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Abstract— We study the statistical relationship between an-
gular position and target for industrial robots on a micrometric
scale and this leads us to understand the angular position
stochastic structure. The concept of granular angular space
is introduced and transposed in the Cartesian space. Modeling
is based on experimental work performed for a Kuka and a
Samsung robot. The influence of workspace location, posture
and angular granularity ratio on the Cartesian granular space
are then analysed.

I. INTRODUCTION

In the field of industrial robots, repeatability and precision
are two different concepts. Repeatability measures the dis-
persion between final points when the target is the same and
the move is repeated several times. Precision is the distance
between the mean of points and the target as explained
in ISO9283 [8]. Modellings of repeatability phenomena for
industrial robots exist [7], [10] and influence of workspace
location, load and speed on repeatability were studied [11],
[9]. We proposed a new modelling based on stochastic
ellipsoids which takes into account workspace location and
load [1]. This theory is briefly explained in section II and
was validated on a Kuka robot [5]. The aim of the paper is to
explore the consequence of this modelling for the stochastic
structures of both angular and Cartesian spaces. In section
III, the structure of angular space is detailed and the concept
of granularity ratio introduced. In section IV, the resulting
stochastic structure in the Cartesian space is described. In
section V, the influence of granularity ratio is analysed and
in section VI, we study how redundancy affects the stochastic
structure.

II. STOCHASTIC ELLIPSOID THEORY

We now outline the stochastic ellipsoid theory detailed in
a previous paper [2].
In the formula[ = i(�), the forward kinematics function

of a robot transforms joint coordinates � = (�1> ===> �6) into
workspace coordinates [ = ({> |> })= The Jacobian function
maps the joint velocity vector to the Cartesian velocity
vector in the linear transformation g[ = M(�)g�= This
relationship can also be understood as the link between small
angular and Cartesian variations.
The angular variation g� can be modelled with a Gaussian

distribution [4]. As the 6 axes have independent control,
the angular position random variables are independent. So
g� is a Gaussian vector whose covariance matrix G can be
determined using our experimental procedure.
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Fig. 1. Representation of stochastic ellipsoids associated with different
risks

The theory of Gaussian vectors then indicates that g[
is also a Gaussian vector whose covariance matrix is F =
M × G × MW [12]. The density j of the position vector is
the following : j(g[) = n exp
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The isodensity surfaces are ellipsoids generated by the
equation g[WF�1g[ = Fvw, named "stochastic ellipsoids".
The reference stochastic ellipsoid is determined from the
equation g[WF�1g[ = 1=

Each ellipsoid is associated with a level of risk;the risk is
the probability that the point will fall outside the ellipsoid.
Fig. 1 displays three ellipsoids associated with different
levels of risk.
It is possible to draw reference stochastic ellipsoids in

different locations in the workspace. Then, using a central
homothety we can build stochastic ellipsoids with different
levels of risk.
The main axes of the reference stochastic ellipsoid are the

eigenvectors of the covariance matrix F and the lengths of
the semi-axes are the square root of the eigenvalues of the
covariance matrix F.
To sum up, the cloud of points associated to every target

in the workspace is enclosed in a stochastic ellipsoid. Of
course, the size, orientation and eccentricity of the stochastic
ellipsoid is different depending on workspace location.

III. ANGULAR RESOLUTION AND ��INTERVALS

In this section the relation between the encoder resolution,
the control and the angular position covariance matrix are
discussed. The theoretical modelling is then illustrated for
two different robots.
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A. Control, encoder resolution and covariance matrix

In the control process of a robot actuator, the difference
between the target which is a number, and the real final
position should be nil. Several parameters intervene in the
global control accuracy : for instance, target resolution,
which is the smallest difference taken into account by
the controller, encoder resolution, internal control process
accuracy... As the final position depends on all these factors,
we chose in a pragmatic way, to study the link between the
target and the measured angular positions. Axis standard
deviation lies in the angular covariance matrix previously
introduced. The purpose is now to study the stochastic
structure of angular space, particularly the distance between
the two closest angular position distributions.

