
Value Function Approximation on Non-Linear Manifolds

for Robot Motor Control

Masashi Sugiyama∗,† Hirotaka Hachiya† Christopher Towell† and Sethu Vijayakumar†

Abstract— The least squares approach works efficiently in
value function approximation, given appropriate basis func-
tions. Because of its smoothness, the Gaussian kernel is a
popular and useful choice as a basis function. However, it
does not allow for discontinuity which typically arises in real-
world reinforcement learning tasks. In this paper, we propose
a new basis function based on geodesic Gaussian kernels,
which exploits the non-linear manifold structure induced by
the Markov decision processes. The usefulness of the proposed
method is successfully demonstrated in a simulated robot arm
control and Khepera robot navigation.

I. INTRODUCTION

Value function approximation is an essential ingredient

of reinforcement learning (RL), especially in the context

of solving Markov Decision Processes (MDPs) using policy

iteration methods [1]. In problems with large discrete state

space or continuous state spaces, it becomes necessary to

use function approximation methods to represent the value

functions. A least squares approach using a linear com-

bination of predetermined under-complete basis functions

has shown to be promising in this task [2]. Fourier func-

tions (trigonometric polynomials), Gaussian kernels [3], and

wavelets [4] are popular basis function choices for general

function approximation problems. Both Fourier bases (global

functions) and Gaussian kernels (localized functions) have

certain smoothness properties that make them particularly

useful for modeling inherently smooth, continuous functions.

Wavelets provide basis functions at various different scales

and may also be employed for approximating smooth func-

tions with local discontinuity.

Typical value functions in RL tasks are predominantly

smooth with some discontinuous parts [5]. To illustrate this,

let us consider a toy RL task of guiding an agent to a goal in a

grid world (see Fig.1(a)). In this task, a state corresponds to a

two-dimensional Cartesian position of the agent. The agent

can not move over the wall, so the value function of this

task is highly discontinuous across the wall. On the other

hand, the value function is smooth along the maze since

neighboring reachable states in the maze have similar values

(see Fig.1(b)). Due to the discontinuity, simply employing

Fourier functions or Gaussian kernels as basis functions

The authors acknowledge financial support from MEXT (Grant-in-Aid
for Young Scientists 17700142 and Grant-in-Aid for Scientific Research (B)
18300057), the Okawa Foundation, and EU Erasmus Mundus Scholarship.

∗Department of Computer Science, Tokyo Institute of
Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
sugi@cs.titech.ac.jp

†School of Informatics, University of Edinburgh, The King’s Buildings,
Mayfield Road, Edinburgh EH9 3JZ, UK. H.Hachiya@sms.ed.ac.uk,
C.C.Towell@sms.ed.ac.uk, sethu.vijayakumar@ed.ac.uk

tend to produce undesired, non-optimal results around the

discontinuity, affecting the overall performance significantly.

Wavelets could be a viable alternative, but are over-complete

bases—one has to appropriately choose a subset of basis

functions, which is not a straightforward task in practice.

Recently, the article [5] proposed considering value func-

tions defined not on the Euclidean space, but on graphs

induced by the MDPs (see Fig.1(c)). Value functions which

usually contain discontinuity in the Euclidean domain (e.g.,

across the wall) are typically smooth on graphs (e.g., along

the maze). Hence, approximating value functions on graphs

can be expected to work better than approximating them in

the Euclidean domain.

The spectral graph theory [6] showed that Fourier-like

smooth bases on graphs are given as minor eigenvectors

of the graph-Laplacian matrix. However, their global nature

implies that the overall accuracy of this method tends to

be degraded by local noise. The article [7] defined diffusion

wavelets, which posses natural multi-resolution structure on

graphs. The paper [8] showed that diffusion wavelets could

be employed in value function approximation, although the

issue of choosing a suitable subset of basis functions from

the over-complete set is not discussed—this is not straight-

forward in practice due to the lack of a natural ordering of

basis functions.

In the machine learning community, Gaussian kernels

seem to be more popular than Fourier functions or wavelets

because of their locality and smoothness [3], [9], [10]. Fur-

thermore, Gaussian kernels have ‘centers’, which alleviates

the difficulty of basis subset choice, e.g., uniform allocation

[2] or sample-dependent allocation [11]. In this paper, we

therefore define Gaussian kernels on graphs (which we call

geodesic Gaussian kernel), and propose using them for

value function approximation. Our definition of Gaussian

kernels on graphs employs the shortest paths between states

rather than the Euclidean distance, which can be computed

efficiently using the Dijkstra algorithm [12], [13]. Moreover,

an effective use of Gaussian kernels opens up the possibility

to exploit the recent advances in using Gaussian processes

for temporal difference learning [11].

When basis functions defined on the state space are used

for approximating the state-action value function, they should

be extended over the action space. This is typically done

by simply copying the basis functions over the action space

[2], [5]. In this paper, we propose a new strategy for this

extension, which takes into account the transition after taking

actions. This new strategy is demonstrated to work very well

when the transition is predominantly deterministic.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThA3.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1733

→
→
→
↓
→
→
→
→
→
→
→
→
→
→
↑
→
↑
→

→
→
→
↓
→
↓
→
→
→
→
→
→
→
→
→
→
↑
→

→
→
↓
↓
→
↓
↓
→
→
→
→
→
↑
→
↑
→
↑
→

→
→
→
↓
→
→
→
→
→
→
→
↑
↑
→
↑
→
→
→

→
→
↓
↓
→
↓
→
→
→
→
→
→
→
→
↑
→
→
→

→
→
→
↓
→
→
→
→
→
→
→
→
↑
→
→
→
→
→

→
→
→
↓
↓
↓
↓
↓
→
→
→
↑
↑
→
→
→
↑
→

↓
↓
→
↓
↓
↓
↓
↓
→
→
→
↑
→
→
↑
→
↑
→

↓
↓
↓
↓
↓
↓
↓
↓
→
→
↑
↑
↑
↑
↑
↑
↑
↑

→
↑

→
→
→
→
→
↑
↑
→
→
→
→
↑
↑
↑
↑
↑
→
↑

→
→
↑
→
→
→
→
→
↑
↑
↑
→
→
→
→
→
→
↑

→
→
↑
→
↑
↑
↑
↑
↑
→
→
→
↑
↑
→
↑
↑
↑

→
→
→
→
→
↑
→
↑
→
↑
↑
↑
↑
↑
↑
↑
↑
↑

→
→
→
↑
↑
↑
↑
↑
↑
↑
→
↑
↑
↑
↑
↑
↑
↑

→
→
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
→
↑
↑
↑
→
↑

→
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑

→
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑

↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(a)

