
Fixed-lag Sampling Strategies for Particle Filtering SLAM

Kristopher R. Beevers and Wesley H. Huang

Abstract— We describe two new sampling strategies for
Rao-Blackwellized particle filtering SLAM. The strategies,
called fixed-lag roughening and the block proposal distribu-
tion, both exploit “future” information, when it becomes
available, to improve the filter’s estimation for previous
time steps. Fixed-lag roughening perturbs trajectory sam-
ples over a fixed lag time according to a Markov Chain
Monte Carlo kernel. The block proposal distribution di-
rectly samples poses over a fixed lag from their fully joint
distribution conditioned on all the available data. Our
experimental results indicate that the proposed strategies,
especially the block proposal, yield significant improve-
ments in filter consistency and a reduction in particle
degeneracies compared to standard sampling techniques
such as the improved proposal distribution of FastSLAM 2.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) algo-
rithms based on particle filters have gained exceptional
popularity in the last few years due to their relative
simplicity, computational properties, and experimental
successes. However, recent work such as that by Bai-
ley et al. [2] and others has shown that particle filtering
SLAM algorithms are susceptible to substantial estima-
tion inconsistencies because they generally significantly
underestimate their own error. In large part this is due
to degeneracies in the particle filter sampling process.

A particle filter for SLAM represents the posterior
distribution of the robot’s trajectory using a set of
samples, or “particles.” Conditioned on each particle
is a map, estimated using a series of small extended
Kalman filters for each landmark. At each time step,
particles are extended according to a motion model and
maps are updated based on sensor observations. The
particles are weighted according to the likelihood of
the observations given the sampled poses and previ-
ous observations. Finally, particles are resampled (with
replacement) according to to their weights in order to
give more presence to highly-weighted trajectories.

Particle degeneracies occur when the weights of par-
ticles in the filter are highly skewed. In this case, the
resampling step selects many copies of a few highly
weighted particles. Since resampling is repeated often,
the sampled poses representing past portions of the
robot’s trajectory tend to become degenerate (i.e., all or

K. Beevers is with the Department of Computer Science, Rens-
selaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.,
beevek@cs.rpi.edu

W. Huang is with Applied Perception, Inc., 220 Execu-
tive Drive, Suite 400, Cranberry Township, PA 16066, U.S.A.,
wes@appliedperception.com

mostly all identical) so that they insufficiently encode
uncertainty in the estimation. These degeneracies can
have significant consequences if the robot revisits the
poorly estimated region, such as when closing a loop.

In this paper we describe two new sampling strate-
gies for particle filtering SLAM, inspired in part by the
tracking literature [7], [6], which improve the consis-
tency of the filter’s estimation and the diversity of the
trajectory samples. The first approach, termed fixed-lag
roughening, incorporates a Markov Chain Monte Carlo
(MCMC) move step, perturbing pose samples over a
fixed lag time according to an MCMC kernel to combat
particle degeneracy. The second technique employs a
block proposal distribution which directly samples poses
over a fixed lag time from their fully joint distribution
conditioned on all of the available data. The main idea
behind both methods is to exploit “future” informa-
tion to improve the estimates of past portions of the
trajectory, in the sense that the information becomes
available only after initial estimation of the poses.

The new sampling techniques lead to significant re-
ductions in estimation error over previous approaches.
For example, in our experiments, estimation error us-
ing fixed-lag roughening was as little as 30% that of
FastSLAM 2 on average, and error using the block
proposal was as little as 12%, both at the expense of
a constant factor increase in computation time. Fur-
thermore, trajectory samples from the block proposal
exhibit better diversity than those from FastSLAM 2,
with the filter maintaining multiple samples over most
of the pose history for reasonably long trajectories.

The primary complication of both approaches is in
designing and drawing from the sampling distributions
— i.e., the MCMC kernel for fixed-lag roughening, and
the fully joint pose distribution for the block proposal.
This paper describes the main highlights, but some of
the details of the distribution derivations are provided
in a companion technical report [4] to conserve space.