B. Target, ��Intervals and granularity ratio

Let us study the relation between the values of the target
Wq, Wq+1,... and the measured angular positions of the
actuator [q, [q+1,.... Let � be the target resolution i.e. the
difference between two nearest targets Wq and Wq+1 which
can be entered in the controller. The positions of the random
variables [q and [q+1 associated with the targets Wq and
Wq+1 are measured and a statistical analysis is performed to
estimate the position distributions, in particular the means
[q and [q+1. The standard deviation � of the two random
variables [q and [q+1 is the same.
The angular distribution is modelled with a normal

density[3]. An important consequence is that the two distri-
butions [q and [q+1 have a non-empty intersection. This
means that some areas can be attained from two different
targets even if the robot is non-redundant. This could be a
problem, but in practice, the probability of this event is very
low !
It is interesting to draw a typology of angular space

stochastic structure. The confidence interval Lq can be used
for this purpose. The length of the intervals depends then on
the standard deviation � so let us call them ��intervals. For
instance, the 99.7% confidence interval is a 6��interval .
The stochastic structure of the angular space depends then

on the relative positions of Lq and Lq+1. Three different cases
may occur as illustrated in fig. 2 :
1. There is a gap Jq between Lq and Lq+1 : this means

that it is impossible to attain some sets of angular positions.
There are some holes in the stochastic structure of the angular
space.
2. The intervals Lq and Lq+1 have a non-empty intersection

Nq. This definitely means that there are at least two different
targets that could put [ in Nq= This is a crucial problem
because it could lead to major micrometric non-linearities.
3. The intervals Lq and Lq+1 are contiguous. The space

is paved with (Lq)q�N The result is much better because
every interval is associated with only one target. Non-
linearities have not disappeared but are reduced to their
smallest possible size. They subsist within the interval Lq
itself.

Fig. 2. Typology of angular stochastic structure depending on the
granularity ratio �

The different cases of this typology can be classified using
the ratio � = �

|[q�[q+1|
for a given risk �. For instance, in

this paper let � = 0> 003 ;if � = 1

6
then the intervals are

contiguous ; if � ? 1

6
then some holes appear and if � is

very small, it is as if there were some aggregates in angular
space ;if � A 1

6
then the intervals are intersecting. For these

reasons, we propose to define � as the granularity ratio.

C. Granularity ratio determination

The following experimental procedure is used to obtain
the � interval for an industrial robot and is applied to one
axis at a time. For the i-th axis, the target cycle is the
following W0 $ W1 $ W0 then W0 $ W1 + � $ W0 then
W0 $ W1 + 2� $ W0 etc. This cycle is repeated at least
25 times. This solution has been preferred to the one which
consisted of achieving first 25 times the cycle W0 $ W1 $ W0
then 25 times the cycle W0 $ W1 + � $ W0 etc. Indeed,
we observed experimentally there was a drift which biased
significantly the results of the second procedure. Conversely,
in the first procedure, the drift influence is equally divided
between every target so the determination of the difference
between the means is not affected.
The positions[1(q)>[2(q)>[3(q)>[4(q) corresponding

with the targets W1> W1+�> W1+2�> W1+3� are measured
using Mitutoyo micrometers. Their precision is higher than
3 �p= The micrometer is set on a system of Microcontrol
beams assuring stability. The difficulty is to move one
actuator at a time which implies low speed to avoid dynamic
efforts.
In this methodology, the internal process of the robot

actuator controller is not taken into account. The real and
effective changes in positions are observed and measured.
As this distribution is normal, it will be characterized by the
mean and variance.
The procedure is carried out on a Kuka robot (fig. 3)

and a Samsung robot (fig. 4) leading to the following results.