5

10

15
20

5

10

15

20

−30

−20

−10

x

y

(b) (c)

Fig. 1. An illustrative example of an RL task of guiding an agent to a goal in the grid world. (a) Black areas are walls over which the agent cannot move
while the goal is represented in gray. Arrows on the grids represent one of the optimal policies. (b) Optimal state value function (in log-scale). (c) Graph
induced by the MDP and a random policy.

II. FORMULATION OF THE REINFORCEMENT LEARNING

PROBLEM

In this section, we briefly introduce the notation and

reinforcement learning (RL) formulation that we will use

across the manuscript.

A. Markov Decision Processes

Let us consider a Markov decision process (MDP)

(S,A,P , R, γ), where S = {s(1), s(2), . . . , s(n)} is a finite1

set of states, A = {a(1), a(2), . . . , a(m)} is a finite set of

actions, P(s, a, s′) : S × A × S → [0, 1] is the joint

probability of making a transition to state s′ if action a is

taken in state s, R(s, a, s′) : S×A×S → R is an immediate

reward for making a transition from s to s′ by action a,

and γ ∈ [0, 1) is the discount factor for future rewards. The

expected rewardR(s, a) for a state-action pair (s, a) is given

as

R(s, a) =
∑

s′∈S

P(s, a, s′)R(s, a, s′). (1)

Let π(s) : S → A be a deterministic policy which the agent

follows. In this paper, we focus on deterministic policies

since there always exists an optimal deterministic policy [2].

Let Qπ(s, a) : S×A → R be a state-action value function for

policy π, which indicates the expected long-term discounted

sum of rewards the agent receives when the agent takes

action a in state s and follows policy π thereafter. Qπ(s, a)
satisfies the following Bellman equation:

Qπ(s, a) = R(s, a) + γ
∑

s′∈S

P(s, a, s′)Qπ(s′, π(s′)). (2)

The goal of RL is to obtain a policy which results in

maximum amount of long-term rewards. The optimal policy

π∗(s) is defined as π∗(s) = argmaxa∈A Q∗(s, a), where

Q∗(s, a) is the optimal state-action value function defined

by Q∗(s, a) = maxπ Qπ(s, a).

1For the moment, we focus on discrete state spaces. In Sec.III-D, we
extend the proposed method to the continuous state space.

B. Least Squares Policy Iteration

In practice, the optimal policy π∗(s) can not be directly

obtained since R(s, a) and P(s, a, s′) are usually unknown;

even when they are known, direct computation of π∗(s) is

often computationally intractable.

To cope with this problem, the paper [2] proposed ap-

proximating the state-action value function Qπ(s, a) using a

linear model:

Q̂π(s, a; w) =

k∑

i=1

wiφi(s, a), (3)

where k is the number of basis functions which is usu-

ally much smaller than the number of states, w =
(w1, w2, . . . , wk)⊤ are the parameters to be learned, ⊤

denotes the transpose, and {φi(s, a)}ki=1 are pre-determined

basis functions. Note that k and {φi(s, a)}ki=1 can depend

on policy π, but we do not show the explicit dependence

for the sake of simplicity. Assume we have roll-out samples

from a sequence of actions: {(si, ai, ri, s
′
i)}ti=1, where each

tuple denotes the agent experiencing a transition from si

to s′i on taking action ai with immediate reward ri. Under

the Least Squares Policy Iteration (LSPI) formulation [2],

the parameter w is learned so that the Bellman equation

(2) is optimally approximated in the least squares sense2.

Consequently, based on the approximated state-action value

function with learned parameter ŵ
π

, the policy is updated

as

π(s)←− argmax
a∈A

Q̂π(s, a; ŵπ). (4)

Approximating the state-action value function and updating

the policy is iteratively carried out until some convergence

criterion is met.

III. GAUSSIAN KERNELS ON GRAPHS

In the LSPI algorithm, the choice of basis functions

{φi(s, a)}ki=1 is an open design issue. Gaussian kernels

have traditionally been a popular choice [2], [11], but they

2There are two alternative approaches: Bellman residual minimization

and fixed point approximation. We take the latter approach following the
suggestion in the reference [2].

ThA3.3

1734

can not approximate discontinuous functions well. Recently,

more sophisticated methods of constructing suitable basis

functions have been proposed, which effectively make use

of the graph structure induced by MDPs [5]. In this section,

we introduce a novel way of constructing basis functions

by incorporating the graph structure; while relation to the

existing graph-based methods is discussed in the separate

report [14].

A. MDP-Induced Graph

Let G be a graph induced by an MDP, where states S
are nodes of the graph and the transitions with non-zero

transition probabilities from one node to another are edges.

The edges may have weights determined, e.g., based on

the transition probabilities or the distance between nodes.

The graph structure corresponding to an example grid world

shown in Fig.1(a) is illustrated in Fig.1(c). In practice,

such graph structure (including the connection weights) are

estimated from samples of a finite length. We assume that

the graph G is connected. Typically, the graph is sparse in

RL tasks, i.e., ℓ ≪ n(n − 1)/2, where ℓ is the number of

edges and n is the number of nodes.

B. Ordinary Gaussian Kernels

Ordinary Gaussian kernels (OGKs) on the Euclidean space

are defined as

K(s, s′) = exp

(
−ED(s, s′)2

2σ2

)
, (5)

where ED(s, s′) are the Euclidean distance between states

s and s′; for example, ED(s, s′) = ‖x − x
′‖ when the

Cartesian positions of s and s′ in the state space are given

by x and x
′, respectively. σ2 is the variance parameter of

the Gaussian kernel.

