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Abstract— This paper presents an architecture for the navi-
gation of an autonomous mobile robot evolving in an uncertain
environment with obstacles. The proposed strategy consists in
separating the path planning from the control algorithm. The
path planning is done by computing the time optimal collision-
free trajectory which takes into account the limitations on the
linear and angular speeds of the vehicle. The position and shape
of obstacles are computed by a vision algorithm using a single
camera. A saturated controller based on integral sliding mode is
designed to solve the tracking problem in the presence of input
saturations and of the unknown disturbances. The effectiveness,
perfect performance of obstacle avoidance, real-time and high
robustness properties are demonstrated by experimental results.

I. INTRODUCTION

In real-life environments such as roads or waterways,
vehicle use has led to critical problems with respect to cost
or safety. Due to the continuous development of sensors
and actuators technology, future vehicles might be able
to navigate autonomously. In these autonomous vehicles,
obstacle avoidance becomes an essential feature.

One difficulty for the control of car-like robots arises
from the so-called nonholonomic constraints imposed by the
rolling wheels. To safely navigate, the autonomous system
must have information about its environment [4], in order
to plan its trajectory and finally track it [12]. In this paper,
we will focus on the design and implementation of such
an architecture. The robot moves among two white lines (a
road) with a known distance between them while it avoids
static obstacles. The road and the position of obstacles are
not known in advance. The robot discovers them as it goes
along by using a single camera and infra-red sensors. The
overall approach consists of three steps (Fig. 1):

• Perception using a single camera. It is the process of
transforming measurements of the world into an internal
model (position of the obstacles and of the lane, current
configuration of the robot, . . . ). Stereo camera based
approaches are expressive enough by using geometrical
relationship between cameras but it may be confronted
with the matching problem in many cases [1]. Moreover,
regarding its costs and the small size of the robot used
for the experiments, a single camera is considered as
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more attractive. The proposed approach is based on the
camera calibration and geometrical relationship.

• Trajectory generation. It consists in generating a
collision-free trajectory from the initial to the final
desired positions by solving an optimal control problem
subject to dynamic constraints, boundary conditions,
trajectory constraints and actuator constraints. Motion
planning algorithm that concern obstacle avoidance has
been a long standing issue in Robotics. These efforts
have concentrated in determining the vehicle paths
through free space at the expense of neglecting dynamic
constraints or using a simplified version of them [11].
Most of the proposed approaches have theirs inherent
limitations. Here, we are interested in the real time
implementation of a well known solution based on a
direct method [2] and a B-Spline parametrization of the
flat outputs [14].

• Trajectory tracking. It consists in applying a real
time tracking controller to follow the planned trajectory.
Obstacles to the tracking of nonholonomic systems are
the uncontrollability of their linear approximation and
the fact that the Brockett’s necessary condition to the
existence of a smooth time-invariant state feedback is
not satisfied [3]. To overcome these difficulties, vari-
ous methods have been investigated: homogeneous and
time-varying feedbacks [16], sinusoidal and polynomial
controls [15], piecewise controls [8], backstepping ap-
proaches [9] or discontinuous controls [7]. However,
most of these methods do not provide good robustness
properties or do not take into account the important
saturation constraints on control inputs.
This objective will be achieved by using integral sliding
mode control [5], [17]. A drawback of the classical slid-
ing mode control is that the trajectory of the designed
solution is not robust on a time interval preceding the
sliding motion. Here, the design and integration of an in-
tegral sliding mode controller which takes into account
the saturation constraints on velocities are presented.

Fig. 1. Architecture of the autonomous navigation
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The main contribution of this paper is the integration of
a complete autonomous navigation architecture in a mobile
robot. The outline of this paper is as follows. The vision
algorithm is detailed in section II. Section III gives the
planning scheme. Then, the integral sliding mode controller
is presented in section IV. Finally, in section V, we present
the integration of the different modules and the experimental
results on a car-like robot.

II. VISION ALGORITHM

In our application, the sensors used to observe the sur-
roundings are infra-red sensors and a single video camera.
Note that the infra-red sensors provide information about the
presence of obstacles and the video camera is used in order to
extract the useful information for the motion planning phase
(positions of lane and obstacles).