In the next section we formally introduce particle
filtering SLAM and the consistency issue, and describe
previous work on improving consistency and particle
diversity. We introduce fixed-lag roughening in Sec-
tion III and the block proposal distribution in Sec-
tion IV. Section V presents the results of experiments
comparing our techniques to previous approaches.

II. PARTICLE FILTERING SLAM

The simultaneous localization and mapping (SLAM)
problem is for a robot to concurrently estimate both

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThC1.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2433

a map of the environment and the robot’s pose with
respect to the map. We consider the map to consist of
a set of parameterized landmarks and treat SLAM as a
state estimation problem, with the goal of recovering
the map xm = [xm

1 . . . xm
n]T and the robot’s time-

dependent trajectory xr
1:t through the environment. At

each pose the robot executes a control command (i.e.,
motion) according to the control input ut. It then
acquires an observation (or set of observations) zt from
its sensors and computes correspondence variables nt

mapping observations to landmarks in the map.
The goal of SLAM is therefore to estimate the PDF:

p(xr
1:t, xm|u1:t, z1:t, n1:t) (1)

In Rao-Blackwellized particle filtering (RBPF), the pos-
terior (1) is factored under certain independence as-
sumptions [11] to obtain:

p(xr
1:t|u1:t, z1:t, n1:t)

︸ ︷︷ ︸

trajectory posterior

n

∏
i=1

p(xm
i |x

r
1:t, z1:t, n1:t)

︸ ︷︷ ︸

landmark i posterior

(2)

The posterior over trajectories is estimated nonpara-
metrically using N samples (“particles”). Conditioned
on the sampled values, landmarks are independent,
and each is estimated separately, typically by a small
constant-size extended Kalman filter (EKF).

The estimation of the trajectory posterior by samples
is done using sequential importance sampling with
resampling (SISR), or “particle filtering”. The basic idea

is to employ for each particle φi
t =

{

xr,i
1:t−1, xm,i

}

a

motion model p(xr
t |x

r,i
t−1, ut) as a proposal distribution to

project the robot state forward by sampling, i.e.:

xr,i
t ∼ p(xr

t |x
r,i
t−1, ut) (3)

Once every particle is projected forward, the posterior
p(xr

1:t|u1:t, z1:t−1, n1:t−1) is represented by the particles.
Next, the samples are weighted according to the

sensor measurement likelihood, i.e.:

ωi
t = ωi

t−1 p(zt|x
r,i
t , nt, xm,i

nt
) (4)

Finally, the particles are resampled according to the
weights to obtain a representation of (1).

An important issue in particle filtering SLAM is the
consistency of the SLAM filter. A filter is inconsistent
if it significantly underestimates its own error, which
can lead to divergence of the filter estimate from the
truth. Bailey et al. [2] have shown experimentally that in
general, current particle filtering SLAM algorithms are
inconsistent. This is in large part due to degeneracies
caused by frequent resampling such that most samples
become identical for much of the robot’s trajectory.

A. Related work

Several researchers have addressed consistency in
the context of RBPF SLAM; we describe two well-known
approaches and a third recent development.

1) Improved proposal distribution: For robots with very
accurate sensors such as scanning laser rangefinders,
the measurement likelihood in (4) is highly peaked.
Thus, the proposal distribution (3) samples many robot
poses that are assigned low weights, so only a few
samples survive the resampling step. This can quickly
lead to particle degeneracies.

An alternative is to incorporate the current sensor
measurement zt into the proposal distribution, i.e.:

xr,i
t ∼ p(xr

t |x
r,i
1:t−1, u1:t, z1:t, n1:t) (5)

Using this approach, many more samples are drawn
for robot poses that match well with the current sensor
measurement and particles are more evenly weighted,
so more particles are likely to survive resampling. This
“improved proposal distribution” has been used in
both landmark-based SLAM [11] (FastSLAM 2) and in
occupancy grid scan-matching SLAM [8].