The above Gaussian function is defined on the state space

S, where s′ is treated as a center of the kernel. In order

to employ the Gaussian kernel in the LSPI algorithm, it

needs to be extended over the state-action space S × A.

This is usually carried out by simply ‘copying’ the Gaussian

function over the action space [2], [5]. More precisely: let

the total number k of basis functions be mp, where m is the

number of possible actions and p is the number of Gaussian

centers. For the i-th action a(i) (∈ A) (i = 1, 2, . . . , m) and

for the j-th Gaussian center c(j) (∈ S) (j = 1, 2, . . . , p), the

(i + (j − 1)m)-th basis function is defined as

φi+(j−1)m(s, a) = I(a = a(i))K(s, c(j)), (6)

where I(·) is the indicator function, i.e., I(a = a(i)) = 1 if

a = a(i) otherwise I(a = a(i)) = 0.

Gaussian kernels are shift-invariant, i.e., they do not

directly depend on the absolute positions x and x
′, but

depend only on the difference between two positions; more

specifically, Gaussian kernels depend only on the distance

between two positions.

C. Geodesic Gaussian Kernels

On graphs, a natural definition of the distance would be

the shortest path. So we define Gaussian kernels on graphs

based on the shortest path:

K(s, s′) = exp

(
−SP(s, s′)2

2σ2

)
, (7)

where SP(s, s′) denotes the shortest path from state s to

state s′. The shortest path on a graph can be interpreted as

a discrete approximation to the geodesic distance on a non-

linear manifold [6]. For this reason, we call Eq.(7) a geodesic

Gaussian kernel (GGK).

Shortest paths on graphs can be efficiently computed using

the Dijkstra algorithm [12]. With its naive implementation,

computational complexity for computing the shortest paths

from a single node to all other nodes is O(n2), where n is

the number of nodes. If the Fibonacci heap is employed, the

computational complexity can be reduced to O(n log n + ℓ)
[13], where ℓ is the number of edges. Since the graph in

value function approximation problems is typically sparse

(i.e., ℓ ≪ n2), using the Fibonacci heap provides signifi-

cant computational gains. Furthermore, there exist various

approximation algorithms which are computationally very

efficient (see [15] and and references therein).

Analogous to OGKs, we need to extend GGKs to the state-

action space for using them in the LSPI method. A naive way

is to just employ Eq.(6), but this can cause a ‘shift’ in the

Gaussian centers since the state usually changes when some

action is taken. To incorporate this transition, we propose

defining the basis functions as the expectation of Gaussian

functions after transition, i.e.,

φi+(j−1)m(s, a) = I(a = a(i))
∑

s′∈S

P(s, a, s′)K(s′, c(j)).

(8)

This shifting scheme is expected to work well when the

transition is predominantly deterministic (see Sec.IV and

Sec.V-A for experimental evaluation).

D. Extension to Continuous State Spaces

So far, we focused on discrete state spaces. However, the

concept of GGKs can be naturally extended to continuous

state spaces, which is explained here. First, the continuous

state space is discretized, which gives a graph as a discrete

approximation to the non-linear manifold structure of the

continuous state space. Based on the graph, we construct

GGKs in the same way as the discrete case. Finally, the

discrete GGKs are interpolated, e.g., using a linear method

to give continuous GGKs.

Although this procedure discretizes the continuous state

space, it must be noted that the discretization is only for the

purpose of obtaining the graph as a discrete approximation of

the continuous non-linear manifold; the resulting basis func-

tions themselves are continuously interpolated and hence, the

state space is still treated as continuous as opposed to other

conventional discretization procedures.

ThA3.3

1735

→

→

→

→

↓

→

→

→

→

↑

→

→

→

→

→

→

→

↓

→

↓

→

↑

→

→

↓

→

→

↑

↓

↓

↓

↓

→

↑

→

→

↓

→

↑

↑

↓

↓

↓

↓

→

↑

→

→

↓

→

→

→

→

→

→

→

→

→

→

→

→

↓

→

→

→

↓

→

→

↑

→

→

→

→

→

→

→

→

→

→

→

↑

↑

↑

→

→

→

→

→

→

↓

→

→

→

→

↓

→

→

→

→

↓

→

↑

→

→

↓

↓

↓

↓

→

↓

→

↑

↑

→

→

→

→

→

↓

↓

→

↓

→

→

→

→

→

→

↓

↓

↓

↓

↓

↓

→

→

→

→

↑

→

↓

↓

↓

↓

↓

↓

→

→

→

↑

→

→

→

→

→

↑

↑

↑

→

→

↑

→

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Sutton’s maze

→
→
↓
→
→
↓
→
↓
→
→
→
→
↑
→
→
→
→
↑

→
→
→
→
→
↓
→
→
→
→
→
→
→
→
→
→
→
↑

→
→
→
→
→
↓
→
→
→
→
→
↑
→
→
→
↑
↑
↑

↓
→
→
→
→
↓
→
↓
→
→
→
↑
→
↑
↑
↑
↑
↑

↓
↓
↓
↓
↓
↓
↓
↓
→
→
↑
↑
↑
↑
↑
↑
↑
↑

↓
→
→

↓
↓
↓
↓
↓
↓
↓
↓
→
→
→
→
→
↑
↑
↑
↑
↑

↓
↓
→
→
→
↓
↓
↓
→
→
↑
→
→
→
→
↑
↑
↑

↓
↓
↓
↓
↓
↓
↓
↓
↓
→
→
→
→
→
↑
↑
↑
↑

↓
↓
↓
↓
↓
→
→
→
→
→
→
→
→
↑
↑
↑
↑
↑

↓
↓
↓
↓
↓
↓
↓
→
→
→
↑
↑
↑
↑
↑
↑
↑
↑

↓
↓
→

→
→
↓
↓
→
→
→
→
↓
↓
→
→
→
→
→
→
↓
→

↓
→
→
→
→
→
→
↓
→
↓
↓
→
→
↓
→
→
↓
→

↓
↓
↓
→
→
→
↓
↓
↓
↓
↓
↓
↓
↓
→
→
→
→

↓
↓
↓
↓
↓
↓
→
→
→
→
↓
↓
↓
↓
↓
↓
↓
→

↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
→
→
↓
→
↓
→

↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(b) Three-room maze

Fig. 2. Two intricated mazes used for simulation.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of kernels

