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Abstract— One of the most important problems in Mobile
Robotics is to realize the complete robot’s autonomy. In order
to achieve this goal several tasks have to be accomplished.
Among them, the robot’s ability to localise itself turns out to
be critical. The research community has provided, through the
years, different methodologies to face the localisation problem,
such as the Kalman Filter or the Monte Carlo Integrations
methods. In this paper a different approach relying on a
specialisation of the genetic algorithms is proposed. The novelty
of this approach is to take advantage of the complex networks
theory for the spatial deployment of the population to more
quickly find out the optimal solutions. In fact, modelling the
search space with complex networks and exploiting their typical
connectivity properties, results in a more effective exploration
of such space.

I. INTRODUCTION

Reliable pose information is fundamental to achieve the
complete autonomy of a mobile robot moving in a known
environment. The localisation problem aims to estimate the
robot’s pose using data coming from sensors: noisy data and
unpredictable interactions with the environment itself makes
the problem considerably difficult.

Localisation is usually divided into three different research
problems: position tracking, global localisation, and kidnap.
The majority of the works in literature is based on the
probabilistic framework that recursively update a probabil-
ity distribution, called Belief, over all space points in the
environment. In this framework the position tracking, i.e.,
estimating the robot’s pose with a prior knowledge about the
initial robot’s location, can be solved by the Kalman Filter
approach [1].

Global Localisation is the problem of estimating the
robot’s pose without benefit of a priori knowledge of initial
robot’s location. This lack of knowledge makes the problem
even more difficult as environmental ambiguities have to
be carefully considered in order to successfully determine
the robot’s pose from scratch. The Kalman Filter approach,
unimodal in nature, cannot be successfully applied in this
case due to the necessity of tracking multi-hypotheses. Re-
laxing the Gaussian assumption, other probabilistic global
techniques have been proposed. For instance, in [2] a grid-
based discretisation of the state space has been used to
approximate a more complex set of distributions. However,
it suffers from excessive computational overhead [3]. A
more promising approach is based on sequential Monte
Carlo integration methods [4] that use a set of random
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weighted samples (particles) to approximate the probability
distribution. The advantage is clearly in the possibility of
representing a large number of probability distributions, but
a very high number of particles have to be used to get a
better approximation.

A last problem arises when considering the kidnapping of
a well localised robot. New data may indicate a completely
different position, and algorithms should manage several
hypotheses in order to properly recover the robot’s pose.
Unfortunately, Monte Carlo integration methods suffer from
degeneracy problem, i.e., the problem of having most of the
particles with a negligible weight after few iterations [5].
Therefore the possibility to maintain multi-hypotheses is no
longer guaranteed.

A possible solution to all three problems has been pro-
posed in [6]. Here, a spatial clustering procedure along with a
genetic algorithm has been proposed. In particular, the former
is used to smartly partition the population set, while the latter
is applied within each subset in order to more quickly find
out local minima.

In this paper, moving from the experiences of [6], a new
approach, based on spatially structured genetic algorithms
(SSGA) [7], will be presented. A genetic algorithm for
mobile robot localisation can be already found in [8]. Here,
an integration between an EKF with a genetic optimisation
filter is proposed. At each time-step, the EKF is used to
predict the new state and to determine the new search radius
where the genetic optimisation filter is applied to improve the
estimate. Conversely, the approach proposed by the authors
relies on the fact that the introduction of spatial structures in
evolutionary algorithms helps to create evolutionary niches
that can be regarded as regions which preserve solutions
that could be useful in the future [9]. In particular, the
proposed spatial structure is obtained by means of some
complex networks: the Watts-Strogats [10] model and the
scale-free Barabási-Albert model [11]. These models show
some peculiarities from a topological point of view, for
example, the small world property.

In section II a review of the two models is reported along
with an SSGA introduction. The influence of a network
structure, which is also analysed in [12], will be discussed
in detail in section III, where a new competition rule be-
tween individuals will be introduced together with a kidnap
recognising procedure. In section IV some experimental
results, obtained with a mobile robot moving in a real
environment, will be shown to demonstrate the effectiveness
of our approach.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrD1.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4277



II. THEORETICAL BACKGROUND

A. Complex Networks

Complex Networks are graphs of nodes or vertices con-
nected by links or edges, currently used to describe many
natural or artificial systems: the brain, for instance, can be
modeled as a network of neurons, and the Internet as a
complex network of routers and computers linked by several
physical means.

