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Abstract— Map learning is a fundamental task in mobile
robotics because maps are required for a series of high level
applications. In this paper, we address the problem of building
maps of large-scale areas like villages or small cities. We present
our modified car-like robot which we use to acquire the data
about the environment. We introduce our localization system
which is based on an information filter and is able to merge
the information obtained by different sensors. We furthermore
describe out mapping technique that is able to compactly
model three-dimensional scenes and allows us efficient and
accurate incremental map learning. We additionally apply a
global optimization techniques in order to accurately close loops
in the environment. Our approach has been implemented and
deeply tested on a real car equipped with a series of sensors.
Experiments described in this paper illustrate the accuracy and
efficiency of the presented techniques.

I. I

Building models of the environment is a fundamental task

of mobile robots since maps are needed for most high-level

robotic applications. In the past, many researchers focused

on the problem of learning maps and different techniques

have been proposed [5], [10], [11], [18], [20]. Most of the

proposed approaches focus on learning models for indoor

environments like office spaces. Recently, several groups

addressed the problem of learning two and three-dimensional

models of outdoor scenes [6], [12], [13], [14], [22].

Since DARPA Grand Challenge [2], the usage of cars

instead of classical mobile robots became popular in the

research community [1], [23], [25]. Compared to standard

robots, cars offer the possibility to travel longer distances,

carry more sensors, and thus being more suitable for mapping

large areas.

The contribution of this paper is an approach towards

mapping of large-scale areas like villages or small cities.

We describe our system to learn three-dimensional models

of the environment. We apply probabilistic state estimation

techniques as well as classification approaches to obtain these

models. Our implementation uses a modified Smart car de-

picted in Figure 1 equipped with a series of sensors, ranging

from proximity sensor, GPS, and an inertial measurement

unit (IMU).

II. RW

The problem of learning models of the environment has

been studied intensively in the past. In the literature, this

problem is often referred to as simultaneous localization and

mapping (SLAM). Most approaches to map learning generate

two-dimensional models from range sensor data. A series

Fig. 1. The left image depicts the vertically mounted SICK LMS laser
range finders which are rotated with constant speed by an electric step motor
mounted under the lasers. The right image shows our robot. The robot is a
standard Smart car. The model is a Smart fortwo coupé passion of the year
2005, which is equipped with a 45 kW engine.

of different approaches has been developed to address this

problem [4], [5], [7], [9], [10], [11], [18]. Recently, several

techniques for acquiring three-dimensional data with rotating

2d range scanners installed on a mobile robot have been

developed [8], [26], [27]. Other authors have studied the

acquisition of three-dimensional maps from vehicles that are

assumed to operate on a flat surface. For example, Thrun

et al. [21] present an approach that employs two 2d range

scanners for constructing volumetric maps. Whereas the first

is oriented horizontally and is used for localization, the

second points towards the ceiling and is applied for acquiring

3d point clouds.

A popular representation for 2 1
2
-dimensional maps in

robotics are elevation maps [17], [28]. In contrast to that,

our approach learns a three dimensional model that can be

regarded as an extention to elevation map which is able to

store multiple layers for each grid cell [24]. This allows us

to model structures like, e.g., bridges, underpasses, and trees

in a more accurate way. We present our technique to match

individual surface maps into a globally consistent model of

the environment using a global error minimization approach.

All techniques have been implemented and tested on a real

car.

In the context of autonomous cars, a series of successful

systems [1], [23], [25] have been developed due to DARPA

Grand Challenge. As a result of this challenge, there exist

autonomous cars that reliably avoid obstacles and navigate at

comparably high speeds. The focus of the Grand Challenge
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Fig. 2. The information flow between the individual modules.

was to finish the race as quickly as possible whereas certain

issues like building consistent large-scale maps of the envi-

ronment have been neglected since they where not needed

for the race.

Even so our Smart car applied similar techniques than

the winning vehicle Stanley [23] for following a specified

trajectory, we have a different aim compared to the teams

participating in the Grand Challenge. Our goal is to learn

consistent and accurate three-dimensional models of the

large-scale environments.

III. S O

Our instrumented car is equipped with a series of sensors.

One group of sensor is used for localization. It consists of the

inertial measurement unit, the differential GPS, the optical

gyro, and the wheel encoders. The second group of sensors

is given by the laser range finders. Three of them point to

the front of the car and two are rotating on top of the roof

of the car (see Figure 1).