A. Pre-processing : lane and obstacle detection

The first step is the extraction of various characteristic
points of the image which gives enough information for the
reconstruction of the scene. A suitable thresholding enables
to extract the white lanes from the image, and another
one allows to find the objects whose colors differ from
the one of the image background. Then, the morphological
filtering (morphological closing and morphological opening)
enables to eliminate some residual objects compared to the
thresholdings. Finally, the image labelling of the resultant
image enables to treat each object in a different way, and
thus to separate them from the image.

B. Reconstruction of the real scene

A 3D description of the world using a single image is
impossible without assumptions and calibration. In order to
associate each pixel of the image with the corresponding
point in 3D coordinates, the following assumptions are done:

• The road is flat
• The position of the camera is fixed on the robot. In

the robot coordinate system, the camera has a constant
coordinate (xc, yc, zc).

Since the road is assumed to be flat, the robot moves on a
surface where z = 0. Therefore, one will rather speak about
2D+ coordinates. Two spaces will be used:

• the 2D+ world space W = {x,y,0}, with x,y ∈ R,
• the 2D image space I = {i, j} with i, j ∈ N.

The camera calibration enables to have a view of the scene in
front of the robot by removing the perspective effect induced
by the acquisition conditions. Since the camera is fixed on the
robot, one can establish a relationship between the pixels of
the image acquired by this camera and the 2D+ coordinates
in the camera coordinate system. Then, by using elementary
geometrical transformations, it will be easy to compute the
2D+ coordinates in the real reference coordinate system.

(a)

(b)

Fig. 2. Camera calibration: lane detection

1) Lane detection : relationship between coordinates
(∆xP,∆yP) of a point of the road in the camera coordinate
system and image I: First, a correspondence grid is deter-
mined between:

• each ordinate ∆yk, k ∈ {1, . . .N} in the camera coordi-
nate system,

• each ordinate jk in I.
It is generated for the camera field of view by spacing
measurements in an equidistant way (see Fig. 2). Thanks to
this grid, the ordinate ∆yP can be determined by measuring
the ordinate jP of the associated point on image I. All lines
(i, jk)|k∈{1,...N} of length δ ik are associated with ∆x in W .
Therefore, one can easily deduce the abscise ∆xP of a real
point by applying: ∆xP = ∆xδ iP

δ ik
.

2) Obstacle detection : relationship between the position
(∆xo,∆yo) of the obstacle in the camera coordinate system
and image I: It is assumed that the shape of the obstacles
is known. As for the lane detection, a correspondence grid
is first determined between:

• the ordinate ∆yo of the position of the obstacle in the
camera coordinate system,

• the width of the objects in I

It is well known that the size of an object in I exponentially
decreases with respect to ∆yo. Then, the distance between
the center of the object and the camera axis in I provides
the position ∆xo of the obstacle (Fig. 3).

Fig. 3. Camera calibration: obstacle detection

3) Geometrical transformation: Knowing the position
(x,y) and the orientation θ of the robot, the coordinates of one
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Fig. 4. Geometrical transformation

point (xA,yA) in the real coordinate system can be expressed
with its coordinate (∆xA,∆yA) on the camera coordinate
system by (see Fig. 4):[

xA

yA

]
=

[
cosθ −sinθ
sinθ cosθ

][
∆xA

∆yA

]
+

[
x+ xc

y+ yc

]

III. MOTION PLANNING

Once a consistent world model is created in real time, a
trajectory which fulfills collision avoidance and computation
time constraint is generated.

A. Notations

The robot is represented by a disc located at center of mass
(x,y) and of radius r (Fig. 5). q = [x,y,θ ]T and U = [v,w]T

respectively denote the state variables and the control inputs
(linear and angular velocities). The kinematic equations of
the system under the nonholonomic constraint of pure rolling
and no slipping can be written as follows:

ẋ = vcosθ
ẏ = vsinθ
θ̇ = w

(1)

(a) (b)

Fig. 5. The car like robot

B. Perception and motion planning cycle

The proposed motion planning explicitly takes into ac-
count the real time constraint imposed by the environment.
The mobile robot, located in an unknown environment, has
a limited time to compute its desired trajectory. The time δ t
to make its decision depends on its real time environment.
The time ti (i ∈ N) of the updated environment depends on

Fig. 6. Perception and motion planning cycles

the information of the infra-red sensors. Indeed, when the
mobile robot detects an obstacle which may cause a collision,
using the infra-red sensors, a cycle of perception and motion
planning starts. A cycle (see Fig. 6), starting at time ti, is
described as follows:

1) Update the model of the environment by using a
camera, i.e. position (xo

m,yo
m) of the detected obstacles

(m = 1, . . .No, No is the number of detected obstacles)
and position of the detected lane. The obstacles are
assumed to be circular with radius ro

m.
2) Determine the feasible quasi-minimum time trajectory

based on sequential quadratic programming [13].
3) At time ti + δt , the current iteration is over. The best

feasible trajectory is selected.