From the beginning, complex networks have been investi-
gated by the graph theory community, who proposed several
models, such as regular and random graphs; since then
several other communities have been interested in this topic.
Today, a main research issue is to figure out the relationship
between structural and dynamic properties of the networks.

Regular graphs, introduced to describe systems made of
a limited number of nodes, were revealed to the research
community to be inadequate with the appearance of large-
scale networks. This has lead the community to focus their
attention on random graphs.

According to [13], once the probability p of having a
connection among pairs of nodes is fixed, a random graph
with N nodes and about pN(N−1)/2 links, can be obtained
randomly selecting a pair of nodes and linking them with
such probability p. This model has been extensively used
since particular properties of complex networks, such as
the small-world property or the scale-free one, have been
discovered.

To better understand such properties, some basic concepts
about complex networks have to be introduced: the average
path length, the cluster coefficient and finally the degree
distribution.

The average path length L of the network is the mean
distance between two nodes, averaged over all pairs of nodes,
where the distance between two nodes is defined as the
number of the edge along the shortest path connecting them.

The cluster coefficient C of the network is the average of
Ci over all nodes i, where the coefficient Ci of node i is the
average fraction of pairs of neighbours of the node i that are
also neighbours of each other.

The degree distribution of the network is the distribution
function P (k) describing the probability that a randomly
selected node has exactly degree k, where the degree k is
the number of links a node owns.

Watt-Strogatz Barabasi-Albertµ

Fig. 1. Watt-Strogatz and Barabási-Albert models with 30 nodes

From a formal point of view, regarding these basic prop-
erties, several complex network models can be correctly
defined. Regular graphs, for instance, are characterised by
a high cluster coefficient, approximately C ∼= 3/4 and a
large average path tending to infinity as N → ∞. Random
graphs have a low cluster coefficient, approximately equal
to the probability p defined above, and a short average path
Laver

∼= lnN/(pN).
In [10] the Small-World model is proposed to better

describe real systems. It shows properties of both the regular
and random graphs, such as a high cluster coefficient and a
short average path, underlining the fact that, in reality, the
circle of acquaintances of people is not only restricted to
their neighbours.

In [11] the Scale-Free model is presented. This model,
relying on the power-law degree distribution, overcomes
the limitations of the previous ones through a hierarchical
description of nodes. As a consequence, in a scale-free
network preferential attachments are possible. This model,
for instance, turns out to be very useful to describe airline
routing maps.

Two examples of the above described networks are re-
ported in Fig. 1; for a complete overview of complex
networks the [14] is suggested.

B. Spatially Structured Genetic Algorithms

Genetic algorithms are a class of research techniques,
inspired by Darwin’s Theory of Evolution, applied in several
research fields to solve optimisation problems. These algo-
rithms use a population of encoded strings (chromosomes)
as candidate solutions to explore the search space. The
candidate’s evaluation is performed by means of an objec-
tive function (fitness function) and improvements at each
iteration (epoch) result from the application of probabilistic
transition operators (crossover and mutation) acting onto
chromosomes. A simple genetic algorithm (SGA) usually
provides three steps: initialisation, selection and reproduction
[15]. Initialisation generates a population randomly picking
up elements over the whole search space, selection draws an
intermediate population relying on a fitness-based approach
and reproduction causes the population to evolve combining
elements from the intermedia population. The pseudocode in
Algorithm 1 shows a possible implementation schema for an
SGA, where the roulette wheel selection along with crossover
and mutation are adopted.

Usually, crossover is performed with probability pcross,
while mutation modifies chromosomes with probability
pmutat. This means that some individuals, likely with high
fitness, will be exactly copied in the new population.