1) The Kuka Robot: For the Kuka robot first axis, the
trajectories are illustrated in fig.5. First, it is interesting to
notice that the four trajectories do not intersect, except at one
point. There is still a gap between the different measured
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Fig. 3. "IR364" Kuka Robot Structure

Fig. 4. "Faraman" Samsung Robot Structure

positions associated to different targets. The mean of two
consecutive trajectories [n(q) and [n+1(q) is estimated
and the results are very close whatever the value of n
is as detailed in table I : � = 0=018 mm. The standard
deviation is estimated via the jump process Mn(q + 1) =
[n(q+1)�[n(q) to eliminate the drift influence [5]. The
standard deviation of [n is equal to the standard deviation
of Mn divided by

s
2 which gives � = 0=0076 mm. The

granularity ratio is then � = 0=41=
The stochastic structure is similar for the second and third

axis : the distance between the mean positions [q and [q+1
is almost the same. The granularity ratio increases slowly to
0.52.
From the fourth axis to the sixth axis, the stochastic

structure is more complex. The length between [n+1(q) and
[n(q) depends on k. This is illustrated by fig. 6 and table I=

Fig. 5. Kuka robot first axis trajectories

TABLE I

DISTANCE BETWEEN MEANS FOR THE KUKA ROBOT

Location [1< [2 [2< [3 [3< [4

distance 1st axis (mm) 0.0199 0.0176 0.0181
distance 4th axis (mm) 0.0056 0.0038 0.0084

Fig. 6. Trajectories for Kuka Robot Fourth axis

In more than 15 cases, the trajectories often overlap. If the
target was increased in one direction, the measured position
difference was in the other direction which is an obvious
non-linearity.
For the last three axes corresponding to the wrist, the

granularity ratio increases consequently as detailed in
table II= So it is more and more difficult to decipher the
trajectories and control the robot in the micrometric local
space to avoid non-linearities.

2) The Samsung Robot: The behavior of the Samsung
robot Faraman is quite different from the Kuka robot. First,
the target resolution is 0.01 for the Samsung and 0.001 for
the Kuka. Repeating the same protocol as for the Kuka, we
noticed that for the Samsung robot, the gap between two
trajectories is very wide as illustrated in fig. 7 which displays
the phenomenon for the first axis. The same phenomenon is
observed for the six axes of the robot.
The granularity ratio is very low in the range from 1.5% to

7.9% as detailed in table II. This means that the control of the
robot is not optimized. The controller resolution seems to be

TABLE II

GRANULARITY RATIOS FOR KUKA AND SAMSUNG ROBOT

Axis 1st 2nd 3rd 4th 5th 6th
Kuka ratios 0.41 0.48 0.52 0.73 0.74 1.10
Samsung ratios 0.01 0.02 0.02 0.04 0.05 0.07

Fig. 7. Samsung robot first axis trajectories

FrE11.2

4933



Fig. 8. SCARA2 and some specific locations

much better than the target resolution and as the repeatability
is very good, there are large areas that are unattainable in
the angular space. If the target resolution was 0.001 for
instance, the gap between two nearest angular position would
be narrower and the resolution would be better in the angular
space.
As a conclusion, the two robots Kuka and Samsung have

a completely different angular stochastic structure in the
typology we defined. For the Samsung it is like the structure
� ? 1

6
of fig. 2 whereas for the Kuka it corresponds to the

case � A 1

6
.

IV. ANALYSIS OF GRANULAR SPACE STRUCTURE OF
SCARA2

In this section, we suppose � = 1

6
so that the angular

stochastic structure is contiguous. We investigate the result-
ing stochastic structure in Cartesian space, by considering,
for simplicity, a SCARA2 robot with two axes controlled
by the angles (�1> �2). The lengths of the two arms are
the same. Three workspace locations are chosen to analysis
the evolution of the Cartesian space stochastic structure (fig.
8). They are typical of the different structures that can be
observed.
For the SCARA2, the target is a pair of angles (�1> �2).