2) Effective sample size: The basic particle filtering al-
gorithm resamples particles according to their weights
at every iteration. It can be shown that if the weights
of particles are approximately the same, resampling
only decreases the efficiency of the sampled represen-
tation [9]. The effective sample size is a useful metric
to determine whether resampling is necessary [10].

It can be approximated as: N̂eff = 1/ ∑
N
i=1

(
ωi

t

)2
. If

the effective sample size is large, say, N̂eff > N/2,
resampling is undesirable since the PDF over robot
trajectories is well represented. This technique was first
applied to SLAM by Grisetti et al. [8].

3) Recovering diversity through stored state: The pre-
ceding methods focus on preventing loss of particle
diversity. Another approach is to attempt to “recover”
diversity. Stachniss et al. [12] store the “state” of the
particle filter upon detecting the robot’s entry into a
loop. After repeatedly traversing the loop to improve
the map (a process normally resulting in loss of di-
versity), the filter state is restored by splicing the loop
trajectory estimate onto each saved particle, effectively
restoring the diversity of the filter prior to loop closing.

III. FIXED-LAG ROUGHENING

Resampling leads to degeneracies because multiple
copies of the same highly-weighted particles survive.
In this section we describe a modification of the particle
filter sampling process that incorporates “roughening”
of the sampled trajectories over a fixed lag so that
the posterior over trajectories is better estimated. A
similar approach termed “resample-move” has been
described in the statistical literature in the context of
target tracking [7], [6], and has been mentioned (but
not pursued) in the context of SLAM by Bailey [1].

The basic idea is to incorporate a post-SISR Markov
Chain Monte Carlo (MCMC) step to “move” the tra-
jectory of each particle over a fixed lag time L after
the usual RBPF update is complete. Specifically, for

ThC1.4

2434

each particle φi
t, i = 1 . . . N, we sample xr,i

t−L+1:t ∼
q(xr

t−L+1:t), where q is an MCMC kernel with invariant
distribution p(xr

t−L+1:t|u1:t, z1:t, n1:t). After the move,
the particles are still distributed according to the de-
sired posterior but degeneracies over the lag time L
have been averted. Furthermore, some “future” infor-
mation is used in drawing new values for previously
sampled poses. The samples are already approximately
distributed according to the desired posterior before
the move, so the usual burn-in time of MCMC samplers
can be avoided. The MCMC move can be repeated to
obtain better samples, although in our implementation
we only perform a single move at each time step.

There are two main difficulties in implementing the
approach. First, an appropriate kernel q and method
for sampling from it must be devised. Second, care
must be taken to avoid bias from counting the same
measurement twice, leading to a need for a simple
mechanism to manage incremental versions of the map.

A. Fixed-lag Gibbs sampler for SLAM

An effective approach for sampling from the joint
MCMC kernel q(xr

t−L+1:t) is to employ Gibbs sampling,
which samples each component of xr

t−L+1:t in turn from
its conditional distribution given the values of other
components. At a particular lag time k, the single-
component distribution is of the form:

xr,i
k ∼ p(xr

k|x
r,i
1:k−1,k+1:t, u1:t, z1:t, n1:t) (6)

This distribution can be manipulated to obtain:

p(xr
k|x

r,i
1:k−1,k+1:t, u1:t, z1:t, n1:t) ∝

∫

p(zk|x
r,i
k , nk, xm

nk
)p(xm

nk
|xr,i

1:k−1,k+1:t, z1:k−1,k+1:t, n1:t) dxm
nk

× p(xr
k|x

r,i
k−1, uk) p(xr

k|x
r,i
k+1, uk+1) (7)

The derivation is given in [4]. We employ the usual
Gaussian approximations of the terms in (7) to sample
each component of the trajectory in turn (again, see [4]).
The process is repeated for every particle to obtain N

samples {xr,i
t−L+1:t}, and then the maps of the particles

are updated conditioned on the new trajectories.