A spatially structured genetic algorithm (SSGA) is a
specialisation of an SGA, where the population is spatially
distributed with respect to some discrete topology. If the
topology is a network these methods are also known as graph
based genetic algorithms [7]. Following the latter approach, a
population P can be defined through a set V = {p1, . . . , pn}
of vertices and an incidence matrix M = {(i, j) = 1 :

FrD1.1

4278



Algorithm 1: A Simple Genetic Algorithm Schema

Data: Fitness function f(·)
Result: p∗k
/* Initialisation */
Set k = 0; Create Pk = {p1,k, . . . , pn,k}
while StopCondition(p̃j,k) do

/* Roulette Wheel Selection */
for i=1 to n do

x = random(0, 1);
j = 1;

while j < n & x <

∑
j

l=1
f(pl,k)∑

n

l=1
f(pl,k)

do

j = j + 1;
end
p̃i = pj,k;

end

/* Crossover Reproduction */
for i=1 to n-1 do

pi,k+1 = Crossover(p̃i, p̃i+1)
end

/* Mutation Reproduction */
for i=1 to n do

pi,k+1 = Mutation(p̃i)
end

p∗k+1 = maxf(·){{p1,k+1, . . . , pn,k+1}};
k = k + 1;

end

∃ link between i and j} as:

P := {V, M}. (1)

According to this structure, selection picks up pairs of
vertices which show a relationship into the incidence matrix
M , and reproduction generates new elements preserving the
network topology.

Therefore, differences between SGA and SSGA are mainly
related to the selection approach: the former performs this
step by means of a fitness-based approach, such as the
roulette wheel, whereas the latter exploits the network topol-
ogy of the population.

III. THE PROPOSED SPATIALLY STRUCTURED GENETIC

ALGORITHM OVER COMPLEX NETWORKS

The proposed SSGA takes advantage of the complex net-
works theory, deploying a population over such topologies, to
more quickly discover the optimal solution. In particular, in
this paper the connectivity properties of different complex
network models have been exploited for a more effective
exploration of the search space.

The algorithm follows the classical SGA schema previ-
ously shown with a specialisation for each step. Initialisation
creates a population over a complex network; in particular,
two different kinds of topologies have been exploited, the
small-world and the scale-free models. Selection picks up

all pairs of nodes that, based on the incidence matrix M ,
are linked, and reproduction compares each pair of elements
to decide which probabilistic transition operator needs to be
used. For this comparison, the average fitness value over the
whole population is used as a threshold. As a consequence
two possible states for each element can be defined, high or
low.

In this context, the full state of the robot (x, y, θ) is used
as chromosoma, while the pattern function Pat(zk, xk) is
used as fitness function. In detail, the pattern function gives
a measure of the similarity between two vectors, as follows:

Pat(zk, ẑk) =
1
L

L∑
i=1

1√
2πσ

e
−(zi

k
−ẑi

k
)2

2σ (2)

where, zk represents the sensor data, ẑk is the expected one
for the considered hypothesis and finally σ is a measure of
confidence.

Now, three cases can arise when two elements are com-
pared: high-high, high-low, and low-low. A well-defined
action (local mating rule) is then here proposed for each
one:

• high-high: the lowest element is replaced with the result
of the crossover;

• high-low: the lowest element is replaced with a mutated
version of the highest one;

• low-low: both of the elements are mutated.
Regarding the probabilistic transition operators: crossover

picks up two elements and performs a convex combination
of them with probability pcross, while mutation picks up an
element and modifies its chromosoma, inversely proportional
to its fitness, with probability pmutat.

Two remarks are now in order:
- After the crossover operator, two mutations with lower

probabilities are tried to allow a better exploration of
the space around good solutions.

- Each new element created by the mutation is compared
with the original one in order to be accepted. In such
a way the research is partially inhibited, and the explo-
ration of the space does not destroy solutions that are
good enough.

Although the algorithm is able to solve the global lo-
calisation problem with a proper random initialisation, an
additional strategy, able to sense when a kidnap occurs, has
to be provided in order to spread the population over the
search space again and then re-localise the robot.

In this paper, the fitness function f(·) and the edge
function e(·), i.e., the fraction of potential mating couples
(couples with different genotypes) over the network (the
number of links) [7], are used to trigger the spreading action.
The edge function gives an evaluation of the dispersion of
the population. For a well-localised robot, a high percentage
variation of the fitness along with a considerable dispersion
of the population (a high value of the edge function), are
reliable symptoms of a kidnap.

The pseudocode in algorithm 2 shows a possible imple-
mentation schema for a generic step k of the proposed SSGA.
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Fig. 2. (a) Map of the first environment and path of the robot (S:start, K:kidnap point; N:new start; E: end of path) - (b) Fitness function - (c) Edge
function - (d) Dispersion along x axis - (e) Dispersion along y axis

IV. SIMULATION AND EXPERIMENTAL RESULTS

The proposed SSGA algorithm was first tested in a sim-
ulated environment to properly set the network parameters.
Afterward, experiments with real robot data have been per-
formed to prove its effectiveness.