C. Motion planning algorithm

The goal is to generate a feasible quasi-minimum time tra-
jectory that satisfies the environmental constraints: limits of
the lane, obstacle avoidance and also the physical constraints
due to the limitations on the velocities. The optimal control
problem is to find the control inputs which minimize:

J =
∫ t f

τi

dt, (2)

where the initial time is τ0 = 0, τi = ti + δ t and t f is the
unknown final time. The trajectory must join the known
states q(τi), q(t f ) and satisfies the constraints, ∀t ∈ [τi, t f ]:

C1 the control bounds:

|v| ≤ vmax − εv, |w| ≤ wmax − εw,

where εv and εw are positive control parameters. The
inclusion of these constants in the constraints of the
motion planning generator guarantees that there is
sufficient control authority to track the trajectory.

C2 the limits of the lane L :

(x,y) ∈ L

C3 the collision avoidance with the No detected obstacles:

∀m ∈ {1, . . . ,No},
√

(x− xo
m)2 +(y− yo

m)2 ≥ r + ro
m

Using the flatness property [6] of system (1), all system
variables can be differentially parameterized by x, y and a
finite number of their time derivatives. Indeed, θ , v and w
can be expressed by x, y and their first and second time
derivatives, i.e.

θ = atan
ẏ
ẋ
, v =

√
ẋ2 + ẏ2, w =

ÿẋ− ẍẏ
ẋ2 + ẏ2 . (3)
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Once the constraints C1-C3 are mapped into the flat output
space, the time optimal trajectory is planned in this space.
First, for each flat outputs i.e x and y, an initial guess
trajectory (xini(t) and yini(t)) which respects the boundary
constraints is computed.

Then, in order to transform the optimal trajectory genera-
tion problem into a parameter optimization one, a piecewise
polynomial function, B-spline, is adopted to approximate the
trajectory. B-Spline is the function defined by a series of
knots called control knots. In our study, the three-order B-
spline basis functions are used to parameterize the trajectory.
The time interval of [τi, t f ] is divided into P + 1 equal
segments with P+4 knots to be control knots:

q0 = q1 = τi < q2 < .. . < qP+2 = t f = qP+3 (4)

The trajectories of the flat outputs are defined as:

x(t) = xini(t)+∑P
j=1 a jB j,3(t),

y(t) = yini(t)+∑P
j=1 b jB j,3(t)

(5)

where a j, b j ∈R, P = {a1, . . . ,aP,b1, . . . ,bP} is the parame-
ter vector and B j,3 is the B-spline basis function computed
recursively as follows:

B j,0(t) =
{

1 if q j ≤ t < q j+1

0 otherwise

∀d ∈ {1,2,3}, (6)

B j,d(t) =
t −q j

q j+d −q j
B j,d−1(t)+

q j+d+1 − t

q j+d+1 −q j+1
B j+1,d−1(t)

Finally, let us consider the uniform time partition:

τi = η0 < η1 < .. .ηNsample−2 < ηNsample−1 = t f (7)

where Nsample is the number of sampled times. The optimal
control problem can be rewritten in a discrete way as follows:

min
P

(t f − τi) (8)

subject to: ∀m ∈ {1, . . . ,No} and ∀i ∈ {0, . . . ,Nsample −1}√
ẋ(ηi)2 + ẏ(ηi)2 ≤ vmax − εv,∣∣∣ ÿ(ηi)ẋ(ηi)−ẍ(ηi)ẏ(ηi)
ẋ(ηi)2+ẏ(ηi)2

∣∣∣ ≤ wmax − εw,

(x(ηi),y(ηi)) ∈ L√
(x(ηi)− xo

m)2 +(y(ηi)− yo
m)2 ≥ r + ro

m

(9)

The optimal coefficients P are computed using the CFSQP
optimization algorithm. To finish, the open loop control
inputs are deduced using equation (3).