B. Incremental map management

To avoid bias the intermediate map estimate

p(xm
nk
|xr,i

1:k−1,k+1:t, z1:k−1,k+1:t, n1:t) used in (7) should
incorporate all available information except the mea-
surement zk from the time step being moved. Thus,
we store “incremental” versions of the map over the
lag time so that the intermediate map distributions
can be computed.1 To avoid storing multiple complete
copies of the map of each particle, the binary tree data
structure of log N FastSLAM [11] can be used to store
only the differences between maps from each time step.

1In our implementation, we store the map from time t − L and
the measurements zt−L+1:t. The intermediate map distributions are
computed on the fly by applying EKF updates to the map using the
observations from all but the kth time step.

C. Discussion

Note that (7) is nearly identical to the result of
similar manipulations of the improved proposal distri-
bution (5) as described by Montemerlo [11]. The main

difference is the “backward model” p(xr
k|x

r,i
k+1, uk+1)

since we are sampling a pose in the midst of the
trajectory rather than simply the most recent pose.

Note also that we do not reweight the particles after
performing the MCMC roughening step. This is because
the particles before the move are asymptotically drawn
from the same distribution as those after the move.

IV. BLOCK PROPOSAL DISTRIBUTION

An alternative approach is to draw new samples for
the last L poses directly from the joint “optimal block
proposal distribution,” i.e.:

p(xr
t−L+1:t|u1:t, z1:t, n1:t, xr,i

t−L) (8)

The basic idea is to sample from (8) at each time
step, replacing the most recent L poses of each particle
with the newly sampled ones. The result is a particle
filter that is “current” in that its samples are always
distributed according to the desired posterior (1) and
can be used for, e.g., planning, but which yields much
better samples since future information is directly ex-
ploited by the joint proposal. Thus, degeneracies in the
weights of particles are much less likely to occur. A
related technique was recently described by Doucet et
al. [6] in the general particle filtering context. One
can think of the standard improved proposal distribu-
tion (5) as a “1-optimal” version of the block proposal.

The main difficulty in employing the block proposal
is in drawing samples from the joint distribution (8).
Our approach relies on the factorization due to Chib [5]:

p(xr
t−L+1:t|u1:t, z1:t, n1:t, xr,i

t−L) =

p(xr
t |u1:t, z1:t, n1:t, xr,i

t−L)×

p(xr
t−1|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
t) × · · · ×

p(xr
t−L+1|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
t−L+2:t) (9)

Here, the typical term is:

p(xr
k|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
k+1:t)

∝ p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L) p(xr
k+1|x

r,i
k , uk+1) (10)

(See [4] for details.) The idea is to first filter forward over
the robot’s trajectory by computing the distributions

{p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L)} using alternating predic-
tion/update steps (e.g., with an EKF), and then sample

backward, first drawing xr,i
t ∼ p(xr

t |u1:t, z1:t, n1:t, xr,i
t−L),

and then sampling the poses from the preceding time
steps in reverse order using the distributions that arise
from substituting the sampled values into (10). This
process is repeated for every particle, and the maps
are updated conditioned on the sampled trajectories.

ThC1.4

2435

Once new samples have been drawn for {xr,i
t−L+1:t},

the particles are reweighted with the usual technique:

ωi
t = ωi

t−1

target distribution

proposal distribution
(11)

The optimal weight update can be shown [4] to be:

ωi
t = ωi

t−1 p(zt|x
r,i
1:t−L, u1:t, z1:t−1, n1:t) (12)

i.e., the update is proportional to the likelihood of the
current measurement using the forward-filtered pose
and map distribution.

A. Practical implementation

As with fixed-lag roughening, we implement the
necessary models as Gaussians in practice. Forward
filtering employs an EKF to compute the intermediate

distributions {p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L)}, and must be

performed separately for each particle φi, initialized

with a zero-covariance distribution centered at xr,i
t−L.

During forward filtering, a temporary version of
the map must be updated with the measurements from
each time step to obtain the correct forward-filtered
distributions. The ideal approach is to apply the EKF

to the full state vector [xr xm]T over the lag time.
An alternative which we have used (see [4]) is to
assume the landmarks are independent and apply the
usual RBPF updates to the landmarks during forward
filtering, inflated by the uncertainty of the intermediate
pose distributions computed by the EKF.

