficiently 

checked for collisions against it. 

PLM designs are often based around CAD data, and these 

models are infamously malformed (containing degeneracies 

such as cracks, intersections, wrongly oriented polygons, 

etc.) [9]. Many geometric algorithms require closed 2-

manifold volumes to give meaningful results. Although 

malformed models can theoretically be transformed into 

proper volumes, in practice this is both a difficult and time-

consuming pre-processing step. In addition, certain models 

contain flat surfaces surrounding no volume whatsoever. 

Such models may be dealt with more straightforwardly as 

polygon soups– unordered sets of triangles with no enforced 

connectivity constraints.  

For this reason, we chose to adapt a state-of-the-art SV 

approximation algorithm to handle pure polygon soups. 

B. Related Work 

SV calculation dates back to the 1960s, originally in a 2D 

context. The problem of calculating the volume is often 

simplified to finding the boundary of the volume. Even so, 

the mathematics can be very complex, including self-

intersections of the SV. Due to the sheer volume of the work 

on the subject, we refer the interested reader to the survey by 

Abdel-Malek et al. [10]. 

Modern analytical approaches include envelope theory 

[11], singularity theory (a.k.a. Manifold Stratification or 

Jacobian rank deficiency method) [1, 12, 13], and Sweep 

Differential Equations [11, 14]. However, the type of data 

that we are treating does not lend itself easily to 
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mathematical analysis. 

1) Implicit Surfaces and Distance Fields 

Schroeder et al [15] introduced another type of method- 

manipulating numerical approximations of implicit surfaces. 

They first impose a grid on the model space and assign each 

grid point a value equal to its distance from the model 

surface (a set of these values is called a distance field). The 

workspace (a volume bounding the entire sweep) is imposed 

a grid as well, with initial distance values of infinity. As the 

object is swept along its trajectory, the inverse transform of 

each workspace point is calculated, to find the nearest 

neighbor points in model space. A new distance value is 

evaluated as the trilinear interpolation of those model space 

distance values. The workspace distance value is the 

minimum of the old and new values (Fig. 1).  
M

f(pW) = min( f(T0
-1pW), ... , f(Tn

-1pW) )

W

T0

Ti

Ti+1Tn

 
Fig. 1  The inverse method of implicit distance calculation used by 

Schroeder et al. As the model M is swept through the workspace W, a 

transformation T is applied at each step. For each point pW in the 

workspace, the implicit function f(pW) is assigned the minimum of all the 

original distance values transformed there. Since a transformed pW will 

rarely line up exactly on a pM, trilinear interpolation is used between the 

closest values. 

It is important to note that the distance values for grid 

points lying inside the volume are given negative values. 

Thus, the boundary of the SV can be approximated as an 

isosurface where the distance equals zero. Finally, the 

Marching Cubes algorithm [16] is used to extract this 

isosurface at a certain distance value (distances other than 

zero generate offset surfaces). 

These distance fields can be generated through regular 

sampling of a bounding volume [17]. Such sampling lends 

itself naturally to the powerful parallel processing 

capabilities of a graphics card, now commonly referred to as 

a Graphics Processing Unit (GPU) [18]. 

2) GPU-based Directed Distances 

Kim et al. [19] combine and extend these approaches to 

quickly find the SV boundary using the GPU. They begin 

with a triangulated mesh and a trajectory composed of rigid 

motions. The edges and faces of the mesh are treated as 

ruled and developable surfaces, and triangulated along the 

trajectory within a certain error threshold. The new object 

includes the SV boundary, but contains surfaces on the 

interior of SV as well.  

To remove the interior surfaces, the object is split into 

slices, and a 2D grid is imposed onto each slice (Fig. 2). 

Using the GPU, distance fields are found along the edges 

between neighboring grid points. The distance fields are 

directed (along the 3 major axes), rather than the scalar 

values as in Schroeder et al. They are also unsigned, as there 

is not yet a notion of interior and exterior. 

 
Fig. 2  The workspace is split into slices, and depth measurements 

performed for each slice. On the left, the dragon model is shown inside a 

bounding box. That box is split (right), and for each slice (such as from the 

front to the dashed line), distance fields are taken along the split direction.  