IV. SLIDING MODE CONTROLLER FOR TRAJECTORY

TRACKING WITH SATURATION CONSTRAINTS

A. Formulation of the tracking problem

The reference trajectory (xr,yr,θr), generated by the mo-
tion planning algorithm fulfills the differential equation:

 ẋr

ẏr

θ̇r


 =


 cosθr 0

sinθr 0
0 1


[

vr

wr

]
(10)

where the desired velocities vr and wr satisfy:

|vr| ≤ vmax − εv, |wr| ≤ wmax − εw

By directly applying vr and wr, the robot does not follow the
reference trajectory with a good accuracy. It is obvious that
the real control v and w rely on the state measurements x, y
and θ . Due to measurement noise and modeling uncertain-
ties, there are input uncertainties for v and w. That is to say,
the real equation of the robot trajectory fulfills the following
differential equation:

 ẋ
ẏ
θ̇


 =


 cosθ 0

sinθ 0
0 1


[

v+δv

w+δw

]
(11)

where δv and δw represent the uncertainties. Due to satura-
tion constraints, it is assumed that:

|δv| < εv, |δw| < εw

Controls v and w must be designed such that system (11)
follows reference (10) in spite of the perturbations. In fact,
the goal is to asymptotically stabilize the tracking errors ex =
xr − x, ey = yr − y and eθ = θr −θ to zero while respecting
the following constraints:

| v |≤ vmax, | w |≤ wmax. (12)

Transforming the tracking errors expressed in the inertial
frame to the robot frame, the error coordinates can be
denoted as:

 e1

e2

e3


 =


 cosθ sinθ 0

−sinθ cosθ 0
0 0 1





 ex

ey

eθ


 .

Accordingly, the tracking-error model is represented by:
 ė1

ė2

ė3


 =


 vr cose3

vr sine3

wr


+


 −1 e2

0 −e1

0 −1


[

v+δv

w+δw

]
.

So, the tracking dynamics can be described as

ė = f1(e)+ f2(e)(U +δ ) (13)

with e = [e1,e2,e3]T , U = [v,w]T and δ = [δv,δw]T .

B. Integral sliding mode controller

For system (13), the control law is defined as follows:

U = U0 +U1. (14)

U0 is the ideal control and U1 represents the ISM part
which is designed to be discontinuous in order to reject the
perturbation.

The first part of the control design is to find a saturated
control law U0 such that the nominal system ė = f1(e) +
f2(e)U0 is globally asymptotically stable. The chosen control
law U0 has been developed by Jiang in [10]. The motivation
for such a choice is that this design takes into account the
actuator bounds. It is described by:

U0 =

[
v0 = vr cose3 +λ3 tanhe1

w0 = wr + λ1vre2
1+e2

1+e2
2

sine3
e3

+λ2 tanhe3

]
(15)
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Note that the positive parameters λ1, λ2 and λ3 can be
designed such that the bounds of the controls are met for
our controllers. Indeed, it can be seen that:

|v0| ≤ vmax +λ3, |w0| ≤ wmax +
λ1vmax

2
+λ2

Remark 1: One can note that using only controller (15),
the robustness performance is not good enough. Therefore, in
order to improve the robustness properties, a discontinuous
term based on integral sliding mode control is added to this
existing controller.

Let define the sliding variable s as:

s = [s1,s2]
T = s0(e)+ z. (16)

where
s0(e) = [−e1,−e3]

T ,

ż = − ∂ s0
∂e ( f1(e)+ f2(e)U0),

z(0) = −s0(e(0))
(17)

Here, z induces the integral term and provides one more
degree of freedom in the sliding variable design. Initial
condition z(0) is determined such that the sliding variable
always satisfies s(0) = 0. Hence, the controlled system slides
on the sliding surface {s = 0} from the initial time instant
without any reaching phase.

Based on the following Lyapunov function candidate,
V = 1

2 sT s, the discontinuous control term can be determined
such that V̇ < 0, guaranteeing the attractivity of the sliding
manifold.

V̇ = sT
(

∂ s0

∂e
ė− ∂ s0

∂e
( f1(e)+ f2(e)U0)

)

=

([
∂ s0

∂e
f2(e)

]T

s

)T

(U1 +δ ) < 0

The above condition holds if:

U1 =
[ −M1sign(s1)

−M2sign(−e2s1 + s2)

]
(18)

with M1 > δv + µ and M2 > δw + µ (µ > 0).

