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Abstract— This paper deals with the landing motion of an
articulated legged robot. Humans use a peculiar crouching
motion to land safely which can be characterized by body
stiffness and damping. A stiffness controller formulation is used
to realize this human behavior for the robot. Using this method,
the landing motion is achieved with only the desired body
stiffness and damping values, without desired COG (Center
of Gravity) or joint paths. To achieve soft landing, variable
body stiffness and damping values were optimized.

PBOT, which has four links with flexible joints was used
for validation of the landing controller. A body stiffness and
damping controller was used as an outer landing control loop
and a fast subsystem controller for flexible joints was used
as an inner force control loop. Simulations and experimental
results about the landing motion are presented to show the
performance of the body stiffness and damping controller.

Index Terms— Legged locomotion, Landing motion, Hopping
robot, Body stiffness and damping, Flexible joint

I. INTRODUCTION

In human motion analysis, the hopping motion is usually

modeled as a simple spring-mass[1], [2]. This model was

been realized in robotics through various experiments by

compensating energy loss using bounce of leg by Raibert[3].

After this, similar investigations were published[4], [5]. Most

of them used the identical mechanical structure with some

advanced features in the hopping method and in structure.

Running and hopping of the biped humanoid robot is

now a very challenging area to make more agile and fast

humanoid motion. There were some research efforts[6], [7]

to make an articulated legged robot run by various path

planning and nonlinear control techniques. In 2003, Sony

realized running motion using the biped humanoid robot

QRIO[8]. In 2004, Honda demonstrated running motion in

the human size biped robot ASIMO[9], up to 6km/h . In [8], a

method for acquiring an analytical solution of the x-,y- COG

path considering angular momentum using dynamic bound-

ary conditions is presented for the running motion. In [10],

the desired angular and linear momentum is calculated from

a predetermined COG and the robot is controlled through the

developed controller. However, a limitation of these previous

studies about humanoid motion was that controller follows

the desired COG path or dynamic boundary condition pro-

vided by the operator. This can produce unexpected touch-

downs so that the COG path must be corrected to ensure

motion stability because of the difficulty in predicting impact
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Fig. 1. Photo of PBOT

time and robot state after impact. In the case of running and

landing motion of humans, the characteristic named body

stiffness and damping is used[13] to hop or land. It is known

that a human behaves like a spring at the beginning of the

impact and changes behavior into damping characteristics.

In this paper, a body stiffness and damping controller

which resembles human’s landing strategy will be applied

to the landing motion of the legged robot, PBOT (Fig. 1)

which has been made for hopping or running motion. The

articulated legged robot system is treated as a lumped single

mass (COG) and forces from body stiffness and damping

are applied on COG as a virtual force to realize body

stiffness and damping behavior. A similar approach using

body compliance was tried in [11], this method also follows

desired path while requiring force and acceleration sensor

signals to follow the desired body impedance. On landing,

instead of following a preplanned motion, adaptation to the

impact phenomenon is a more important target. The method

developed in this paper utilizes a simple formulation of

stiffness controller which reacts to the change of external

environment rather than following a preplanned path. It

requires only position and velocity signals according to

desired body stiffness and damping values.

The target motion is drop landing from a given height

to the ground until robot stops. Constant and variable body

stiffness and damping value cases will be introduced and

compared. The variable value case a shows soft landing

behavior which resembles a human’s. In section II, we val-
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Fig. 2. 1-D two-mass system

idate the body stiffness and damping strategy using a two

mass system landing simulation. Section III describes the

PBOT. Section IV introduces application processes of the

body stiffness and damping controller and a fast subsystem

controller. Simulation results using constant and variable

body stiffness and damping controller are provided. Sec-

tion V shows experimental results with the PBOT.

II. BODY STIFFNESS AND DAMPING BEHAVIOR

A. Human’s Landing Strategy

To make a landing strategy for a robot, it is important

to understand the human landing strategy. It relates shock

absorption of ground impact with two categories. One is

shock absorption by materials using muscles, tendons and the

foot heel pad. The other is shock absorption by a crouching

motion, as seen at gymnastic competitions. In the latter case,

impact force is transformed into another energy, like potential

energy (stored at the elastic material) or kinetic energy. Also,

the transferred impulse from the ground to the upper body is

reduced by body crouching. In this paper, we use this motion

behavior for shock absorption to make a robot land on the

ground.