The grid points are then classified as outside or inside the 

SV using a propagating front level set method. Then the 

surface of the SV is extracted using the Extended Marching 

Cubes (EMC) algorithm [20], which exploits the directed 

distance fields and triangle normals to provide a more 

faithful triangulation than traditional Marching Cubes. The 

final step is a topological check. If the surface is not 

evaluated as closed and watertight, the spatial grid is refined 

and the algorithm executed again. 

Their algorithm represents an advancement from that of 

Schroeder et al. both in performance (thanks to the GPU) 

and quality (through EMC and the absence of interpolation). 

However, the range of acceptable input is limited; only a 

single watertight 2-manifold is allowed. This restriction is 

imposed by the tessellation method and the final topological 

check. To handle real cases in PLM, critical modifications 

need to be made. Such modifications constitute the main 

contributions of our paper. 

C. Contributions 

Our essential contributions are the following: 

- Devising a fast GPU-based SV approximation 

algorithm to accept arbitrary polygon soups as input.  

- Creating a specialized tessellation algorithm to 

generate meshes in linear time. 

- Defining a unified error bound of both mesh size and 

trajectory sampling based upon the bounded move 

operator. 

D. Outline 

The rest of the paper is organized into 7 sections. In 

Section II, we discuss how the trajectory can be sampled to 

tightly control error. In Section III, we develop an 

alternative level-set method to detect the SV surface. Section 

IV introduces our specialized triangulation algorithm. We 
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analyze the error and complexity of the complete procedure 

in Section V. Section VI presents our results, and we 

conclude with ideas for future work in Section VII. 

II. TRAJECTORY SAMPLING 

Rather than creating a swept mesh through ruled and 

developable surfaces as with Kim et al [19], we decided to 

sample the surface at a certain number of intervals. A naïve 

approach would be to sample the trajectory along regular 

intervals. However, arbitrary motions can lead to situations 

where certain points sweep large paths while others barely 

move. To limit error in this case, it would be necessary to 

impose a large number of intervals, many of which would be 

wasted on more constant movements. Additionally, 

determining the error bound implied by a given number of 

samples is not trivial (Fig. 3).  

A response to this problem lies in [21], where the authors 

define a bounded distance operator on robot paths in the 

spirit of [22]. Given the set of points in the model :, and a 

continuous function of configurations q(s), then we can state 

that the distance between two configurations q(si) and 

q(si+1) is bounded by distance 0 if: 

� � '�$�� ³
�

dss
ds

dP
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In other words, the trajectory is bounded by distance û if 

no point in the model moves more than û between two 

successive configurations.  
d1

d2

(a) (b) (c)  
Fig. 3  Problems with regular path sampling. In (a) and (b), a simple straight 

arm is rotated about one end. Sampling this trajectory uniformly would 

result in very different error bounds for d1 in (a) and d2 in (b). This problem 

is only aggravated further when kinematic chains, such as (c), are 

introduced. The bounded distance operator aims at controlling the maximum 

error. 

The bounded distance operator provides a robust and 

convenient way to control error while minimizing the 

number of required samples, even with multiple complex 

objects of arbitrary geometry, such as polygon soups and 

kinematic chains.  

III. GRID COMPUTATION 

In implicit modeling, a field function f(p) defines a value 

for each point p in space. Surfaces are therefore equivalent 

to contours sharing a field value. In our case, f(p) returns the 

distance to one of the polygons drawn by the GPU. 

However, f(p) will be zero for surfaces lying within the SV 

as well as along the boundary.  

When dealing with volumes, it suffices to negate f(p) for 

all p within the SV. As long as at least one grid point falls 

within the volume, it creates a difference that can be 

detected by the discrete surface extraction procedure. 

However, when dealing with surfaces that do not contain 

any volume (Fig. 4) this method fails to find the contour.  

(a) (b) (c)  
Fig. 4  These three surfaces are treated differently by traditional isosurface 

extraction. The volume in (a) will be found correctly, but since the surface 

in (b) does not contain any volume, it will be ignored, as will the volume 

with a hole found in (c). 

To properly detect these surfaces, we modified the fast 

marching level-set method presented by Lin et al. (and in 

turn based upon [23]). Whereas they use it to simply classify 

grid points as inside or outside, we employ it to detect the 

surface itself, and to generate 3D points that are used later 

by our specialized triangulation algorithm. 

