
View Planning Problem with Combined View and Traveling Cost

Pengpeng Wang∗, Ramesh Krishnamurti†, and Kamal Gupta∗
∗ RAMP Lab, School of Engineering Science † School of Computing Science

Simon Fraser University, Canada
{pwangf, ramesh, kamal}@cs.sfu.ca

Abstract— In this paper, we introduce the problem of view
planning with combined view and traveling cost, denoted by
Traveling VPP. It refers to planning a sequence of sensing
actions with minimum total cost by a robot-sensor system
to completely inspect the surfaces of objects in a known
workspace. The cost to minimize is a combination of the view
cost, proportional to the number of viewpoints planned, and the
traveling cost for the robot to realize them. First, we formulate
Traveling VPP as an integer linear program (ILP). The focus
of this paper is to design an approximation algorithm that
guarantees worst-case performance (w.r.t. the optimal solution
cost). We propose a linear program based rounding algorithm
that achieves an approximation ratio of the order of view
frequency, defined to be the maximum number of viewpoints
that see a single surface patch of the object. Together with
the result we showed in [22], the best approximation ratio
for Traveling VPP is either the order of view frequency or
a poly-log function of the input size, whichever is smaller.
Motivated from the robot motion planning techniques, where
the graph built for robot traveling is a tree, we then consider
the corresponding special case of Traveling VPP, and give a
polynomial sized LP formulation. We conclude with a discussion
of realistic issues and constraints towards implementing our
algorithm on real robot-sensor systems.

I. INTRODUCTION

In applications ranging from surveillance to object in-
spection, an autonomous robot is required to inspect the
surfaces of objects or boundaries of the workspace in a large
and/or cluttered environment. Every surface of the objects
of interest (which could be the whole environment) must be
viewed/covered via at least one planned viewpoint of the
range sensor. It is desired that the total cost of the plan,
consisting of the traveling cost (the total distance traveled
by the robot along the planned path, often a measure of
the total amount of energy consumed by the robot) and the
view cost (proportional to the number of viewpoints planned
where each viewing overhead is due to image acquisition,
processing, and registration [18]), is minimized, often a
requirement for autonomous robotic missions where battery
life is a significant issue [17]. We call this problem Traveling
View Planning Problem, or Traveling VPP in short, and
formulate it as an optimization problem. We assume the
object and environment are of known geometries.

See Fig. 1 for a simple Traveling VPP example where
the robot-sensor system, a mobile manipulator with a range
sensor mounted at the manipulator end-effector, is required
to inspect the surface of a large object. Compared with just
the mobile base, the mobile manipulator gives the sensor
additional degrees of freedoms and maneuverability. This is

illustrated in Fig. 1, where the robot achieves visibility by
extending the manipulator over occluding obstacles. The six
robot configurations that realize the planned viewpoints are
also shown, and the dotted lines between these configurations
indicates the traveling path, including the manipulator move-
ments, of the robot. The dotted triangles that are attached to
the robot end-effector are the sensor’s field of view (FOV) at
different configurations. The total cost of such a plan includes
the total view cost, proportional to the number of viewpoints
planned (six in this case), and the traveling cost, proportional
to the total robot movements.

Robot traveling path

Viewpoint

Sensor
FOV

Robot start
position

Object of
interest

Fig. 1. A Traveling VPP instance. It shows 6 planned sensor viewpoints
that totally cover the object surface, and the robot traveling path.

Traveling VPP combines elements of two well-known NP-
hard problems, the view planning problem (VPP) and the
Metric Traveling Salesman Problem (Metric TSP), and thus
becomes NP-hard itself. (Traveling VPP also incorporates the
Watchman Route Problem [4] in the computational geometry
area. See Sec. II-A for more on it.) VPP refers to planning
the minimum number of viewpoints to completely inspect an
object surface. We refer to [18] for a survey on VPP, and to
[22] for a reduction from the set covering problem (SCP)
to VPP, thus showing that VPP cannot be approximated
within a logarithmic ratio of its optimal solution cost by
any polynomial algorithms, using the result for SCP [7].
VPP is usually considered in the robot vision area [18],
where often a sensor positioning system is used within a
well controlled and limited workspace. These formulations
do not consider the traveling cost of the robot, a critical cost,
particularly for large workspaces and remote autonomous
missions, where power consumption is a critical factor. On
the other hand, Metric TSP refers to planning a tour to
visit specified vertices on a complete graph with metric. The
well-known and straightforward approximation framework
is to approximate the tour by solving first a shortest tree

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeB11.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 711

connecting these vertices and constructing a tour from the
tree [21]. Note that Metric TSP does not consider view cost,
a critical cost, particularly for the inspection tasks considered
here, where each sensor view and the consequent processing
are time-consuming.