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r

GGK(1)

GGK(5)

GGK(9)

OGK(1)

OGK(5)

OGK(9)

GLE

DW

50 100

7

8

9

10

x 10
−3

(a) Sutton’s maze

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Number of kernels

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

GGK(1)

GGK(5)

GGK(9)

OGK(1)

OGK(5)

OGK(9)

GLE

DW

50 100

4

5

x 10
−4

(b) Three-room maze

Fig. 3. Mean squared error of approximated value functions averaged over 100 trials for
the Sutton and three room mazes. In the legend, the standard deviation σ of GGKs and
OGKs is denoted in the bracket.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of kernels

F
ra

c
ti
o

n
 o

f
o

p
ti
m

a
l
s
ta

te
s

(a) Sutton’s maze

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of kernels

F
ra

c
ti
o

n
 o

f
o

p
ti
m

a
l
s
ta

te
s

(b) Three-room maze

Fig. 4. Fraction of optimal states averaged over 100
trials for the Sutton and three room mazes.

IV. EXPERIMENTAL COMPARISON

In this section, we report the results of extensive and

systematic experiments for illustrating the difference between

GGKs and other basis functions. We employ two standard

grid world problems illustrated in Fig.2, and evaluate the

goodness of approximated value functions by computing the

mean squared error (MSE) with respect to the optimal value

function and the goodness of obtained policies by calculating

the fraction of states from which the agent can get to the

goal optimally (i.e., in the shortest number of steps). 20
series of random walk of length 300 are gathered as training

samples, which are used for estimating the graph as well

as the transition probability and expected reward. We set

the edge weights in the graph to 1 (which is equivalent

to the Euclidean distance between two nodes). We test

GGKs, OGKs, graph-Laplacian eigenfunctions (GLEs) [5],

and diffusion wavelets (DWs) [8].

This simulation is repeated 100 times for each maze

and each method, randomly changing training samples in

each run. The mean of the above scores as a function

of the number of bases is plotted in Fig.4. Note that

the actual number of bases is four times more because

of the extension of basis functions over the action space

(see Eq.(6) and Eq.(8)). GGKs and OGKs are tested with

small/medium/large Gaussian widths.

Fig.3 depicts MSEs of the approximated value functions

for each method. They show that MSEs of GGKs with width

1, OGKs with width 1, GLEs, and DWs are very small and

decrease as the number of kernels increases. On the other

hand, MSEs of GGKs and OGKs with medium/large width

are large and increase as the number of kernels increases.

Therefore, from the viewpoint of approximation quality of

the value functions, the width of GGKs and OGKs should

be small.

Fig.4 depicts the fraction of optimal states in the obtained

policy. They show that overall GGKs with medium/large

width give much better policies than OGKs, GLEs, and DWs.

An interesting finding from the graphs is that GGKs tend

to work better if the Gaussian width is large, while OGKs

show the opposite trend; this may be explained as follows.

Tails of OGKs extend across the wall. Therefore, OGKs

with large width tend to produce undesired value function

and erroneous policies around the partitions. This tail effect

can be alleviated if the Gaussian width is made small.

ThA3.3

1736

However, this in turn makes the approximated value function

fluctuating; so the resulting policies are still erroneous. The

fluctuation problem with a small Gaussian width seems to be

improved if the number of bases is increased, while the tail

effect with a large Gaussian width still remains even when

the number of bases is increased. On the other hand, GGKs

do not suffer from the tail problem thanks to the geodesic

construction. Therefore, GGKs allows us to make the width

large without being affected by the discontinuity across the

wall. Consequently, smooth value functions along the maze

are produced and hence better policies can be obtained by

GGKs with large widths. This result highlights a helpful

property since it alleviates the practical issue of determining

the values of the Gaussian width parameter.

V. APPLICATIONS

As discussed in the previous section, the proposed GGKs

bring a number of preferable properties for making value

function approximation effective. In this section, we in-

vestigate the application of the GGK-based method to the

challenging problems of a (simulated) robot arm control and

mobile robot navigation and demonstrate its usefulness.

A. Robot Arm Control

We use a simulator of a two-joint robot arm (moving in

a plane) illustrated in Fig.5(a). The task is to lead the end

effector (‘hand’) of the arm to an object while avoiding the

obstacles. Possible actions are to increase or decrease the

angle of each joint (‘shoulder’ and ‘elbow’) by 5 degrees in

the plane, simulating coarse stepper motor joints. Thus the

state space S is the 2-dimensional discrete space consisting

of two joint angles as illustrated in Fig.5(b). The black area

in the middle corresponds to the obstacle in the joint angle

state space. The action space A involves 4 actions: increase

or decrease one of the joint angles. We give a positive

immediate reward +1 when the robot’s end effector touches

the object; otherwise the robot receives no immediate reward.

Note that actions which make the arm collide with obstacles

are not allowed. The discount factor is set to γ = 0.9.

In this environment, we can change the joint angle exactly

by 5 degrees, so the environment is deterministic. However,

because of the obstacles, it is difficult to explicitly compute

an inverse kinematic model; furthermore, the obstacles intro-

duce discontinuity in value functions. Therefore, this robot

arm control task is an interesting test bed for investigating

the behaviour of GGKs.

We collected training samples from 50 series of 1000
random arm movements, where the start state is chosen

randomly in each trial. The graph induced by the above MDP

consists of 1605 nodes and we assigned uniform weights to

the edges. There are totally 16 goal states in this environment

(see Fig.5(b)), so we put the first 16 Gaussian centers at the

goals and the remaining centers are chosen randomly in the

state space. For GGKs, kernel functions are extended over

the action space using the shifting scheme (see Eq.(8)) since

the transition is deterministic in this experiment.