To apply human’s behavior to the robot, we need a

mathematical description of this motion. Biomechanics has

explained human hopping and landing behavior using para-

metric study. When the human hops continually, leg stiffness

value increases from touch-down to take-off with the same

initial value on every instance[13]. When landing, the human

behaves like a mass with a spring-damper system. Initially, a

human acts like a spring but changes his action into damping.

Leg stiffness is expressed as

kleg =
Fpeak

∆L
(1)

where Fpeak is peak reaction force in the force platform

and ∆L is vertical displacement of body’s center of mass.

We can apply a similar strategy to legged robot landing

control. Leg stiffness kleg is changed by body stiffness kg

which is expanded from leg motion to whole body motion

and force platform force Fpeak by Fg which is the force on

the center of gravity transferred from the ground.

B. Simple Model Validation

To validate the body stiffness and damping action on

landing motion, a one dimensional (vertical directional)

model (Fig. 2) composed of two masses is used. The upper

mass (7.15kg) represents the lumped mass of the whole body

(legged robot, humans, etc.) and the lower mass (0.75kg) is

used to describe impact phenomenon with the ground.

To apply body stiffness, the distance between the two

masses at impact is used as a equilibrium length for stiffness.

Thrust force from body stiffness and damping is expressed

as

Fthrust = K(xeq − (x1 − x2)) − D(ẋ1 − ẋ2) (2)
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Fig. 3. 1-D body stiffness and damping results

Drop landing simulation results using this thrust force with

constant values of K (2000N/m, stiffness of the system) and

D (200Ns/m, damping of the system) at a 0.1m initial height

(x2) is in Fig. 3(a). The two-mass system has landed on the

ground using body stiffness and damping action.

The thrust force of the system enabled suppression at the

ground, preventing rebound overcoming pre-transition phase

which resembles the result in [14]. We also could determine

motion characteristics after the initial impact with various

body stiffness and damping values (Fig. 3(b)).

Reduction of impulse transfer to the upper body can

be achieved through variation of these values. When these

values are constant, thrust force has impulsive behavior

(Fig. 4(a)). In humans, body stiffness and damping behavior

changs from spring to damper, which is not constant. In

[15], the joint stiffness was found to be first-order in human

hopping motion. From [16], we can assume body stiffness as

first-order using the result of [15]. To define variable body

stiffness and damping profiles, we assume as a first-order

model as follows.

K = K0 + K1t (3)

D = D0 + D1t (4)

where t is time after impact.

To determine the coefficients of body stiffness and damp-

ing for the variable case, multi-objective optimization with

a simple model (Fig. 2) was used according to given con-

straints. An objective function for optimization can be thrust

force peak minimization (because of actuator limit). Opti-
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Fig. 4. Thrust force for constant and variable K & D cases

TABLE I

OPTIMIZATION OF BODY STIFFNESS AND DAMPING VALUES

K0 K1 D1

Case I 1500N/m 1268N/m 1388N/m

Case II 2000Ns/m 2755N/m 841Ns/m

Case III 2500Ns/m 2636/m 967Ns/m

mization constraints were selected to be:

Minimize : f : thrust force peak

Subject to : g1 : x1 − x2 > xlower

g2 : F < Fmax

g3 : ẋ1 > 0, t1 < t < t2

g4 : x1 − x2 < xst, t1 < t < t2

g1 is used to prevent undershoot of COG below the joint

limit. g3 and g4 are used to drive ẋ1 to zero at steady state

(xst). Initial positions for drop landing are x1 = 0.457m,

x2 = 0.05m. Time duration for stiffness and damping value

change is 0.5 sec after initial impact, which is a sufficient

settlement time for landing.

Initial body stiffnesses (K0) were 1500N/m, 2000N/m
and 2500N/m. Initial body damping values (D0) were set to

zero because body damping effect is not good for preventing

impulse transfer to the upper body, while damping action

helps absorbing high frequency shock on foot pad. In Table. I,

optimized body stiffness and damping values are presented.

Fig. 4(b) shows a moderate increase of thrust force. Higher

order polynomial on variable body stiffness and damping was

not used because of difficulty in getting solution. This section

validated body stiffness and damping behavior as a landing

motion controller. The next section applies this behavior to

control of the landing motion of the PBOT.