Remark 2: The trajectory evolves on the manifold s = 0
from t = 0 and remains there in spite of the perturba-
tions. The time derivative of the sliding variable is ṡ =
∂ s0
∂e (ė− f1(e)− f2(e)U0) = 0. Therefore, the motion equation

in sliding mode is ė = f1(e) + f2(e)U0 which is globally
asymptotically stable.

Remark 3: The control gains can be designed such that the
bounds on the control inputs are satisfied. In order to design
these constants, a compromise must be found between the
optimality, the performance and the robustness with respect
to perturbations.

V. EXPERIMENTAL RESULTS

A. Experimental setup

The proposed motion planning and control algorithms
were implemented on the mobile robot Pekee manufactured
at Wany Robotics company. An Intel 486 micro-processor

running at 75MHz operating under linux real time hosts
the integral sliding mode controller written in C. Pekee is
equipped with 15 infra-red telemeters sensors, two encoders,
a WiFi wireless cartridge and a miniature color vision camera
C-Cam8. The vision camera is fixed in the robot coordinate
system (xc,yc,zc) = (0,0,0.25). The maximum linear and
angular speeds are respectively equal to vmax = 0.35m/s
and wmax = 0.8rad/s. The computing time δ t including the
image processing and the motion planning algorithm is about
five minutes on the embedded 75MHz PC. In order to
decrease the computing time, we used the socket protocol
communication and Wifi. The image data are sent to a
Pentium IV 1.7GHz PC for the image processing and for
the generation of the time optimal trajectory. This protocol
enabled to reduce the computing time δ t to 3s.

B. Experimental results

The following parameters are chosen for the motion plan-
ning algorithm (4)-(9): P = 10, εv = 0.5m/s, εw = 0.2rad/s,
Nsample = 100. The integral sliding mode controller parame-
ters are set to λ1 = 0.2, λ2 = 0.1, λ3 = 0.4, M1 = 0.1 and
M2 = 0.1.

The map of obstacles of radius 0.3m, given in Tab. I, is
not initially known and will be discovered during the robot
movement. In Tab. I, the positions of detected obstacles are
given. One can see that the image procession module gives
good results. The initial and final configurations of the robot
are given in Tab. II. The two white lines of the lane are
straight and fulfill equations x = 0 and x = 10.

TABLE I

POSITIONS OF OBSTACLES

Real positions
xo

1 = 5.45m xo
2 = 4.80m xo

3 = 5.30m
yo

1 = 0.90m yo
2 = 2.40m yo

3 = 5.45m

Detected positions
xo

1 = 5.39m xo
2 = 4.77m xo

3 = 5.24m
yo

1 = 1.00m yo
2 = 2.35m yo

3 = 5.49m

TABLE II

TERMINAL CONFIGURATIONS OF THE ROBOT

x(0) = 5m y(0) = 0m θ(0) = π/2rad
x(t f ) = 5m y(t f ) = 8m θ(t f ) = π/2rad

Fig. 7 depicts the planned and executed trajectories in the
unknown map. First, the robot visualizes the scene and ap-
plies the image processing. Obstacles O1 and O2 are detected.
In order to take into account the image processing errors
and for safety consideration, the radius of these obstacles is
increased by 0.3m (dotted lines around obstacles). According
to the detected obstacles, a collision free trajectory using the
motion planning generator is planned (see Fig. 7.a). Then, the
integral sliding mode controller enables to track the desired
trajectory in spite of uncertainties and errors. During the
execution, the robot may detect possible obstacles using its
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infra-red sensors. These sensors inform if there are obstacles
in its planned trajectory. If an obstacle is detected (see Fig.
7.a), a new perception and motion planning cycle begins
while the robot moves from A1 to A2. When the robot reaches
at A2, the robot tracks the new planned trajectory (see Fig.
7.b).
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Fig. 7. Actual trajectory of the mobile robot
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Fig. 8. Apply control inputs v and w

VI. CONCLUSIONS AND FUTURE WORK

An architecture to the navigation of an autonomous mobile
robot evolving in an uncertain environment with obstacles

is proposed. The perception algorithm provides an accurate
localization of the lane and the detected obstacles. Then,
the planning algorithm generates a time optimal feasible
trajectory. Finally, an integral sliding mode controller is
presented in order to provide high robustness properties. Our
architecture was implemented on a robot and provides real
time, high robustness properties and good performance for
obstacle avoidance.
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