Our software system is based on the modular inter-process

communication (IPC) architecture. In this framework, each

module can send and receive messages to/from other mod-

ules. The diagram in Figure 2 depicts the information flow

between the most important modules.

IV. L

Our localization system applies the inverse form of the

Kalman filter, i.e., the information filter. This filter has

the property of summing information contributions from

different sources in the update stage. This characteristic is

advantageous when many sensors are involved which is the

case in our application. The localization is done in two steps:

the state prediction and the state update.

A. State Update

The localization algorithm estimates the state of the vehi-

cle in a fixed navigation frame n which is represented by the

north, west, and the altitude. The state vector contains the

coordinates (x, y, z) of the vehicle and its three-dimensional

orientation (roll φ, pitch θ and heading ψ to true north). We

define the body frame b as the coordinate system attached to

the vehicle. This frame is aligned with the vehicle kinematic

axes (forward, left, and altitude) and its origin is placed at

the center of the rear axle. The measurements models of the

sensors are presented here.

• Inertial measurement unit (Crossbow NAV420): This unit

provides sensor data with a frequency of 100 Hz that contains

the measurements from 3 gyroscopes, 3 accelerometers, a 3D

magnetic field sensor, and a GPS receiver. The internal digital

signal processor of the unit combines the embedded sensors

to provide the filtered orientation of the vehicle (roll, pitch,

heading to true north) and the position (latitude, longitude,

and altitude). This sensor, however, is not well adapted for

ground vehicle driving at low speed. We therefore disabled

the GPS and used the unit in angle mode: the unit outputs the

filtered roll (φimu), pitch (θimu) and heading (ψimu) to magnetic

north. This improves the pose estimate when driving at low

speed. The measurement model for this sensor is

zimu =

[

φimu

θimu

]

n

=

[

φ

θ

]

n

+ vimu (1)

ψimu = ψ + bimu + vhimu, (2)

where v denotes the sensor noise and bimu the offset between

the heading to true north ψ and the heading measurement

of the IMU. The bias bimu is estimated by the filter using

the heading measurements of the GPS which provides the

heading to true north.

• Car sensors: The measurements taken by the car sensors

are reported with a frequency of 100 Hz and are accessible

via the CAN bus of the vehicle. The car provides the motor

temperature, gas pedal position, steering wheel angle, wheel

velocities, engine RPM, and some further status information.

For localization, we use the velocity ẋodo of the car from

the CAN bus. Unlike a flight vehicle, the motion of a

wheeled vehicle on the ground is governed by nonholonomic

constraints. Under ideal conditions, there is no motion nor-

mal to the ground surface and no side slip: they can be

written respectively as żodo = 0 and ẏodo = 0. In practice,

these constraints are often violated. Thus, as in [3], we use

zero mean Gaussian noise to model the extent of constraint

violation. The measurement model for the odometry is then

expressed as

zodo =





ẋodo

0

0





b

=
[

Cn
b

]T





ẋ

ẏ

ż





n

+ vodo, (3)

where Cn
b

is the matrix for transforming velocities expressed

in the reference frame b of the car into the navigation frame

n. The observation noise covariance is obtained using

Rodo = Cn
b · diag

{

σ2
enc, σ

2
vy, σ

2
vz

} [

Cn
b

]T
, (4)

where σ2
enc is the variance of the car velocity and σ2

vy,σ2
vz are

the amplitude of the noise related to the constraints.

• Differential GPS system (Omnistar Furgo 8300HP): This

device provides the latitude, longitude, and altitude together

with the corresponding standard deviation and the standard

NMEA messages with a frequency of 5 Hz. In case the

sensor receives the GPS drift correction signal, the unit

changes automatically into the high precision GPS mode.

When no correction signal is available, the device outputs
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standard GPS information. We use the WGS-84 standard to

convert the GPS coordinates in Cartesian coordinates (x, y, z)

expressed in a local navigation frame n. The heading to true

north ψ is also provided by that unit in the RMC message.

The measurement model for the GPS is

zgps =





xgps

ygps

zgps

ψgps





n

=





x

y

z

ψ





n

+ vgps. (5)

In order to reject the erroneous fixes caused by satellite

constellation and multi-path change, we use the following

gating function [19]

zT (k) · S −1 · z(k) ≤ γ, (6)

where S is the innovation covariance of the observation. The

value of γ is set to reject innovations exceeding the 95%

threshold.