All grid points are tagged with a state and a membership, 

each of which having 3 possible values. The state is initially 

Far, meaning that it has not been reached by the advancing 

front. A point in the front is in the Trial state, and once a 

point has been analyzed it is Known. The membership of 

untreated points is Inside. Once a point is reached by the 

front, it might be Superficial if it lies next to the surface, or 

Outside otherwise. 

 

(a) (b) (c)  
Fig. 5  The advancing front enters holes, rendering Marching Cubes useless. 

The front, represented by grey circles, starts at the upper left corner in (a), 

moving down and to the right. In (b), the front has advanced up to the hole 

in the volume. By the time the front is exhausted, in (c), it has completely 

filled the space. By labeling all the visited points Outside, it is impossible to 

recover the correct surface. Although the hole is exaggerated here for the 

purposes of example, the same phenomenon is found with the smallest of 

imperfections in common PLM models.   

In addition, all points have a set of detected surface 

samples, each of which contains 2 pieces of information: 

their coordinates in the workspace, and the direction in 

which they were detected by the advancing front. The 

members of the starting front (e.g. the limits of the bounding 

volume) are inserted into a queue and set to Trial and 

Outside.   

 Algorithm 1 describes the iterative procedure that 

advances the front, labeling grid points as Outside or 
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Superficial as needed. For Superficial points, a set of 

corresponding 3D points is generated, one for each axis 

upon which the surface was detected. This set is attached to 

the grid point for use during the triangulation process.  

 
 Algorithm 1  Fast Marching Method adapted to recognize surface points 

Note that this surface detection algorithm refuses to enter 

closed volumes, but also recognizes non-volumic surfaces, 

and is therefore appropriate for any kind of geometrical 

model, polygon soup or otherwise.  

IV. TRIANGULATION 

Once the surface points are detected, they can be 

triangulated. Tessellation has been wildly studied, and there 

exists many algorithms in the literature that could be used. 

In particular, algorithms that tessellate point clouds would 

be appropriate [24, 25]. However, rather than dealing with 

the detected surface points as a point cloud (Fig. 6), we can 

exploit the known structure of data returned by the level-set 

method to achieve linear-time triangulation.  

(a) (b)

(d)(c)  
Fig. 6  Different interpretations of a point cloud. The unorganized point 

cloud in (a) could be interpreted in different ways. In (b) it represents two 

different objects, whereas in (c) it is only one. The cloud could even be two 

non-volumic surfaces, as in (d). 

A. Building a Graph 

For each surface point, we know the grid point from 

which the surface was detected by the advancing front, and 

in which direction. Given these two pieces of information, 

we can determine the neighboring surface points that the 

point under consideration should be connected to. By 

connecting each point to all its neighbors, we construct an 

undirected graph (Fig. 7).  

The graph representation defines a valid topological 

relationship between points in the cloud. Within the graph, 

each detected surface point is represented by a node. 

Therefore, a flat surface detected in multiple directions will 

have multiple nodes corresponding to the same coordinates 

in the workspace. In other words, the graph always 

represents a closed 2-manifold volume, rather than a 

polygon soup.  
a b

c d

e f

h

g

a b

c d

e f

g

h

 
Fig. 7  Graph building. There are 8 points detected on the surface of the box 

on the left. They are transposed onto the graph on the right, by connecting 

each point to its neighbors in the grid. By respecting the orientation of 

undirected edges, this graph completely describes the SV boundary. Note 

that a complete graph would surround a volume and not have boundary 

edges like in this example. 

B. Tessellation 

From here it is fairly easy to tessellate the graph. By 

following the elementary cycles that do not contain any 

others, we construct a simple convex loop (of up to 6 points) 

that can be easily triangulated. For example, in Fig. 7, nodes 

c, d, f, and e form such a cycle. The algorithm terminates 

when there are no such cycles left. 

With this algorithm, all objects (including those detected 

to have strictly planar sections) are implicitly tessellated as 

closed polyhedra (although duplicate polygons could be 

filtered to preserve single-sided planar geometry). In 

addition, all triangles are oriented to face out of the object. 

C. Degeneracies 

There are two possible degeneracies that can be created 

by this process. First, a node that is connected to a neighbor 

by 2 opposing directions corresponds to a non-manifold 

edge. Secondly, a node that is connected to a neighbor by all 

directions corresponds to an isolated line segment or single 

point.  