A. Robot and Sensor Modelling

The robot pose, denoted by the state variable x, can be
entirely described on a plane by its position (px, py) and its
orientation φ. Here, the unicycle model has been adopted
as kinematic model for the robot. Specifically, uk−1 =
(δsk, δφk) is the system input, where δsk is the vehicle
displacement, and δθk the rotation during the sample time
interval δtk, both measured by proprioceptive sensors. As a
consequence, the system model equation is:

xk = f(xk−1, uk−1, nk−1)

= xk−1 +




cos φ̃k−1 0
sin φ̃k−1 0

0 1


uk−1 + nk−1 (3)

where φ̃k−1 = φk−1 + δφk−1/2 is the average robot
orientation during the sample time interval δtk, and nk−1

is a white zero mean noise.
The robot, that is moving in an environment completely

described by a list M of pairs of points, has been equipped
with L laser range finders arrayed on 360◦. The resulting
observation model for each laser beam is:

zj,k = h(xk,M) =
|arl

x
j + brl

y
j + cr|

|ar cos θj + br sin θj | (4)

where (ar, br, cr) are the coefficients of the r-th segment and
(lxj , lyj , θj) is the configuration of the laser beam detecting
the segment considered.

B. Simulations

Simulations have been done using a framework, developed
by the authors on Matlab, with the ability to provide several
robot kinematics and an emulation for several sensors, among
them laser and sonar rangefinders. A first analysis has been

performed with the aim of calibrating network parameters.
In particular, a desired behaviour is the one that allows the
persistence of several evolutionary niches, corresponding to
several hypotheses, without preventing the convergence to
the best one.

Such analysis has pointed out, for the Watt-Strogatz
model, that a network degree equal to 3 and a rewiring
probability of 0.1 are a satisfactory set of parameters; a
similar analysis, reported in [16], shows that for these values,
such a network shows a high clustering coefficient and
a small average path length. This condition increases the
selection pressure (the speed of convergence is high but
maximum) along with the persistence of niches.

For the scale-free Barabási-Albert model the behaviour is
slightly different due to the presence of hubs, i.e., highly
connected nodes. Scale-free networks have a shorter takeover
time (the time it takes for the single best individual to
conquer the whole population), that could lead the SSGA
to converge too rapidly towards an incorrect solution in a
noisy environment. Following simulations, the set of chosen
parameters was an initial population of 2 elements with a
network degree of 2.

Note that all the networks used both in simulations and
with real data rely on a low number of nodes, 30. A final
remark is on the complexity of the algorithm: the fitness
evaluation required to build the new population is linear
in the number of nodes, like all GA, while the number
of matings is equal to the number of links that, for the
considered topologies, is again proportional to the number
of nodes.

C. Real Experiments

Real experiments have been executed on the mobile plat-
form ATRV-Jr manufactured by iRobot. It is a skid steering
vehicle mainly designed to operate in outdoor environments.
The ATRV-Jr has 4 wheels differentially driven by 2 DC
motors: the motion is achieved by a differential thrust on
the wheel pairs at the opposite sides. The mobile robot is
equipped with two encoders, 17 sonar rangefinders, a laser
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Algorithm 2: The proposed SSGA - iteration k

Data: Population of size n: {V = {pj,k}, M}, f(·),
e(·)

Result: V = {pj,k+1}
/* Average Fitness Evaluation */
faver =

∑n
i=1 f(pi,k)/n

/* Incidence Matrix Selection */
for i=1 to n do

for j=i to n do

if M(i, j) = 1 then

switch Compare({f(pi,k), f(pj,k)}, faver)
do

case High-High
if f(pi,k) > f(pj,k) then

pj,k = Crossover(pi,k , pj,k)
else

pi,k = Crossover(pi,k , pj,k)
end

case High-Low
pj,k = Mutation(pi,k)

case Low-High
pi,k = Mutation(pj,k)

case Low-Low
pi,k = Mutation(pi,k)
pj,k = Mutation(pj,k)

end
end

end
end

{pj,k+1} = {pj,k}
/* Kidnap Detection */
if Kidnap Condition then

Spreading Action
end

scanner (Sick LMS-220), an inertial platform (Crossbow
DMU-6X), and a GPS receiver (Garmin GPS35-HVS). The
sensory system is connected to the ATRV-Jr’s on board
PC (Pentium II, 350 MHz) running Linux, through serial
port on a Rockeport multiserial port card. The robot is
delivered with a software development environment called
MOBILITY, which provides full access to the software
servers available on the mobile platform. In particular, each
server is assigned to control a specific hardware component
(sensors and actuators). In this way all of them are reachable
from the network exploiting a CORBA interface. However, it
is important to underline that, although the robot is equipped
with several sensors, only the encoders and the laser scanner
(Sick LMS-220) have been exploited in this work.