• Optical gyroscope (KVH DSP3000): This fiber optic gyro-

scope can measure very low rotation rates with a frequency

of 100 Hz. It is possible to use it as a heading sensor for a

comparably long period of time by integrating the angular

rate (the unit provides the integrated angle). Contrary to

compasses, the integrated heading is not sensitive to earth

magnetic field disturbances. Finally, this unit offers much

better accuracy than mechanical gyro and is not sensitive to

shocks because it contains no moving parts. The measure-

ment model for the optical gyro is

zopt = ψopt = ψ + bopt + vopt, (7)

where bopt is the angular offset between the heading to true

north ψ and the actual measurement of the gyro.

B. Prediction model

We apply a standard prediction model for the car which

has the following form

xk+1 =





Fx . . . 0
... Fy

Fz

...

0 . . . I5x5





· xk + wk. (8)

The state vector x contains the position and velocity

expressed in the navigation frame n, the orientation of the

vehicle represented by the three angles roll φ, pitch θ, yaw

ψ, and the two biases bimu and bopt:

x =
[

x ẋ y ẏ z ż φ θ ψ bimu bopt

]T
(9)

The position of the vehicle at time k+1 is predicted using

the position and velocity at time k. This takes the form of a

first order process written as

Fx,y,z =

[

1 T

0 1

]

k

, (10)

Fig. 3. Obtained traversability map using the fixed sick laser range finders.
Black refers to non traversable cells and the red/gray arrows illustrate the
trajectory taken by the car.

where T denotes the sampling period (10 ms). All the other

elements of the state vector are predicted as simple Gaussian

processes. The covariance matrix Qk associated to the state

prediction process is represented as

Qk = Gk · qk ·G
T
k , (11)

where qk is a diagonal matrix containing the variances of the

individual elements of the state vector

qx = diag
{

σ2
x σ2

y σ2
z σ2

φ σ2
θ

σ2
ψ σ2

bimu
σ2

bopt

}

.

(12)

Finally, the matrix mapping the noise covariance qk to the

process covariance Qk is written as

Gk =





gx . . . 0
... gy

...

gz

0 . . . diag5x5(T )





k

, (13)

where

gx,y,z =

[

T 2/2

T

]

. (14)

All in all, this information filter framework allows us to

robustly and efficiently integrate the information from the

different sensor into a pose estimate of the car. The pose

information is provided with a high frequency and with small

delays only. This is important for online control of the car.

V. T E

Whenever driving with a robot car, a central issue is to

identify the obstacle-free terrain. Without a reliable esti-

mation of the traversable area, autonomous car driving is

nearly impossible. This paper does not focus on autonomous

navigation, the estimation of the traversability, however, is

regarded as a mapping task and therefore also addressed in

this work.

The car is equipped with five SICK laser range finders

whereas two are mounted on a rotating unit and three are

fixed (compare Figure 1). We currently use the three static

laser range finders in order to estimate the traversability of

the area in front of the car. Given a laser range observation,

we first compute the end points of the individual beams.
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We then add the 3d points to the cells of a local two-

dimensional grid map according to the x, y-coordinate of

the beam. We then parse the cells and compute the mean

and variance of the z-values for each cell. The decision

if a cell is locally traversable can be done based on these

two values. When adding the data of multiple laser range

finders into a single grid, it is likely to get a series of

obstacles at locations where actually no obstacle is located.

This phenomenon is also described by Thrun et al. [23]

as phantom obstacles. These phantom obstacles are caused

by small errors in the pitch estimate of the location of the

car, between the individual laser range scans. Therefore, we

compute the traversability estimate individually for each scan

and merged the independently estimated traversability values

into a common grid structure. We found that this yields good

results when moving on streets as well as on unpaved roads

and avoids phantom obstacles. An example for a resulting

traversability estimate is shown in Figure 3.

VI. M

During the mapping process, we create globally consistent

maps using the inputs of the localization module and the

five laser range finders mounted on the robot. We use multi-

level surface maps (MLS maps) as proposed in our previous

work [24]. MLS maps store in each cell of a discrete grid the

height of the surface in the corresponding area. In contrast

to elevation maps, MLS maps allow us to store multiple sur-

faces in each cell of the grid. In the remainder of this paper,

these surfaces a referred to as patches. This representation

enables a mobile robot to model environments with structures

like bridges, underpasses, buildings or mines. Additionally,

they enable the robot to represent vertical structures.