Fig.6 illustrates the value functions approximated using

GGKs and OGKs3. The graphs show that GGKs give a nice

smooth surface with obstacle-induced discontinuity sharply

preserved, while OGKs tend to smooth out the discontinuity.

This makes a significant difference in avoiding the obstacle:

from ‘A’ to ‘B’ in Fig.5(b), the GGK-based value function

results in a trajectory that avoids the obstacle (see Fig.6(a)).

On the other hand, the OGK-based value function yields a

trajectory that tries to move the arm through the obstacle

by following the gradient upward (see Fig.6(b)). The latter

causes the arm to get stuck behind the obstacle.

Fig.7 summarizes the performance of GGKs and OGKs

measured by the percentage of successful movements (i.e.,

the end effector reaches the target) averaged over 30 indepen-

dent runs. More precisely, in each run, totally 50000 training

samples are collected using a different random seed, a policy

is then computed by the GGK- or OGK-based method using

LSPI, and the obtained policy is tested. This graph shows

that GGKs remarkably outperform OGKs since the arm can

successfully avoid the obstacle. The performance of OGK

does not go beyond 0.6 even when the number of kernels

is increased. This is caused by the ‘tail effect’ of ordinary

Gaussian functions; the OGK-based policy can not lead the

end effector to the object if it starts from the bottom-left half

of the state space

When the number of kernels is increased, the performance

of both GGKs and OGKs once gets worse at around k =
20. This would be caused by our kernel center allocation

strategy: the first 16 kernels are put at the goal states and

the remaining kernel centers are chosen randomly. When k
is less than or equal to 16, the approximated value function

tends to have a unimodal profile since all kernels are put

at the goal states. However, when k is larger than 16, this

unimodality is broken and the surface of the approximated

value function gets slightly fluctuated. This small fluctuation

can cause an error in policies and therefore the performance

is degraded at around k = 20. This performance degradation

tends to be improved as the number of kernels is further

increased.

Overall, the above result shows that when GGKs are

combined with our kernel center allocation strategy, almost

perfect policies can be obtained with a very small number of

kernels. Therefore, the proposed method is computationally

very advantageous.

B. Robot Agent Navigation

The above simple robot arm control simulation shows that

the GGK method is promising. Here we apply GGKs to a

more challenging task of a mobile robot navigation, which

involves a high-dimensional and continuous state space.

We employ a Khepera robot illustrated in Fig.8(a) on a

navigation task. A Khepera is equipped with 8 infra-red

3For illustration purposes, let us display the state value function V π(s) :
S → R, which is the expected long-term discounted sum of rewards the
agent receives when the agent takes actions following policy π from state s.
From the definition, it can be confirmed that V π(s) is expressed V π(s) =
Qπ(s, π(s)).

ThA3.3

1737

(a) A schematic

A
B

(b) State space

Fig. 5. A two-joint robot arm.

−100

0

100

180

0

−180

0

1

2

3

Joint 1 (degree)
Joint 2 (degree)

(a) Geodesic Gaussian kernels

−100

0

100

180

0

−180

0

0.5

1

Joint 1 (degree)
Joint 2 (degree)

(b) Ordinary Gaussian kernels

Fig. 6. Approximated value functions.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of kernels

F
ra

c
ti
o

n
 o

f
s
u

c
c
e

s
s
fu

l
tr

ia
ls

GGK(5)

GGK(9)

OGK(5)

OGK(9)

Fig. 7. Number of successful trials.

sensors (‘s1’ to ‘s8’ in the figure) which measure the strength

of the reflected light returned from surrounding obstacles.

Each sensor produces a scalar value between 0 and 1023
(which may be regarded as continuous): the sensor obtains

the maximum value 1023 if an obstacle is just in front

of the sensor and the value decreases as the obstacle gets

farther till it reaches the minimum value 0. Therefore, the

state space S is 8-dimensional and continuous. The Khepera

has two wheels and takes the following 4 defined actions:

forward, left-rotation, right-rotation and backward (i.e., the

action space A contains 4 actions). The speed of the left

and right wheels for each action is described in Fig.8(a) in

the bracket (the unit is pulse per 10 milliseconds). Note that

the sensor values and the wheel speed are highly stochastic

due to the change of the ambient light, noise, the skid etc.

Furthermore, perceptual aliasing occurs due to the limited

range and resolution of sensors. Therefore, the state transition

is highly stochastic. We set the discount factor to γ = 0.9.

The goal of the navigation task is to make the Khepera

explore the environment as much as possible. To this end, we

give a positive reward +1 when the Khepera moves forward

and a negative reward −2 when the Khepera collides with an

obstacle. We do not give any reward to the left/right rotation

and backward actions. This reward design encourages the

Khepera to go forward without hitting obstacles, through

which extensive exploration in the environment could be

achieved.

We collected training samples from 200 series of 100
random movements in a fixed environment with several ob-

stacles (see Fig.9(a)). Then we constructed a graph from the

gathered samples by discretizing the continuous state space

using the Self-Organizing Map (SOM) [16]. The number of

nodes (states) in the graph is set to 696 (equivalent with

the SOM map size of 24 × 29); this value is computed by

the standard rule-of-thumb formula 5
√

n [17], where n is

the number of samples. The connectivity of the graph is

determined by the state transition probability computed from

the samples, i.e., if there is a state transition from one node

to another in the samples, an edge is established between

these two nodes and the edge weight is set according to

the Euclidean distance between them. Fig.8(b) illustrates an

example of the obtained graph structure—for visualization

purposes, we projected the 8-dimensional state space onto a

2-dimensional subspace spanned by

(−1 −1 0 0 1 1 0 0),
(0 0 1 1 0 0 −1 −1).