There is some existing work on combining the view
and traveling cost in the literature, but not in a unified
and global fashion. For example, in [8], [13], the authors
considered a local version of the robot exploration problem,
“to look around a corner”, i.e., to detect an object hidden
behind a corner while minimizing the sum of the robot
traveling distance and the sensor scan time. The problem is
considerably simpler since the goal is local, i.e., the objective
is not to cover all the object surfaces.

In [5], the authors considered the combined problem,
however, in a “weak sense”, since no view cost is considered,
thus corresponding to a special case of Traveling VPP. They
proposed to solve the problem by a decoupled two-level
approach, i.e., to plan the minimum number of viewpoints
without considering robot traveling cost first and then to
solve (approximately) the Metric TSP using the shortest path
graph. This two-level decoupled approach would work well
for cases where the views considered do not have overlap
between their coverage (they become the only choice for a
view plan.), or those with large coverage overlap are close
to each other (they correspond to similar traveling costs).
However, this is not true for a general Traveling VPP setting.
For example, as shown in Fig. 2, even assuming that at each
level the respective optimization subproblem, obtaining the
minimum number of viewpoints and the shortest path tour
respectively, is solved optimally, this two-level decoupled
approach provides no performance bound (with respect to
the optimal solution cost), and can perform arbitrarily poorly.
This is easily achieved by pulling the leftmost viewpoint
arbitrarily farther from the rightmost ones. This issue occurs
because the planned viewpoints at the first level are too
far apart for the robot to realize a plan efficiently since no
traveling cost is considered at the first stage.

That Traveling VPP cannot be satisfactorily solved by
decoupled approaches motivated the approach we take in
this paper, i.e., to give a unified problem formulation with a
single objective function combining both view and traveling
costs, and adopt the approximation algorithm for NP-hard
problems as our methodology. Approximation algorithms are
algorithms that run in polynomial time and guarantee the
algorithmic solution cost (w.r.t. the optimal cost) even in
the worst case. The parameter to measure the quality of an
approximation algorithm is the approximation ratio, defined
as the largest ratio between the costs of the algorithmic
solution and the optimal solution. See [21] for a detailed
survey on approximation algorithms.

We then use the approach based on linear program (LP)
relaxation for our approximation algorithm. We give a round-
ing algorithm that takes an optimal relaxed LP solution and
outputs an integral Traveling VPP solution. A key result of
this paper is that the algorithm has an approximation ratio
that is twice the “view frequency”, where the view frequency

Obj. of Interest

v4 = s

v1

v3

 v2

100

1
s1

s3
s2

e2

e3

1

e1

(i) Optimal solution

v2

v4

(ii) Two level solution

v4

v1

v3

Fig. 2. A planar example shows the arbitrarily poor performance of the
two-level decoupled approach. The object to inspect, the triangle, has three
surface patches, s1, s2 and s3; the four possible viewpoints are v1, v2, v3

and v4, all shown in the top figure. v4 coincides with the robot start position
s. The shaded sensing triangles show the covering relations: viewpoints v1,
v3 and v4 cover the surface patches s1, s2 and s3 respectively, while
v2 (sensing triangle of which is not shown) covers both s1 and s2. The
line segments connecting the views, e1, e2 and e3, denote the robot’s
traveling path; the numbers on each segment are the respective traveling
costs (distances). (The distances are not drawn to scale.) We assume the view
and traveling cost are equally weighted in the objective function. Thus the
total cost is the sum of the number viewpoints planned and the total distance
of the path planned. The dashed lines shown in the two bottom figures are
the planned paths connecting the planned viewpoints. The optimal solution
is to take three views at s, v1 and v2 using the dashed line segments as
the traveling path. The solution given by the decoupled cost can be made
arbitrarily poor by pulling v2 farther to the left.

is defined as the maximum number of viewpoints that covers
a single surface patch. Also, we show in [22], via a reduction
from Traveling VPP to the Group Steiner Tree problem
(GST), that the existing poly-log approximation algorithm
for GST [9] is applicable to Traveling VPP and achieves a
poly-log approximation ratio. This result parallels that for
the SCP, for which the best approximation ratio is either the
frequency or a logarithm of the input size [21].

The relaxed LP formulation given in this paper may have
exponential number of connection constraints. We suggest
two ways: to adopt the column generation approach, [6],
to practically solve the LP; or to use an alternative LP
relaxation formulation. We refer to [22] for details of these
two approach and focus in this paper a special case (again
a NP-hard problem), that of Traveling VPP where the graph
given is a tree. It is motivated by tree structures commonly
used in motion planning techniques to explore and represent
the connectivity of the planning space ([2], [16]). We give
a polynomial sized relaxed LP formulation for the Traveling
VPP on a Tree, which results in a polynomial algorithm with
an approximation ratio of the view frequency. And finally,
we discuss some realistic issues and constraints towards
implementing the algorithms on a real system. These include
how to generate viewpoints and the traveling graph, and how
to accommodate additional constraints.