The localization technique described in Section IV works

well for navigation issues. However, applying mapping with

known poses based on this pose estimate usually results

in globally inconsistent maps. In practice, this typically

becomes apparent when the robot encounters a loop, i.e.,

when it returns to a previously visited place. To achieve the

goal of globally consistent maps it is needed to associate

the data which is acquired when the robot reaches the same

place of the environment at different times. To achieve this,

we build local MLS maps and apply the ICP algorithm to

iteratively find constraints between poses and to solve this

data association problem. This is described in detail in the

reminder of this section. After the map matching and loop

closing process the local MLS maps can be merged to one

global consistent MLS map.

A. Data Acquisition and Local Map Building

During the data acquisition process, we collect three-

dimensional points which corresponds directly to the sensed

environment. The data is collected while our robot is moving

continously through the environment using the five SICK

laser range finders. As explained before, three of them are

mounted in a fixed position and provide data points about the

environment in front of our robot. Additionally, we mounted

two laser range finders in vertical direction on a rotating plate

Fig. 4. Example of a single local MLS map. The example shows a typical
scene of an urban environment with street lights and trees.

on the top of the car. Figure 1 depicts the two lasers and the

electric step motor. During data acquisition the step motor

rotates the two laser range finders with a constant frequence

of 0.37 Hz. Due to this configuration the rotating lasers

provide data points which correspond to the environment in

all directions around the robot. To build a local MLS map,

we now use the data points acquired during a complete 360

degree turn by the rotating lasers. This setup is well-suited

to build 3d maps of the environment. Furthermore, we add

the data points which are acquired with the three fixed lasers

during this period of time. Figure 4 depicts an example of a

single local MLS map. From this point on, we discard the

point clouds and perform all computations based on the local

MLS maps. The example shows a typical scene of an urban

environment with street lights and trees. Note that the data of

all five SICK laser range finders are used for mapping. For

estimating the traversable area in front of the car, however,

only the three static sensor are used due to the comparable

slow rotation of the rotating laser sensors.

B. Map Matching

In addition to the traversability analysis described in

Section V, we can identify vertical objects based on the 3d

data. As a result, every patch in the MLS map is labeled

as ’traversable’, ’non-traversable’, and ’vertical’. The labels

are used in the ICP-based map matching process to obtain a

more robust and accurate registration.

ICP seeks to find a rotation matrix R and a translation

vector t that minimizes an error function computed based on

the two maps we aim to match. We integrate the labels of

the individual patches into the ICP error function in order

to improve the matching result. We only consider matches

between patches of the same label.

Let u be the vertical patches, v the traversable, and w the

non-traversable ones of the first map. The cells of the second

map are indicated by primed variables. We can define the

following error function:

e(R, t) =

C1∑

c=1

d(uic , u
′
jc

)

︸          ︷︷          ︸

vertical objects

+

C2∑

c=1

d(vic , v
′
jc

)

︸          ︷︷          ︸

traversable

+

C3∑

c=1

d(wic ,w
′
jc

).

︸            ︷︷            ︸

non-traversable

(15)

FrE7.4

4810



In this equation, d is the Mahalanobis distance and the

indices ic and jc indicate the correspondence between the

patches. Minimizing e(R, t) as well as the computation of

the correspondences is iterated within the ICP algorithm.

In practical experiments [16], we found that matching

only patches with the same label leads to more robust

and accurate map estimates. Furthermore, the ICP algorithm

converges faster due to the smaller number of potential

correspondences.

C. Loop Closing

The ICP-based scan matching technique described above

works well for the registratering robot poses into one global

reference frame. However, the individual scan matching

processes result in small residual errors which accumulate

over time and usually result in globally inconsistent maps.

In practice, this typically becomes apparent when the robot

encounters a loop, i.e., when it returns to a previously visited

place. Accordingly, techniques for calculating globally con-

sistent maps are necessary. Therefore, we apply an approach

that combines the ideas of Lu and Milios [10] and Olson’s

algorithm [15] to globally correct the map. This approach

applies error minimization via stochastic gradient descent on

the whole vector of poses and yields accurate map estimates

given a set of constraints between poses.

VII. E

A. Localization

Our localization system has been extensively tested and

provides accurate pose estimates in a robust manner when

moving though urban environments. A typical result obtained

with our smart car is depicted in Figure 5. The figure

represents the estimated trajectory of the car overlayed on

the ortho-photo of the EPFL campus.