III. PBOT

PBOT (Fig. 1) is a four-link (foot, shank, thigh, torso)

legged robot that has 3 actuators and 8 degrees of freedom

for planar motion (x, y, θ0, θ1, θ2, θ3, z1, z2), where zi is

a spring force coordinate for ankle and knee actuator. Linear

actuation mechanism is used for the ankle and knee joints,

which use series elastic actuator[12], where a ball screw and

spring (60kN/m) are serially connected with a motor to allow

impact shock tolerance. This linear actuator is connected to

the robot by forming a closed kinematic chain around the

ankle and knee joints. the hip joint is actuated by a rotary

motor with gear through belt transmission. The foot is planar,

with four Force Sensing Resistors (FSRs), used for touch

sensing at its corners. The foot has a 2.5mm thick rubber

layer on the bottom for shock absorption.

Six encoders are installed to measure joint angles and

linear displacement of the springs. Absolute angle of the foot

is measured through an INS (gyro) sensor. The PBOT weighs

7.9kg and stands 0.95m tall. The dimension is based on a

small adult. Detailed dimensions of PBOT are in Table. II.
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Fig. 5. PBOT model description

IV. BODY STIFFNESS AND DAMPING CONTROL FOR

ARTICULATED LEGGED MODEL, PBOT

In this section, body stiffness and damping behavior is

now extended to the articulated legged robot system (PBOT)

for landing motion.

A. Formulation of Body Stiffness and Damping Value for

PBOT

To apply body stiffness and damping behavior to the

legged model, we need to define body stiffness and damping

values for this system. Though there are actual springs in the

PBOT, we can not change their stiffness value. Also there is

no damping in actual system.

To assign desired body stiffness and damping values to the

robot, a stiffness controller formulation is used. The stiffness

controller is a force controller to react against external force.

We use this controller to react against vertical COG motion

(x1 motion in section. II) in the landing motion. The task

space is the COG point of the system. The stiffness controller

is written as

τ = JT F (F : external force). (5)

where J is the Jacobian about the task coordinate of the

robot. To create the body stiffness and damping controller,

the Jacobian is changed into a COG Jacobian[17] to decom-

pose the desired COG force (Fg) into joint space.
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TABLE II

KINEMATIC AND MASS DATA OF 4 LINK LEGGED ROBOT

Link index(link i) 0 1 2 3 actuator1 actuator2
mass(kg, mi) 0.77 1.19 1.46 2.02 1.25 1.25

Inertia(kgm2, Ii) 0.01 0.02 0.03 0.01 0.01 0.01

Link Length(m, li) l0 : 0.07 l01 : 0.13 0.34 0.34 0.30 r1a1 : 0.29 r1a2 : 0.29 r2a2 : 0.30

COG Length(m, ri) r01 : 0.13 r02 : 0.03 0.17 0.17 0.14 ra1 : variable ra2 : variable

τ = JT
g Fg = JT

g (FK + FD)

= JT
g (Kg(Xge − Xg) − DgẊg)

(6)

Xg , (xg, yg)
T is a COG position vector calculated from the

foot to the COG point. Xge, (xge, yge)
T is the equilibrium

position of the COG selected according to the desired motion

after landing. Using this formulation, stiffness and damping

forces used in section II are replaced by virtual body stiff-

ness and damping forces transmitted to the COG. So, the

articulated legged system can be treated as a lumped mass

with virtual spring and damper force.

1) Determining the COG Jacobian: The flat foot has

various contact modes (toe, heel and full contact). To de-

termine Jg , these contact conditions must be considered and

underactuated joints which exist at the contact point must be

treated. However, this paper calculates Jg relative to the toe

reference frame to reduce computational complexity. Desired

COG force in global frame is projected into the local frame

(Eq. (7)) to thrust robot in the right direction. The spring

force coordinate (z1, z2) is ignored in calculating the COG

Jacobian.

τ = JT
g R(θ0)Fg (7)

where R(θ0) is a 2 × 2 rotation matrix around θ0.

There are 3 actuator degrees of freedom (ankle, knee and

hip) whereas the motion degrees of freedom are 2 (xg , yg) for

body stiffness and damping controller. To avoid redundant

motion, torso pitch angle (θ3) is added as a target control

variable to make the COG Jacobian 3 × 3 matrix.