(9)

The i-th element in the above bases corresponds to the output

of the i-th sensor (see Fig.8(a)). Therefore, the projection

onto this subspace roughly means that the horizontal axis

corresponds to the distance to the left/right obstacle, while

the vertical axis corresponds to the distance to the front/back

obstacle. For clear visibility, we only displayed the edges

whose weight is less than 250. This graph has a notable

feature: the nodes around the region ‘B’ in the figure are

ThA3.3

1738

(a) A schematic

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

1000

(b) State space projected onto a 2-dimensional subspace for visualization.

Fig. 8. Khepera robot.

(a) Training

(b) Test

Fig. 9. Simulation environment

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

1000

↑↑↑↑↑↑↑⊃⊃
⊃⊃

⊃
⊃
⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃⊃

↑↑↑↑↑↑↑↑⊃⊃⊃
⊃

⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃
⊃
⊃
⊃

⊃
⊃

⊃⊃

↑↑↑↑↑↑↑↑⊃⊃
⊃

⊃⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃

⊃
⊃

⊃
⊃↑

⊃⊃

↑↑↑↑↑↑↑↑↑↑
⊃

↑
⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃⊃
↑

⊃
⊃⊃
⊃⊃

↑↑↑↑↑↑↑↑↑↑
↑
↑

↑

⊃
⊃

⊃
⊃

↑
⊃

⊃⊃
↑⊃

⊃
⊃
⊃⊃⊃⊃

↑↑↑↑↑↑↑↑
↑↑

↑
⊃

↑

↑

↑

↑
↑

↑
⊃

⊃
⊃

⊃↑
⊃

⊃
⊃⊃⊃⊃

↑ ↑↑↑↑↑↑↑
↑
↑↑

⊃
↑

↑

↑

↑
↑

↑
↑

⊃
⊃

⊃⊃
⊃⊃

⊃⊃⊃⊃

↑↑↑↑↑↑↑↑
↑
↑↑

↑⊃

⊃

↑

↑
↑
⊃

↑

⊃
⊃

⊃⊃
⊃⊃⊃

⊃⊃⊃

↑↑
↑↑↑↑↑

↑↑

↑
↑

↑↑

↑
↑

⊃⊃
↑

↑

⊃
⊃

⊃⊃
⊃⊃⊃⊃⊃⊃

↑
↑

↑↑↑
↑↑

↑
↑

↑
↑

↑
↑

↑
↑

⊃↑
⊃

⊃

⊃
⊃

⊃⊃
⊃⊃⊃⊃

⊃⊃

↑
↑

↑
↑

↑
↑

↑
↑

↑
↑

↑

↑
↑

↑

⊃

⊂
⊂↑↑

⊃
⊃
⊃⊃

⊃⊃⊃⊃
⊃⊃

↑

↑
↑

↑↑
↑

↑
↑

↑
↑

↑

↑

↑

↑

↑

↑↑↑↑

⊃
⊃
⊃⊃⊃

⊃⊃
⊃

⊃⊃

↑

↑↑
↑↑↑
↑
↑

↑
↑

↑

↑

↑

↑

⊂
⊂⊂ ⊂↑
⊃

⊃
⊃⊃⊃⊃

↑
⊃

⊃↓

↑↑↑
↑↑↑
↑

↑

↑
↑

↑
↑

↑

↑

⊂↑

⊂ ↑
↑
⊃

⊃
⊃⊃⊃⊃

⊃
⊃↓↓

↑↑↑ ↑↑↑
↑

↑

↑
↑

↑
↑

↑
⊂

⊂
↑

↑ ⊂
↑⊂

⊃
⊂

⊃⊃⊃⊂
⊂⊂↓

↑↑↑ ↑↑↑↑
↑

↑

↑

↑
↑

⊂
⊂

⊂
↑

↑
⊂

⊂
⊂

⊂
⊂

⊂⊂⊃↑
⊂ ⊂

⊂

↑↑↑↑↑↑↑
⊂

↑

↑
↑

↑
↑

⊂
↑

↑
⊂

⊂

⊂
⊂

⊂⊂
⊂⊂

⊂⊂⊂⊂⊂

↑↑↑↑↑↑↑
↑

↑

↑
↑

↑↑
↑

⊂
↑

↑
⊂

⊂
⊂

⊂⊂
⊂⊂

⊃⊃
↑⊂⊂

↑↑↑ ↑↑ ↑
↑

↑

↑

↑
↑

↑
↑

↑
⊂

↑
⊂

⊂

⊂
⊂

⊂↑⊂⊂
⊂
⊂

↑⊂⊂

↑ ↑↑ ↑↑ ↑⊂
↑

↑

↑

↑ ↑
⊂

↑
⊂

↑
⊂

⊂

⊂
⊂

⊂⊂⊂⊂
⊂
↑

⊂⊂⊂

↑↑↑ ↑↑ ↑⊂
↑

⊂
⊂

⊂ ⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂
⊂

⊂
⊂⊂⊂

⊂
⊂

⊂⊂⊂

↑ ↑⊂ ⊂⊂ ⊂⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂⊂⊂

⊂⊂
⊂⊂

⊂

⊂⊂⊂ ⊂⊂⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂

⊂
⊂
⊂
⊂
⊂
⊂

⊂
⊂⊂⊂

⊂⊂⊂⊂
⊂

⊂⊂⊂⊂⊂⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂

⊂

⊂
⊂
⊂
⊂
⊂
⊂
⊂

⊂⊂
⊂⊂⊂⊂⊂

(a) Geodesic Gaussian kernels

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

1000

↑↑↑↑↑↑↑⊃⊃
⊃⊃

⊃
⊃
⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃⊃

↑↑↑↑↑↑↑⊃⊃⊃⊃
⊃

⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃
⊃
⊃
⊃

⊃
⊃

⊃⊃

↑↑↑↑↑↑↑↑⊃⊃
⊃

⊃⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃

⊃
⊃

⊃
⊃⊃

⊃⊃

↑↑↑↑↑↑↑↑↑↑
⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃⊃
⊃

⊃
⊃⊃
⊃⊃

↑↑↑↑↑↑↑↑↑↑
⊃
⊃

⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃⊃
⊃⊃

⊃
⊃
⊃⊃⊃⊃

↑↑↑↑↑↑↑↑
↑↑

↑
↑

⊃

⊃

⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃⊃
⊃

⊃
⊃⊃⊃⊃

↑ ↑↑↑↑↑↑↑
↑
↑↑

↑
↑

↑

⊃

⊃
⊃

⊃
⊃

⊃
⊃

⊃⊃
⊃⊃

⊃⊃⊃⊃

↑↑↑↑↑↑↑↑
↑
↑↑

↑↑

↑

↑

⊃
⊃
⊃

⊃

⊃
⊃

⊃⊃
⊃⊃⊃

⊃⊃⊃

↑↑
↑↑↑↑↑

↑↑

↑
↑

↑↑

↑
↑

↑↓
↓

↓

↓
↓

↓↓
↓⊃⊃⊃⊃⊃

↑
↑

↑↑↑
↑↑

↑
↑

↑
↑

↑
↑

↑
↑

↑↓
↓

↓

↓
↓

↓↓
↓↓↓⊃

⊃⊃

↑
↑

↑
↑

↑
↑

↑
↑

↑
↑

↑

↑
↑

↑

↑

↑
↑↓↓

↓
↓
↓↓

↓↓↓↓
⊃⊃

↑

↑
↑

↑↑
↑

↑
↑

↑
↑

↑

↑

↑

↑

↑

↑↑↓↓

↓
↓
↓↓↓

↓↓
↓

⊃⊃

↑

↑↑
↑↑↑
↑
↑

↑
↑

↑

↑

↑

↑

↑
↑↑ ↓↓
↓

↓
↓↓↓↓

↓
↓

↓↓

↑↑↑