GPS
loss

GPS loss
c

a

b

Fig. 5. Overlay of the estimated trajectory and the ortho-photo of the EPFL
campus. The zones where the GPS was not available are highlighted. The
total traveled distance is around 2300 m. The labels (a), (b), and (c) identify
areas which are later on referred to by Figure 6 and 7.

5

During the experiment, the car drove in areas where the

GPS quality was bad or not available, for example along

narrow alleys bordered with trees, close to buildings, or in an

underground parking lot. However, the localization algorithm

was able to cope with GPS faults and provided accurate

positioning estimation, such as depicted in Figure 6.
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Fig. 6. This graph represents a part of the trajectory depicted in Figure 5.
In this urban environment, the GPS signal is disturbed by many objects
(trees, buildings, etc.) and GPS faults are of high amplitude (several meters
in the horizontal plane and up to 16 m vertically). The localization algorithm
was able to reject erroneous GPS fixes and to provide accurate estimations.
The labels a,b and c mark areas where GPS is of poor quality (a), (b) or
unavailable (c).

The uncertainty associated to the pose estimation mainly

depends on the quality of the GPS fixes. As depicted in

Figure 7, the standard deviation is low when differential

GPS is available (∼3 cm) but increases as soon as fixes are

unavailable (up to 60 cm).

 0
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S
ig
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a
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m
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b

Fig. 7. Standard deviation along the north (x) and west axis (y) for the
trajectory depicted in Figure 6. The standard deviation increases when GPS
quality is poor and decreases as soon as it gets better. The labels (a), (b)
and (c) corresponds to the zones marked in Figure 5.

B. Mapping

To acquire the data, we steered our robotic car depicted

in Figure 1 over streets of the EPFL campus. The goal of

these experiments is to demonstrate that our representation

yields a significant reduction of the memory requirements

compared to a point cloud representation, while still pro-

viding highly accurate maps. Additionally, they show that

our representation is well-suited for global pose estimation

and loop closure. Furthermore, the experiments show the

necessity of the loop closing procedure. Figure 8 show the

resulting map of a dataset acquired along a 2.3 km trajectory.

Figure 9 shows a cutout of two MLS maps from that dataset.

The left image depicts the resulting MLS Map when only
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Fig. 8. Top view of the resulting MLS map with a cell size of 50cm x 50cm. The yellow/light gray surface patches are classified as traversable.The
area scanned by the robot spans approximately 300 by 250 meters. During the data acquisition, the robot traversed five nested loops with a length of
approximately 2,300m.

local map matching is applied. The right image displays the

same part of the MLS map where we additionally applied

our loop closing algorithm.

In this experiment, we acquired 374 local point clouds

consisting of 68,162,000 data points. The area scanned by

the robot spans approximately 300 by 250 meters. During the

data acquisition, the robot traversed five nested loops with

a length of approximately 2,300m. Figure 8 shows a top

view of the resulting MLS map with a cell size of 50cm x

50cm. The yellow/light gray surface patches are classified

as traversable. It requires 55 MB to store the computed

map, where 34% of 300,000 cells are occupied. Compared

to this the storage of the 68,162,000 data points requires

1,635 MB. The scan matching between the local MLS maps

has been computed online during the data acquisition on a

2GHz dual core laptop computer. The loop closing step of

our mapping algorithm is computed offline when the robot

finished the data acquisition. In our current approach, the

computation time for the optimization of the shown data set

is approximately 15 minutes.

VIII. C

In this paper, we presented our approach towards mapping

of large-scale areas like villages or cities. We presented the

setup of our modified car and the techniques applied to learn

accurate models of the environment and localize the vehicle

in the world. Our map representation can be seen as an

extention of elevation maps which are able to store different

surfaces in the environment. In order to learn these maps, we

present our pose estimation technique as well as an approach

to match sub-maps in order to correct the poses based on

the proximity sensors. In order to accurately close loops, we

apply a least square minimization approach. As a result, we

obtain high quality three-dimensional models. All techniques

have been implemented and tested using a real car equipped

with different types of sensors. The experiments presented in

this paper, show the result of real world data obtained with

this robot.
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Fig. 9. This figure depicts the lower left corner of the MLS Map shown in Figure 8. The left image illustrates the resulting MLS Map when only
local map matching is applied. The right image displays the same part of the MLS map where we additionally applied our loop closing algorithm. The
inconsistencies can be seen by the vertical poles in the figure. Furthermore, several traversable patches have been misclassified as non traversable (red/dark
gray) due to the misalignment of the maps.
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