The rest of the paper is organized as follows. First, we
give our formulation for Traveling VPP, followed by some
related work in the combinatorial optimization area. Second,
we give an LP-based rounding algorithm and analyze its
performance. Third, we give the LP formulation for Traveling

WeB11.4

712

VPP on a Tree. Finally, we discuss how to incorporate
realistic issues towards implementations.

II. ILP FORMULATION AND RELATED WORK

We denote the set of all viewpoints by V and index them
by i. We denote the set of surface patches by S and index
them by j. We use the notation i ∈ V and j ∈ S to imply
the “ith viewpoint” and “jth surface patch”, respectively. For
i ∈ V , let S(i) denote the subset of the surface patches
that viewpoint i covers; and for j ∈ S, let V(j) denote the
subset of viewpoints that cover surface patch j. The robot
movements are restricted to the graph G = (V , E), where
the node set V is the set of all viewpoints and s, the starting
position of the robot. (In case the robot start position does
not correspond to a sensing action, we simply assign the
empty set as the set of surface patches it sees.) The edge e
between two views vi1 and vi2 represents the path from vi1

to vi2 . We use ce to denote the cost (length) of edge e. We
also use T ⊂ V : s /∈ T to denote a cut or subset of the
graph that does not include the robot start position. We use
δ(T) to denote the set of edges that “crosses” T , having one
end inside T and the other outside T , i.e., e = < v1, v2 > ∈
δ(T)⇐⇒ v1 ∈ T∧v2 /∈ T OR v2 ∈ T∧v1 /∈ T . We use wv ,
the unit view cost or cost per viewpoint, and wp, the unit
traveling cost or cost per unit traveling distance, to allow
users to specify the relative weights between sensing and
traveling. Further, we use F to denote the view frequency,
defined as the maximum number of viewpoints that cover a
single surface patch, i.e., F = maxj∈S |V(j)|. (|A| denotes
the cardinality of a discrete set A.)

We define the binary variable, yi, as the indicator whether
to take a view at view cell i, corresponding to yi = 1,
or not, corresponding to yi = 0; we define the binary
variable, ze, as the indicator whether to include the edge
e in the robot traveling path, corresponding to ze = 1, or
not, corresponding to ze = 0. Thus, the ILP formulation for
the Traveling VPP is given as:

Traveling VPP (ILP): (1)

min wv

∑

i∈V
yi + wp

∑

e∈E

ceze

Subject to: ∀j ∈ S ,
∑

i∈V(j)

yi ≥ 1 (2)

∀i ∈ V,∀T ⊂ V : i ∈ T ∧ s /∈ T,
∑

e∈δ(T)

ze ≥ yi (3)

yi, ze ∈ {0, 1}, i ∈ V, e ∈ E

The coverage constraints, (2), require that for each surface
at least one view is chosen from its viewpoint set. The
connection constraints, (3), require that for each planned
view i (implicitly specified by coverage constraints), yi = 1,
and for every cut T of the vertex set that separates i from the
robot start position s, at least one edge that crosses T must
be chosen to connect the cut. Such connection constraints
are used in the standard (rooted) Steiner tree problem ILP
formulation [10], and essentially express the notion that
each selected node must be reached from the start node.
Note that the above ILP formulation (1) is not the most

compact one, since there are a large number of constraints
corresponding to the cuts in the graph. In [22], we also give
a polynomial-sized formulation (especially useful to solve
the corresponding relaxed LP). Nonetheless, this formulation
gives us a lot of intuition, since it works directly with the
edge assignments, and becomes handy when we analyze the
algorithmic performance.

A. Related work in optimization area

As mentioned in the introduction, the Traveling VPP can
also be viewed as a generalization of the watchman route
problem, i.e., the problem of planning the shortest tour to
inspect the interior of a two-dimensional polygonal region,
considered in the computational geometry area [4]. The
watchman route problem, however, does not consider view
cost, again a critical cost, particularly for the inspection tasks
considered here, where each sensor view and the consequent
processing are time-consuming. Also, unlike the watchman
route problem being restricted in 2D environment, Traveling
VPP uses a graph to encode the traveling. In addition, since
we do not assume metrics for the graph, Traveling VPP
is applicable to more general cases. Such graphs, called
roadmaps in the robot configuration space, are commonly
used for the high-dimensional path planning problem in robot
motion planning literature [14], [15].

In [20], the problem of connected facility location is
addressed, which, given a set of facilities and a set of
clients both residing in a metric space, asks for a set of
open facilities connected by a Steiner tree and the service
assignments between these open facilities and all the clients,
such that the total costs, including both the summation of
the service assignment costs and the tree cost, is minimized.
Using the metric heuristics in their algorithm, the authors
give a greedy algorithm with constant approximation ratio.
By regarding the clients as the surface patches in the Trav-
eling VPP and regarding the facilities as the viewpoints, the
connected facility location problem is related to the Traveling
VPP. However, the visibility relation between viewpoints and
surface patches does not assume a metric, and the heuristic
in [20] is not applicable to the Traveling VPP.