Since these degeneracies are so easily detected, they can 

be removed and the edges re-worked around them before the 

triangulation process is launched. 

V.  ANALYSIS OF ALGORITHM 

To ease the following discussion, we will assume that a 

cubic bounding volume of size L3 is divided into M grid 

points along each axis and that there are n surface points 

detected. Moreover, there is a total of p triangular 

while front is not empty 

  P = pop(front) 

  state(P) = Known 

  for each neighbor Q of P: 

   u = state(Q) is not Known 

s = membership(Q) is Superficial 

if u or sthen 

    dir = direction from P to Q 

    dist = edge_length(P, Q) 

    if slice_width(dir) > dist then 

     membership(Q) = Outside 

     state(Q) = Trial 

     push(front, Q) 

    else 

     p = generate_3D_point(P, dir, dist) 

     push(detected_surfaces(P), p) 

     membership(P) = Superifical 

    end if 

   end if 

  end foreach 

end while 
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primitives, the product of the number of samples and the 

number of triangles in the object.  

A. Computational Complexity 

1) Constructing Bounding Volume 

To create the bounding volume, we must pass by each 

primitive three times, a complexity of O(p). 

2)  Gathering Distance Fields 

Like Kim et al. [19], we will analyze the performance of 

distance field generation as proportional to the number of 

primitives sent to the GPU for rendering. We draw the 

primitives for each of 6 slicing directions and each of M 

slices. The size of the grid has an additional effect on both 

rendering and read-back performance. The complexity is 

thus O(M3 + Mp).  

3) Advancing Front 

The level-set method shows performance proportional to 

the size of the grid, or O(M3).  

4) Tessellation 

Although, for simplicity, we presented the tessellation 

process in two steps– first building the graph, then 

enumerating the cycles– it is possible to combine the two. 

Starting at one detected surface point, we triangulate all of 

the cycles that it corresponds to. By marking the grid points 

that we pass by so as to avoid regenerating the same cycles 

more than once, we can demonstrate algorithmic complexity 

proportional to the number of primitives. Since a cycle can 

link no more than a small number of points, triangulating 

can be done in constant time. The complexity is therefore 

O(n).  

5) Total Complexity 

Taking all the steps into account, the total computational 

complexity of our SV algorithm is O(M3 + Mp + n). Since  n 

is upper bounded by 6M3, we can further simplify the 

complexity relation to O(M3 + Mp). 

For comparison, the complexity of the method proposed 

by Kim et al. [19] can be expressed as O(M3 + g + T), where 

g is the number of triangles in the ruled and developable 

surface tessellation, and T is the number of rendered 

triangles. Since they cull triangles so as to render them only 

for the slices that they occupy, T is likely to be much smaller 

than Mp in the average case. On the other hand, g is 

dependant on the given error bound, and thus difficult to 

predict and compare to our method. 

B. Error 

There are two potential sources of sampling error in our 

approximation algorithm: the distance fields and the 

trajectory. We are able to control both of them with the same 

parameter. There is an additional error related to hardware, 

since the GPU depth buffer is used to calculate the distance 

fields, and so precision is limited by the width of the buffer 

(modern GPUs have at least 32 bits). 

1) Distance Field Error 

Consider sampling an object that doesn’t move. Given 

that a measurement is taken M times along each axis of 

length L., let S = L / M, i.e. the length of one side of one 

cubic cell within the grid. 

Between the grid lines, no measurements are taken. 

Therefore the error is limited to the possible distance the 

surface could move within the grid cell, which is equal to S 

(Fig. 8).  

S

S

 
Fig. 8  Distance field sampling error. In the worst case, the actual SV 

boundary (heavy line) could fluctuate wildly between the grid points. The 

inaccuracy of the resulting approximation (dashed line) is limited by the 

size of the grid cell, S. 

2) Trajectory Sampling Error 

As described in Section II, we can guarantee that no point 

on the object traces a path longer than û between two 

sampled configurations. Assuming that the point is detected 

at both configurations, the farthest it could move from the 

detected surface is û / 2.  

3) Total Sampling Error 

We now take both sources of error into account. In the 

worst case, the surface will be sampled at a distance S from 

its real location. In addition, between the two sampled 

configurations, the surface will have moved û / 2. The 

resulting effect is the sum of the two: 0 = S + û / 2.  