↑↑↑
↑

↑

↑
↑

↑
↑

↑

↑

↑ ↑

↓ ↓
↓
↓

↓
↓↓↓↓

↓
↓↓↓

↑↑↑ ↑↑↑
↑

↑

↑
↑

↑
↑

↑
↑

↑
↓

↓ ↓
↓↓

↓
↓

↓↓↓↓
↓↓↓

↑↑↑ ↑↑↑↑
↑

↑

↑

↑
↑

↑
↑

↑
↓

↓
↓

↓
↓

↓
↓

↓↓↓↓
↓ ↓

↓

↑↑↑↑↑↑↑
↑

↑

↑
↑

↑
↑

↓
↓

⊂
⊂

⊂

⊂
⊂

↓↓
↓↓

↓↓↓↓↓

↑↑↑↑↑↑↑
↑

↑

↑
↑

⊂⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂⊂
↓↓

↓↓
↓↓↓

↑↑↑ ↑↑ ↑
↑

↑

↑

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂

⊂
⊂

⊂⊂⊂⊂
↓
↓

↓↓↓

↑ ↑↑ ↑↑ ⊂⊂
⊂

⊂

⊂

⊂ ⊂
⊂

⊂
⊂

⊂
⊂

⊂

⊂
⊂

⊂⊂⊂⊂
⊂
⊂

↓⊂↓

↑⊂↑ ⊂⊂ ⊂⊂
⊂

⊂
⊂

⊂ ⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂
⊂

⊂
⊂⊂⊂

⊂
⊂

⊂⊂⊂

⊂⊂⊂ ⊂⊂ ⊂⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂⊂⊂

⊂⊂
⊂⊂

⊂

⊂⊂⊂ ⊂⊂⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂

⊂
⊂
⊂
⊂
⊂
⊂

⊂
⊂⊂⊂

⊂⊂⊂⊂
⊂

⊂⊂⊂⊂⊂⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂

⊂

⊂
⊂
⊂
⊂
⊂
⊂
⊂

⊂⊂
⊂⊂⊂⊂⊂

(b) Ordinary Gaussian kernels

Fig. 10. Examples of obtained policy.

0 10 20 30 40 50 60 70 80 90 100
40

45

50

55

60

65

70

75

80

85

Number of kernels

A
v
e

ra
g

e
d

 t
o

ta
l
re

w
a

rd
s

GGK(200)

GGK(1000)

OGK(200)

OGK(1000)

Fig. 11. Average amount of exploration.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of kernels

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
s
e

c
]

GGK(1000)

OGK(1000)

Fig. 12. Computation time.

directly connected to the nodes at ‘A’, but are not directly

connected to the nodes at ‘C’, ‘D’, and ‘E’. This implies that

the geodesic distance from ‘B’ to ‘C’, ‘D’, or ‘E’ is large,

although the Euclidean distance is small.

Since the transition from one state to another is highly

stochastic in the current experiment, we decided to simply

duplicate the GGK function over the action space (see

Eq.(6)). For obtaining continuous GGKs, GGK functions

need to be interpolated (see Sec.III-D). We may employ a

simple linear interpolation method in general. However, the

current experiment has unique characteristics—at least one

of the sensor values is always zero since the Khepera is never

completely surrounded by obstacles. Therefore, samples are

always on the surface of the 8-dimensional hypercube-shaped

state space. On the other hand, the node centers determined

by the SOM are not generally on the surface. This means that

any sample is not included in the convex hull of its nearest

nodes and we need to extrapolate the function value. Here,

we simply add the Euclidean distance between the sample

and its nearest node when computing kernel values; more

precisely, for a state s that is not generally located on a

node center, the GGK-based basis function is defined as

φi+(j−1)m(s, a) =

I(a = a(i)) exp

(
− (ED(s, s̃) + SP(s̃, c(j)))2

2σ2

)
, (10)

where s̃ is the node closest to s in the Euclidean distance.

Fig.10 illustrates an example of actions selected at each

node by the GGK-based and OGK-based policies. We used

100 kernels and set the width to 1000. The symbols ‘↑’, ’↓’,
‘⊂’, and ‘⊃’ in the figure indicates forward, backward, left

rotation, and right rotation actions. This shows that there is

ThA3.3

1739

a clear difference in the obtained policies at the state ‘C’;

the backward action is most likely to be taken by the OGK-

based policy while the left/right rotation are most likely to

be taken by the GGK-based policy. This causes a significant

difference in the performance. To explain this, let us assume

that the Khepera is at the state ‘C’, i.e., it faces the wall.