2) Actuator Force Tracking Controller: Desired joint

torques obtained from above are transformed into desired

actuator forces using the closed chain kinematics [18] of the

model. To follow the desired actuator forces in the flexible

joint system, a force tracking controller was developed.

The ankle and knee joint of the PBOT are flexible joints

which have transmission through springs. To develop a force

tracking controller about those joints, we change dynamics

in singularly perturbed form[19] as

[

M11 M12

M21 M22

] [

ẍs

µz̈

]

+

[

C1

C2 + z

]

=

[

AU
−BU

]

+

[

∑

2

i=1
JT

i Fi

0

]

(8)

, where xs is the slow variable [x y θ0 θ1 θ2 θ3]
T . And

z is the fast variable [z1 z2]
T , where force in the springs

(ankle and knee actuators). µ = k−1

s , where ks is a stiffness

Body Stiffness 
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Fig. 6. Control block diagram

matrix for the spring. The C1, C2 matrix comprises coriolis,

centrifugal and gravity forces. A is an input coefficient matrix

generated from the closed chain kinematic characteristic of

the system and B is a pre-multiplication matrix for input

torque which is composed of gear and ball screw ratios. Ji

and Fi mean the Jacobian for contact point and impact force

at the contact points (toe and heel). This dynamics equation

can be divided into slow and fast subsystem. Slow subsystem

(upper part of Eq. (8)) represents motion of the slow variables

like rigid link motion and fast subsystems (lower part of

Eq. (8)) represents motion of the springs. Solving Eq. (8) for

z̈ gives:

(M22 − M21M
−1

11
M12)µz̈ + (C2 − M21M

−1

11
C1) + z

= −(B + M21M
−1

11
A)U − M21M

−1

11

2
∑

i=1

JT
i Fi

(9)

Mfµz̈ + Cf + z = −AfU − Fv, and (10)

µz̈ + M−1

f Cf + M−1

f z = −M−1

f AfU − M−1

f Fv,(11)

where Mf is (M22 − M21M
−1

11
M12), Cf is

(C2 − M21M
−1

11
C1), Af is (B + M21M

−1

11
A) and Fv

is the virtual external force on the fast subsystem with

M21M
−1

11

∑

2

i=1
JT

i Fi

If we select the control input U as

U = −A−1

f (kp(zd − z) −
√

µkvż), (12)

where A−1

f is a pre-compensator matrix for control input,

Eq. (11) changes into

µz̈+
√

µM−1

f kvż+M−1

f (I+kp)z = M−1

f (kpzd−Cf−Fv).
(13)

To make the closed loop fast subsystem (Eq. (13)) asymptot-

ically stable, all of the coefficient matrix at the left-hand side

must be positive definite[20]. Since M−1

f is positive definite

because the determinant of a positive definite matrix (inertia
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TABLE III

BODY STIFFNESS AND DAMPING VALUES ON 5, 10CM DROP LANDING

SIMULATION

xg yg θ3

Stiffness 200N/m 2∼3000N/m 1.0N/m

Damping 100Ns/m 2∼300Ns/m 0.5Ns/m

matrix) is positive definite. If we select kp and kv so that the

stability condition is satisfied, the fast subsystem becomes

asymptotically stable while following the slow manifold. (Cf

at the right hand side is composed of only slow variables

and Fv is also composed of slow variables and can be

characterized by impulse and step input signal to the fast

subsystem dynamics.)

The force tracking controller acts as an inner force control

loop for the flexible joint structure and the body stiffness and

damping controller as an outer control loop (Fig. 6).

B. Drop Landing Simulation of PBOT

Our body stiffness and damping controller was imple-

mented for drop landing simulation from a given height.

Simulation conditions were based on the parameters at

Table. II.

1) Constant Body Stiffness and Damping Case: To val-

idate body stiffness and damping controller, the constant

value case was tried first. xge, yge were the COG position at

impact. The robot was dropped from different heights. Fig. 7

shows yg motion path for two different dropping heights

(5cm, 10cm height) using the body stiffness and damping

values in Table. III. Values for torso pitch are small because

of the high gear ratio at the hip actuator.
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Fig. 7. yg for drop landing simulation

In Fig. 7(a), the yg paths follow body stiffness and damp-

ing behavior according to the assigned values. The value of

yg around impact time (0.15s) is relatively smooth, without

discontinuity, which means a soft landing. The force tracking

result of ankle and knee actuator in Fig. 8 (Kg : 3000Nm,

Dg : 200Ns/m) show the controller is following the desired

force value except right after the impact. The tracking error is

due to abrupt spring deflexion from the initial impact force.