Several analyses have been performed on real data to
provide
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Fig. 3. Estimation errors along x (up) and y (down) axes

• a validation of the global localisation capability
• an evaluation of the tracking robustness
• a validation of the kidnap sensing strategy
• a comparison on real data of algorithm performance

exploiting the SW and SF models

In Fig. 2 a first experiment is reported: the real robot,
starting in S, moves downward and, after a U-turn around
iteration 100, is kidnapped in K (iteration 120) to appear
in N where it goes on until G. A video of the experiment
has been downloaded with the paper and is also available at
www.dia.uniroma3.it/labrob/papers/icra07a/. In
the first 15 iterations, the network, randomly spread, forms
some clusters, one of these will survive and after 20 iterations
a single cluster remains as winner. Consequently, the tracking
of the correct position is accomplished with very low errors
(see Fig. 3). During the U-turn (iterations 95−−110) some
measures, which do not correctly fit with the environmental
model, along with the inaccuracy of the odometric prediction,
will result in an inaccurate tracking. The fitness function is
also affected by this situation, but the small increasing of the
edge function shows how the network begins to explore new
solutions in the surroundings to recover the error. Remember,
the fitness function compares the estimated laser reads for a
given hypothesis with the real data coming from the robot,
whereas the edge function yields a measure of the similarity
of the population.

The kidnap sensing strategy, as previously shown, relies on
the use of the fitness function along with the edge function.
In particular, an analysis has been carried out to find out the
relationship between the kidnap event and the variation of
these functions. According to the experimental results, when
a kidnap occurs, the fitness function drastically decreases,
whereas the edge function considerably increases because of
the probabilistic operators effect. Consequently, a variation
of the fitness function along with an increase of the edge
function has been used as a threshold. In Fig. 3 (b) and
(c) this situation is clearly represented: note that after the
kidnap, the dispersion along y axis increases as long as the
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Fig. 4. (a) Map of the second environment and path of the robot (S:start, K:kidnap point; N:new start; E: end of path) - (b) Fitness function - (c) Edge
function - (d) Dispersion along x axis - (e) Dispersion along y axis

error along y. In few iterations the error is recovered as the
network starts to correctly track the robot.

A similar situation is shown in Fig. 4 (a second movie
is available at the same address) where the robot, in a real
environment, is kidnapped at iteration 250. A zoom on the
iteration axes of Fig. 4 (d) and (e) has been performed to
clearly show the behaviour of the dispersion during kidnap.

V. CONCLUSION

In this paper a spatially structured genetic algorithm for
mobile robotic localisation has been proposed.

The novelty of the proposed algorithm is to take advantage
of the complex network theory for the deployment of the
population in order to more quickly find out the optimal
solution. Moreover, it relies on the fact that the introduction
of spatial structures in evolutionary algorithms helps to create
evolutionary niches. As a consequence, being a niche a
region in which a particular solution is preserved, a natural
way to carry on multi-hypotheses is obtained.

Several experiments have been carried out in order to
validate the strategy adopted to sense when a kidnap occurs
as well as to prove the algorithm effectiveness. A compar-
ison has been done to figure out the algorithm behaviour
according to the Watts-Strogatz model and the scale-free
Barabási-Albert model. Finally, a preliminary analysis has
been performed to find out the relationship among the
complex network properties and the algorithm performance.

According to the experimental results, the algorithm is able
to solve both the global localisation problem and the kidnap
problem, providing a pretty good tracking capability.

Several interesting challenges still remain for future work.
A theoretical analysis to better figure out the improvement
deriving from the use of the complex networks will be
faced, such as an exploitation of the dynamic properties of
the small-world model in case of self-organising networks.
Finally, an implementation for a multirobot context, studying
methodologies to fuse information coming from different
networks, is currently under study.
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