The GGK-based policy guides the Khepera from ‘C’ to ‘A’

via ‘D’ or ‘E’ by taking left/right rotation actions and it

can avoid the obstacle successfully. On the other hand, the

OGK-based policy leads Khepera from ‘C’ to ‘A’ via ‘B’

by taking backward actions; then the forward action is taken

at ‘B’. Thus, the Khepera returns to ‘C’ again and ends up

moving back and forth between ‘C’ and ‘B’ (see also the

attached video).

For the performance evaluation, we use a more compli-

cated environment than the one used for gathering training

samples (see Fig.9). Thus we are evaluating how well

the obtained policies can be generalized to an unknown

environment. In this test environment, we let the Khepera

run from a fixed starting position (see Fig.9(b)) and take

150 steps following the obtained policy. We compute the

sum of rewards, i.e., +1 for the forward action. If the

Khepera collides with an obstacle before 150 steps, we

stop the evaluation. The mean test performance over 20
independent runs is depicted in Fig.11 as a function of

the number of kernels. More precisely, in each run, we

construct a graph based on the training samples taken from

the training environment and put the specified number of

kernels randomly on the graph. Then, a policy is learned

by the GGK or OGK-based LSPI method using the training

samples. The test performance is measured 5 times for each

policy and the average is output. Fig.11 shows that GGKs

significantly outperform OGKs, demonstrating that GGKs

are promising even in the challenging setting with a high-

dimensional continuous state space.

Fig. 12 depicts the computation time of each method as

a function of the number of kernels. This shows that the

computation time monotonically increases as the number

of kernels increases and the GGK-based and OGK-based

methods have comparable computation time. This implies

that the computation time of the GGK functions is negligible.

Given that the GGK-based method works much better than

the OGK-based method with a smaller number of kernels,

the proposed method could be regarded as a computationally

efficient alternative to the standard OGK-based method.

VI. CONCLUSIONS AND OUTLOOK

We proposed a new basis construction method for value

function approximation. The proposed geodesic Gaussian

kernels (GGKs) have several preferable properties such as

the smoothness along the graph and easy computability. We

demonstrated the practical usefulness of the proposed method

for challenging applications: both the robot arm reaching

with obstacles and the Khepera exploration experiments

showed quantitative improvements as well as intuitive, inter-

pretable behavioral advantages evident from the experiments.

Experiments in Sec.IV showed that GGKs with large width

has larger MSEs than that with smaller width, but GGKs with

large width gave better policies than that with smaller width.

We conjecture that the GGKs with large width give smoother

value functions and they result in stable policies. Although

this explanation would be intuitively reasonable, it needs to

be elucidated in a more rigorous way.

It is shown that the policies obtained by GGKs are not so

sensitive to the choice of the width of the Gaussian kernels,

i.e., a reasonable large width works very well. This is a very

useful property in practice. Also, the heuristics of putting

Gaussian centers on goal states is shown to work quite well.

Even so, it is an important future direction to develop a

method for optimally tuning the width as well as the location

parameters, e.g., based on the statistical machine learning

theory [9].

We defined the Gaussian kernels on the state space, and

then extended them over the action space. If we define basis

functions directly on the state-action space, the quality of

value function approximation and the computational effi-

ciency could be further improved. Our future research will

focus on this topic.

REFERENCES

[1] R. S. Sutton and G. A. Barto, Reinforcement Learning: An Introduc-

tion. Cambridge, MA: MIT Press, 1998.
[2] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,”

Journal of Machine Learning Research, vol. 4, no. Dec, pp. 1107–
1149, 2003.

[3] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural Computation, vol. 7, no. 2, pp. 219–
269, 1995.

[4] I. Daubechies, Ten Lectures on Wavelets. Philadelphia and Pennsyl-
vania: Society for Industrial and Applied Mathematics, 1992.

[5] S. Mahadevan, “Proto-value functions: Developmental reinforcement
learning,” in Proceedings of International Conference on Machine

Learning, Bonn, Germany, 2005.
[6] F. R. K. Chung, Spectral Graph Theory. Providence, R.I.: American

Mathematical Society, 1997.
[7] R. Coifman and M. Maggioni, “Diffusion wavelets,” Applied and

Computational Harmonic Analysis, vol. 21, no. 1, pp. 53–94, 2006.
[8] S. Mahadevan and M. Maggioni, “Value function approximation with

diffusion wavelets and Laplacian eigenfunctions,” in Advances in

Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf,
and J. Platt, Eds. Cambridge, MA: MIT Press, 2006, pp. 843–850.

[9] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[10] B. Schölkopf and A. J. Smola, Learning with Kernels. Cambridge,

MA: MIT Press, 2002.
[11] Y. Engel, S. Mannor, and R. Meir, “Reinforcement learning with

Gaussian processes,” in Proceedings of International Conference on

Machine Learning, Bonn, Germany, 2005.
[12] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische Mathematik, vol. 1, pp. 269–271, 1959.
[13] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses

in improved network optimization algorithms,” Journal of the ACM,
vol. 34, no. 3, pp. 569–615, 1987.

[14] M. Sugiyama, H. Hachiya, C. Towell, and S. Vijayakumar, “Geodesic
Gaussian kernels for value function approximation,” in Proceedings

of 2006 Workshop on Information-Based Induction Sciences, Osaka,
Japan, Oct. 31–Nov. 2 2006, pp. 316–321.

[15] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A*
search meets graph theory,” in 16th Annual ACM-SIAM Symposium

on Discrete Algorithms, Vancouver, Canada, 2005, pp. 156–165.
[16] T. Kohonen, Self-Organizing Maps. Berlin: Springer, 1995.
[17] J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas,

“SOM toolbox for Matlab 5,” Helsinki University of
Technology, Tech. Rep. A57, 2000. [Online]. Available:
http://www.cis.hut.fi/projects/somtoolbox/package/papers/techrep.pdf

ThA3.3

1740