Let (�1>�2) be the target resolution on the first and second
axis. A stochastic ellipse is associated to every target. Let
the center position of one ellipse be known and let us draw
the other ellipses closest to the first one. The centers of the
surrounding ellipses are at a distance :

M (�1> �2)× (n�1> s�2)
w

where (n> s) 5 Z2> M (�1> �2) is the Jacobian matrix. Let
us draw different ellipses when �1 = �2 = 0=06 udg. The
resulting structure is illustrated in fig. 9.
At first glance, as the scale of local space is the same

for the three locations, we notice that the disposition, size
and eccentricity of the ellipses are completely different. The
surface of the stochastic ellipses are considerably smaller
in the first location compared to the others. Let us analyse
more precisely the differences and the consequences for
micrometric repositioning behavior.
In the first location, ellipses have a high eccentricity of

nearly 10 and are positioned on a regular rectangular mesh.

Fig. 9. Stochastic structure of Cartesian space for the SCARA2 at specific
locations

Using a different target, it is possible to correct the position
with a higher precision in the x-direction than in the y-
direction. The spatial resolution is better in the x-direction.
Adding (�1> 0) to the target produces an average move of
0.006 mm in the x-axis ;but adding (0>�2) to the target
gives an average displacement of 0.06 mm in the y-axis. So
it is easier to control the position in the x-axis direction.
Of course it is not a direct displacement which would be
impossible because of friction, but it implies returning to
the initial posture and coming back with a slightly different
target.
Another important conclusion is that it is nearly impossible

to reach the holes between ellipses ;the probability is very
low. Conversely, the chances of reaching a small area are
higher as this area is situated near the centre of an ellipse.
It means that the Cartesian space has a "granular stochastic
structure" : there are some areas you have no chance of going
to and some areas where the robot is attracted which are
called aggregates. That is a very important result for the
micrometric behavior of the robot and it explains most of
the observed non-linearities.
For the second location, the eccentricity is around two,

i.e. the major axis length is twice the minor axis length.
The mesh is not rectangular any more but is based on
parallelograms. Here again the granular stochastic structure
is present with holes and granularities, corresponding to low
and high probability density values. Modifying the target,
it is possible to change average position by 0.06 mm in
the x-direction and by 0.06 mm in the y-direction but the
corrections are not always independent. A correction of 0.06
mm in the x-direction is possible keeping the same y-value.
But a correction of 0.06 mm in the y-direction will produce
an average displacement of 0.03 mm in the x-direction.
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Fig. 10. Evolution of workspace granularity with the angular space
granularity ratio

This is the case because there is a correlation in x- and y-
displacements.
For the third location, eccentricity is high, nearly 6,

and ellipses are meshed in a different way. Ellipses are
intertwined so the x- and y- spatial resolutions are dependant.
For instance, a new target can correct the x-position in two
different ways: either the same y-position is to be kept, and
the average displacement in x will be 0.12 mm ;or a small
displacement in y of 0.02 mm is acceptable, and then the
smallest displacement in x will be only 0.06 mm.
These different situations for a very simple assembly

robot illustrate clearly the concept of "granular stochastic
structure". The cartesian space has holes and aggregates,
meaning areas with low or high positioning probabilities and
this is essential to understand robot micrometric behavior and
be able to control it better.

V. INFLUENCE OF GRANULARITY RATIO

In the preceding section, the granularity ratio was � = 1

6

and the resulting stochastic structure for the two axes was
displayed in fig. 9= Let us detail what happens if the gran-
ularity ratio of the angular actuator distribution is different.
Ellipses are drawn for the SCARA2 robot in location 2. The
resulting structures are detailed in fig. 10.
When the granularity ratio drops and this means � ¿ 1

6
,

stochastic ellipses contract. As a consequence, the volume
of unattainable space increases and the final position is
concentrated in small and easy to attain areas. This seems
to be very interesting but there is a drawback : if the small
area you want to go to is outside one aggregate position, you
have no chance of going there.
On the other hand, when the granularity ratio increases

and this means � À 1

6
, ellipses are larger and their edges

are outside the mesh. As a consequence, in the stochastic
space, the contrast between holes and aggregates lowers.
This means that every point in the workspace is in theory

Fig. 11. Redundant SCARA3 robot

Fig. 12. Three different postures in location 2 for SCARA3

accessible but the probability of reaching them decreases as
the granularity ratio increases. So in practice several attempts
are necessary to get there.