After forward filtering, samples are drawn for each
intermediate pose xr

k, for k= t . . . t−L+1. The first sam-
ple is drawn directly from the (approximately) optimal
forward-filtered distribution. The remaining samples
are conditioned on the poses drawn for succeeding
time steps by applying the same backward model as
for fixed-lag roughening. Again, see [4] for details.

B. Discussion

At first it may appear that the samples from the block
proposal are no different from those obtained with
fixed-lag roughening. In fact, while the samples are
asymptotically from the same distribution (the desired
posterior), those obtained from the block proposal are
generally better, because poses over the lag time are
drawn directly from the joint distribution that incor-
porates future information. In fixed-lag roughening,
poses are originally drawn using past and present
information only, then are gradually moved as future
information becomes available. Only by applying many
MCMC moves at each time step would the samples
obtained by fixed-lag roughening be as good as those
from the block proposal.

V. RESULTS

Our experiments compared FastSLAM 2, the fixed-
lag roughening (FLR) algorithm from Section III, and
the block proposal (BP) distribution from Section IV.

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

(a) Sparse environment

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

(b) Dense environment

Fig. 1. Simulated environments used to test the algorithms, consist-
ing of point landmarks placed uniformly at random. Solid dark lines
are ground truth trajectories, kept the same for all simulations. Light
gray lines depict typical uncorrected odometry estimates.

For the roughening and block proposal approaches we
tested the algorithms with several values for the lag
time L. All experiments used N = 500 particles and
resampling was performed only when N̂eff < N/2.

Our experiments were in simulation since comparing
the estimation error of the filters requires ground truth.
We assumed known data associations to prevent poor
correspondence-finding from influencing the compari-
son between filtering algorithms. Noise was introduced
by perturbing odometry and range-bearing measure-
ments. The observation model used σr = 5 cm and
σb = 0.3◦ with a sensing radius of 10 m, and the
motion model used σx = 0.12d cos θ, σy = 0.12d sin θ
and σθ = 0.12d + 0.24φ for translation d and rotation φ.

Experiments were performed in a variety of sim-
ulated environments consisting of point features. We
present results from two representative cases with ran-
domly placed landmarks: a “sparse” map with a simple
27 sec. trajectory (no loops) and a “dense” map with
a 63 sec. loop trajectory. The environments, ground
truth trajectories, and typical raw odometry estimates
are shown in Figure 1. All results were obtained by
averaging 50 Monte Carlo trials of each simulation.

A. NEES comparison

We begin by comparing the normalized estimation
error squared (NEES) [3], [2] of the trajectory estimates
produced by each algorithm. The NEES is a useful
measure of filter consistency since it estimates the
statistical distance of the filter estimate from the ground
truth, i.e., it takes into account the filter’s estimate
of its own error. For a ground truth pose xr

t and an
estimate x̂r

t with covariance P̂r
t (computed from the

weighted particles assuming they are approximately
Gaussian), the NEES is (xr

t − x̂r
t)(P̂r

t)
−1(xr

t − x̂r
t)

T . The
recent paper by Bailey et al. [2] gives more details about
using NEES to measure RBPF SLAM consistency.

We computed the NEES at each time step using
the current particle set. Figure 2 shows the resulting
errors from each of the algorithms. (To conserve space,
we present reduced versions of the plots here. Larger

ThC1.4

2436

Alg. NEESalg NEESalg/ NEESFS2

FS2
0

1000

0

2

FLR(1)
0

1000

0

2

FLR(5)
0

1000

0

2

FLR(10)
0

1000

0

2

BP(1)
0

1000

0

2

BP(5)
0

1000

0

2

BP(10)
0

1000

0

2

(a) Sparse environment

FS2
0

1000

0

2

FLR(1)
0

1000

0

2

FLR(5)
0

1000

0

2

FLR(10)
0

1000

0

2

BP(1)
0

1000

0

2

BP(5)
0

1000

0

2

BP(10)
0

1000

0

2

(b) Dense environment

Fig. 2. NEES (left column) and the ratio of NEES to that of FastSLAM 2
(right column) for each of the algorithms, versus the simulation time
on the x-axis. We use the abbreviations FS2, FLR(L), and BP(L) to
indicate FastSLAM 2, fixed-lag roughening with lag L, and block
proposal with lag L respectively.