With this simple relation, the user has the possibility to 

adjust the speed and memory use of the algorithm while 

staying within a global error bound. 

VI. EXPERIMENTAL RESULTS 

A. Implementation 

We implemented the SV algorithm in C++, with graphic 

routines in OpenGL. It is designed as a module for Kineo 

Path PlannerTM, and benefits from its stable implementation 

of the bounded move operator.  Since we use only very basic 

graphic card functionality, any 2nd generation GPU 

supporting z-buffer and frame-buffer readback suffices. 

B. Results 

All tests are conducted on a Intel Pentimum 4 PC running 

at 2 GHz with 1GB RAM. The GPU is a nVidia Quadro FX 

500 with 128 MB memory. The operating system is 

Windows XP SP2. 

We used 3 models for testing (Table I). All came from 

actual PLM cases encountered by Kineo CAMTM. The 

performance results are shown in Table II. To illustrate the 

interplay between the two user-definable parameters, û and 

0, the Exhaust Model is expanded across multiple 

resolutions and bounded distances.  

The visual quality of the SV mesh is quite high, and 

suitable for PLM purposes (Fig. 9). However, the triangle 
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count of the SV is also important, and so in our application 

we pass the generated SVs directly through a simplification 

procedure, such as the vertex decimation algorithm 

presented in [26].  
TABLE I  

TEST MODELS 

Model # Triangles 

Seat 30765 

Exhaust 32641 

Human 55632 

 

Despite their appearance, none of the test models are 

watertight 2-manifold meshes. To further demonstrate the 

applicability of our algorithm to non-volumic geometry, we 

sweep a simple flat surface in Fig. 10.  

Videos corresponding to these examples are available at 

http://www.laas.fr/gepetto 

VII. CONCLUSION AND FUTURE WORK 

Our SV approximation algorithm successfully deals with 

real challenges posed by PLM, including disassembly and 

ergonomic studies. Its fast execution allows for rapid 

analysis of the given paths and for subsequent collision 

detection and path-planning requirements. By relaxing the 

requirements of watertight 2-manifold geometry, no pre-

processing is needed to handle arbitrary CAD models. 

There are several areas for future work. The intermediate 

graph data structure, representing a volumic mesh, could 

have potential for manipulating the object before it takes on 

polygon soup form. Even algorithms that require closed 

watertight geometry could be run at this point. 

In addition, we would like to consider introducing sub-

sampled points when feature geometry is detected, as is 

done by algorithms such as EMC. By clever use of surface 

normals and local grid refinement, we could extend the 

algorithm to achieve lower error bounds without resorting to 

global refinement of the grid. 
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TABLE II 

 PERFORMANCE AND ERROR OF TESTS 

Parameters Performance (s) 
Model 

M û 

0 

Sampling 
Distance 

Field 
Front Tessellation TOTAL 

Exhaust 64 50 38.455 0.030 17.328 3.266 3.500 24.125 

Exhaust 64 25 25.955 0.630 34.875 2.921 2.766 41.192 

Exhaust 128 50 31.727 0.032 35.249 22.547 17.328 75.156 

Exhaust 128 25 19.227 0.062 68.358 22.61 12.922 103.952 

Exhaust 256 5 5.864 0.297 669.664 1016.33 70.874 1757.165 

Seat 128 12 13.915 0.469 143.109 18.218 15.297 177.093 

Human 128 13 13.254 1.295 170.469 59.765 9.875 241.404 

 

Trajectory Begin Trajectory End SV Transparent SV Solid 

  

 
  

Fig. 9  Visual quality of SV calculations on PLM extraction scenarios. For each of the three benchmark models (Exhaust, Seat, and Human) we display the 

result of our SV calculation. The first two columns illustrate the beginning and ending of the trajectory, which has been generated by a path planning 

procedure to extract a certain part from an assembly. The third column shows the SV as a blue transparent mesh, containing the swept model inside it (note 

the in the Human case the SV includes the virtual mannequin itself). The SV is shown by itself as a solid mesh in the last column. Videos corresponding to 

these examples are available at http://www.laas.fr/gepetto 

    
Fig. 10  Flat surface example. The surface with two holes (first) is first swept along its own plane, and then orthogonally (second). The resulting SV (viewed 

from bottom in third, side in fourth) displays the volume generated by the vertical  motion as well as the flat surface generated by the horizontal  movement.  
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