Force tracking error at the knee actuator is because of the

actuator limit (0.2Nm) and the coupling effect between ankle

and knee joint. Fig. 9 shows the landing simulation sequence.

Though we were not aware of the exact impact time, the

robot was able to land with soft upper body motion by the

assigned body stiffness and damping values. When the initial

height was 10cm, yg still behaved smoothly, but the path was

rougher than the 5cm case due to the larger impact force and

actuator limits (Fig. 7(b)).
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Fig. 8. Desired & present actuator force and error for 5cm drop case

2) Variable Body Stiffness and Damping Case: In variable

body stiffness and damping case, the optimization result at

section. II is used. The optimization result for initial body

stiffness value of 2000N/m is applied to the PBOT model.

Fig. 10 shows that desired actuator forces have been changed

into moderate increase which is realistic result comparing

with constant values cases. Ankle force tracking error was

greatly reduced, but, even through the present force at the

knee is slightly greater than the desired force, knee force

tracking error is still relatively large due to the abrupt spring

deflexion at impact.

Although the optimized values of section II do not guaran-

tee the best simulation result because of force tracking error,

we can use optimized results as an initial estimate for better

landing motion.

V. EXPERIMENT WITH PBOT

Experiments have been performed using a PBOT with

real time control (1KHz control frequency) using a Pentium

650MHz computer. The PBOT was dropped from arbitrary

height to the ground (between 5∼10cm from the ground) by

hand. All data was collected right from the initial impact.

A. Constant Body Stiffness and Damping Case

Four constant body stiffness and damping values were

tested. Fig. 11 shows the experimental results of yg . In

Fig. 11(a & b), Kg is 2000N/m and 3000N/m, respectively.

Both shows plots for Dg = 200Ns/m and 300Ns/m.

We can identify the body stiffness and damping behavior

on landing motion according to given body behavior. The

difference of steady state yg values between the simulation

(Fig. 7) and experiment (Fig. 11) is because of different equi-

librium lengths for body stiffness. The initial configurations

were not regular in experiments. Force tracking result when

Kg is 2000N/m and Dg is 300Ns/m is in Fig. 12, which
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Fig. 9. Snapshots of the landing simulation
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Fig. 10. Force tracking result for variable body stiffness and damping

shows more force fluctuation due to less material shock ab-

sorption than in the simulation (only 2.5mm rubber beneath

the foot). Fig. 15 shows images of the landing experiment.

B. Variable Body Stiffness and Damping Case

To see the effect of variable body stiffness and damping,

we used the result of Table. I, which was calculated through

the optimization process of section II.

Fig. 13 shows the experimental and simulation results of

yg for various variable body stiffness and damping values.

Experimental results are similar to the theoretical behaviors

in simulations (two mass system case). Force tracking desired

at Fig. 14 has moderate increase comparing to constant case

even if there are some impulse peaks. The variable case

caused a deep (long) undershoot in COG behavior compared

to the constant case, which means less impulse transfer to

the upper body.

VI. CONCLUSION

This paper has presented a body stiffness and damp-

ing controller for an articulated legged robot as a landing
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Fig. 11. Drop landing experiment for four cases
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Fig. 12. Actuator force comparison, Kg : 2000N/m, Dg : 300Ns/m

controller which replicates human landing behavior. This

controller has performed landing motion of the articulated

legged robot system, PBOT without pre-calculated desired

signals or COG paths, or prior knowledge about impact time.

The controller needs only desired body stiffness and damping

values and position and velocity feedback signals to control

the landing motion.

Human body stiffness and damping behavior was realized

through a stiffness controller formulation about the COG

point. Due to the flexible joint system characteristics of

PBOT, fast subsystem controller has been also developed

and force tracking performance using this controller has been

shown. Also, we have presented a variable body stiffness and

damping case to produce a soft landing motion for upper

body protection which resembles human landing behavior.
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