versions can be seen in [4].) In the sparse environment,
NEES grows steadily for FS2 and FLR, and for BP

with small lag times. Increasing the lag time for FLR

has relatively little effect on NEES because “future”
information is exploited slowly (see Section IV-B). FLR’s
NEES is approximately 33% that of FS2 on average for
L = 5 and L = 10. On the other hand, increasing the
lag time for BP dramatically reduces NEES. The NEES

of BP(1) is roughly 73% that of FS2 on average; for
BP(5), 22%; and for BP(10), 12%. For the dense case the
results are similar. Note that FLR avoids degeneracies
(manifested as spikes in the NEES plots) by moving
particles after resampling. Interestingly, increasing L in
a dense environment appears to slightly increase the
NEES of FLR, a subject warranting further investigation.

Note that the range of the NEES plots is quite large
— none of the filters is truly consistent. (A consistent
filter over 50 Monte Carlo trials should have NEES

less than 3.72 with 95% probability [2].) While the
estimation error using fixed-lag roughening and the

Alg. N̂eff

FS2
1

500

FLR(1)
1

500

FLR(5)
1

500

FLR(10)
1

500

BP(1)
1

500

BP(5)
1

500

BP(10)
1

500

(a) Sparse environment

FS2
1

500

FLR(1)
1

500

FLR(5)
1

500

FLR(10)
1

500

BP(1)
1

500

BP(5)
1

500

BP(10)
1

500

(b) Dense environment

Fig. 3. N̂eff for each of the algorithms, versus the simulation time
on the x-axis.

block proposal is significantly reduced, these strategies
alone do not guarantee a consistent filter, at least with
reasonably small lag times. In fact it is likely that
guaranteeing consistent SLAM estimation (with high
probability) while representing the trajectory posterior
by samples requires drawing the full dimensionality of
the samples from a distribution conditioned on all the
measurements, e.g., with MCMC, since particle filtering
is always susceptible to resampling degeneracies de-
pending on the environment and trajectory.

B. N̂eff comparison

The effective sample size N̂eff is also a useful statistic
in examining filter consistency. If N̂eff is high, the
weights of particles are relatively unskewed, i.e., all
particles are contributing to the estimate of the trajec-
tory posterior. Furthermore, since N̂eff dictates when
resampling occurs, high values of N̂eff indicate less
chance for degeneracies in past portions of the trajec-
tory estimate because resampling occurs infrequently.

Figure 3 shows N̂eff as computed at each time step
in the simulations. In the sparse case, FLR exhibits no

ThC1.4

2437

significant improvement over FS2, but in the dense
environment FLR(5) and FLR(10) have about 72% higher
N̂eff than FS2 on average. Again, BP exhibits stronger
results, with BP(10) more than 1000% better than FS2 in
the dense case, and 340% better in the sparse case. This
can be attributed to direct use of future information by
the block proposal, which leads to better samples for
essentially the same reason FastSLAM 2’s samples are
better than those of FastSLAM 1.

C. Particle diversity

Finally, we examine particle diversity for each of the
filters. Figure 4 shows the variance of the pose histories
of all the particles, computed at the end of SLAM, along
with the number of unique particles representing each
pose. For all of the algorithms, the end of the trajectory
is better represented than earlier portions. FLR extends
the representation over the lag time but the typical
quick dropoff remains. BP avoids the loss of diversity
in the sparse case, maintaining non-zero variance over
most of the trajectory, as one would expect since little
resampling occurs due to the high effective sample
size. In a denser environment a significant amount of
resampling still occurs, reducing the benefit somewhat.