VI. INFLUENCE OF REDUNDANCY

In this section, the influence of redundancy on the sto-
chastic structure of the Cartesian space is studied via a planar
SCARA3 robot with three links of the same length and three
actuators displayed in fig. 11=The granularity ratio is � = 1

6

for the 3 axes and the target resolution is identical to the
SCARA2.
The lengths of the three arms are chosen equal and

the workspace surface is the same as the SCARA2. The
stochastic structure is detailed in location 2 for three different
postures described in fig. 12.
Fig.13 reveals the positions of some aggregates for the

first, second and third posture. To keep the figures readable,
only one ellipse is represented and the others are just
positioned by their centers. But for a given posture, all
ellipses are locally of the same size and orientation.
For a given location in the workspace, there is one mesh

for the stochastic ellipse center positions for the SCARA2
which was described in fig. 9. But, for the SCARA3, the
stochastic structure of Cartesian space depends on the posture
of the robot. First, the main features of the stochastic ellipses
are not the same : surface, orientation and eccentricity are
slightly different. Then, the mesh of the stochastic ellipse
center positions are not the same. Comparing SCARA2 and
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Fig. 13. Positions of aggregate centers in the Cartesian stochastic space
for three different postures of SCARA3

Fig. 14. Comparison of stochastic ellipses for SCARA2 and 3 postures of
SCARA3

SCARA3 workspace stochastic structures, the conclusion is
that they differ mainly from the local density of the ellipse
center: a given surface in the local workspace encloses more
SCARA3 ellipses than SCARA2 ellipses. As a consequence,
the SCARA3 is easier to manoeuvre in the local micrometric
space. Changing the target slightly will change the mean
position slightly. On the contrary, if the SCARA2 target is
slightly changed, the resulting displacement will be steeper.
Fig. 14 compares the surface and the orientation of the

stochastic ellipses for these 3 postures of SCARA3 robot and
for also SCARA2. It is obvious than the major differences in
the stochastic structure do not lie in the surfaces or orienta-
tions of the stochastic ellipses because they are relatively the
same. But the difference lies in the way the ellipse centers
pave locally the Cartesian workspace. We have a paving of
separated stochastic ellipses for the SCARA2 robot, and for
the SCARA3, ellipses have a non-empty intersection
So the redundant SCARA3 robot has a better spatial

resolution. It is better to use a redundant robot to manoeuvre
in a micrometric local space but it implies of course a greater
effort in the choice of the corrected target.

VII. CONCLUSIONS

In this paper, we first outlined stochastic ellipsoid mod-
elling then introduced the concept of granular stochastic
structure for angular distribution. The distance between the
two closest targets in the controller is called the target resolu-
tion and the link between target resolution and angular gran-
ular stochastic structure is detailed. We defined a granularity
ratio and drew up a typology of granular stochastic structures.
The modeling was applied to two industrial robots, a Kuka
and a Samsung.
Then, we tried to analyse the Cartesian stochastic structure

resulting from the angular granular structure. First for a
SCARA2 robot, we studied the influence of workspace
location and granularity ratio. Finally, the case of a redundant
SCARA3 robot is analysed, showing that it was better at
manoeuvring in the local micrometric space.
As a conclusion, a detailed analysis of the stochastic

structure of micrometric Cartesian space is carried out. It
explains most of the non-linearities observed experimentally
and this modeling will be used in our future work to develop
a more precise local repositioning, trying to reach a high level
of precision in the micrometric local space.
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