VI. CONCLUSIONS

We have described two new sampling strategies
for particle filtering SLAM. The first method, fixed-lag
roughening, applies an MCMC move to the trajectory
samples over a fixed lag at each time step. The second
approach, the block proposal distribution, draws new
samples for all poses in a fixed-lag portion of the
trajectory from their joint distribution. Both techniques
exploit “future” information to improve the estimation
of past poses. We have given overviews of the technical
details behind each approach; full details are in [4].

Our results show that the new algorithms lead to
substantial improvements in SLAM estimation. Fixed-
lag roughening and the block proposal yield samples
with lower statistical estimation error than those of
FastSLAM 2. Furthermore, samples drawn from the
block proposal tend to have much more uniform im-
portance weights, leading to less need for resampling
and consequently, improved particle diversity.

REFERENCES

[1] T. Bailey. Mobile robot localisation and mapping in extensive outdoor
environments. PhD thesis, Australian Center for Field Robotics,
University of Sydney, August 2002.

[2] T. Bailey, J. Nieto, and E. Nebot. Consistency of the FastSLAM
algorithm. In IEEE Intl. Conf. on Robotics and Automation, pages
424–427, 2006.

[3] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with
applications to tracking and navigation. Wiley, New York, 2001.

[4] K. Beevers. Sampling strategies for particle filtering SLAM.
Technical Report 06-11, Department of Computer Science, Rens-
selaer Polytechnic Institute, Troy, NY, 2006.

[5] S. Chib. Calculating posterior distributions and modal estimates
in Markov mixture models. Journal of Econometrics, 75(1):79–97,
1996.

Alg. Sample variance Unique samples

FS2
0

0.07

0

500

FLR(1)
0

0.07

0

500

FLR(5)
0

0.07

0

500

FLR(10)
0

0.07

0

500

BP(1)
0

0.07

0

500

BP(5)
0

0.07

0

500

BP(10)
0

0.07

0

500

(a) Sparse environment

FS2
0

2
x 10

−4

0

500

FLR(1)
0

2
x 10

−4

0

500

FLR(5)
0

2
x 10

−4

0

500

FLR(10)
0

2
x 10

−4

0

500

BP(1)
0

2
x 10

−4

0

500

BP(5)
0

2
x 10

−4

0

500

BP(10)
0

2
x 10

−4

0

500

(b) Dense environment

Fig. 4. Comparison of particle diversity. The plots shown here
are computed using the trajectory samples at the end of SLAM, i.e.,

{xr,i
1:t|u1:t, z1:t, n1:t}. On the left is the sample variance for each pose

in the trajectory, computed as trace(P̂r
t). On the right is the number

of unique samples representing each pose.

[6] A. Doucet, M. Briers, and S. Sénécal. Efficient block sampling
strategies for sequential Monte Carlo methods. Journal of Com-
putational and Graphical Statistics, to appear, 2006.

[7] W. Gilks and C. Berzuini. Following a moving target — Monte
Carlo inference for dynamic Bayesian models. Journal of the
Royal Statistical Society B, 63(1):127–146, 2001.

[8] G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-
based SLAM with Rao-Blackwellized particle filters by adaptive
proposals and selective resampling. In Proc. of the IEEE Intl. Conf.
on Robotics and Automation, pages 2443–2448, 2005.

[9] J. Liu. Monte Carlo strategies in scientific computing. Springer,
New York, 2001.

[10] J. Liu and R. Chen. Blind deconvolution via sequential imputa-
tions. Journal of the American Statistical Association, 90(430):567–
576, June 1995.

[11] M. Montemerlo. FastSLAM: a factored solution to the simultaneous
localization and mapping problem with unknown data association.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 2003.

[12] C. Stachniss, G. Grisetti, and W. Burgard. Recovering particle
diversity in a Rao-Blackwellized particle filter for SLAM after
actively closing loops. In Proc. of the IEEE Intl. Conf. on Robotics
and Automation, pages 667–672, 2005.

ThC1.4

2438