The errand scheduling problem (ESP) is defined as: given
a graph G = (V, E) with metrics (the edge weights satisfy
the triangular inequality), where each vertex is associated
with a subset of errands, plan a shortest tour such that the
set of all errands visited is the whole errand set [19]. In
[19], the author gives an algorithm with the approximation
ratio of 3ρ/2, where ρ is the maximum number of nodes one
errand is associated. (ρ is equivalent to the view frequency
F defined above.) Traveling VPP generalizes ESP in the
following senses: the graph in Traveling VPP does not
assume metrics; there is no view cost in ESP; and there is
no distinction in ESP of viewpoint and Steiner node on the
graph. In Traveling VPP, even if some viewpoints are chosen
in the solution, the robot does not need to take a view at them.
They are simply for travel use and do not incur view cost,
hence termed as Steiner nodes [21]. Thus the results in [19]
does not apply to Traveling VPP. Simple reductions from

WeB11.4

713

Traveling VPP to ESP, for example, adding to the travel cost
of each edge e = (u, v) the view cost of both viewpoints u
and v, do not work, since this construction requires that the
robot take a view at every graph node it travels.

III. LP BASED ALGORITHM FOR TRAVELING VPP

By relaxing the binary integral variables, yi and ze, to be
positive reals, we have the relaxed LP for Traveling VPP. We
call the optimal (fractional) solution and the corresponding
cost of the above LP relaxation the LP optimal solution and
LP optimal value respectively. The LP optimal solution cor-
responds to the fractional LP optimal viewpoint assignments
and the fractional LP optimal edge assignments. We call
the optimal (integral) solution and corresponding cost to the
original ILP the ILP optimal solution and ILP optimal value,
respectively. The ILP optimal solution correspond to the
integral ILP optimal viewpoint assignments and the integral
ILP optimal edge assignments.

A. Rounding Algorithm

Let y∗
i and z∗e denote the LP-optimal viewpoint assign-

ments and the LP-optimal edge assignments respectively,
and let OPT ∗ denote the LP-optimal value, i.e., OPT ∗ =
wv

∑
j∈V y∗

i +wp

∑
e∈E cez

∗
e . Let y′

i, z
′
e denote the algorith-

mic integral solution by the algorithm Round and Connect
given below, and let cost′ denote the corresponding cost,
i.e., cost′ = wv

∑
j∈V y′

i + wp

∑
e∈E cez

′
e. Throughout this

paper, we use the superscript ∗ to denote the LP-optimal
solution/cost to the corresponding problem instance; and use
superscript ′ to denote a feasible ILP solution/cost. The
algorithm Round and Connect is given below:

Algorithm Round and Connect: (take LP-optimal y∗
i , z∗e

as input and output y′
i, z

′
e)

Step 1. Initialize.
Set viewpoint choice set Vc to include all the

viewpoints, i.e., Vc ← V; the viewpoint solution set V ′ to
be empty, i.e., V ′ ← ∅; the uncovered surface patch set Su

to include all surface patches, i.e., Su ← S
Step 2. Round.
While set Su is not empty

Select the viewpoint imax ∈ Vc that covers some
uncovered surface patch(es) and has the largest LP-optimal
viewpoint assignment, i.e., imax = argmax

i∈Vc: S(i)∩Su �=∅
y∗

i , and

add it to V ′, i.e., V ′ ← V ′ ∪ {imax}
Delete the surface patch(es) that imax covers from

the uncovered surface patch set, i.e., Su ← Su \ S(imax);
and delete imax from the viewpoint choice set, i.e.,
Vc ← Vc \ {imax}

Output V ′, i.e., set y′
i = 1 for i ∈ V ′, and set y′

i = 0 for
i /∈ V ′.

Step 3. Connect.
Get the optimal solution to the Steiner tree problem to

connect V ′. Set z′e = 1 for edges in the solution, and 0
otherwise.

In the above algorithm, we iteratively choose the viewpoint
with the largest (fractional) LP-optimal viewpoint assignment

until all the surface patches are covered. We then feed these
chosen viewpoints to a Steiner tree algorithm to get the
optimal integral solution, in the Connect step. Note that the
Steiner tree problem is an NP-complete problem for a general
graph. So practically speaking, we can use a constant-ratio
approximation algorithm, for example the one in [10], and
incur an additional bounded performance degradation. It is
easy to see that the rounding part of the above algorithm (up
to the Connect step) runs in polynomial time, O(|V||S|).
B. Approximation ratio for algorithm Round and Connect

It is trivial to see that the solution given by algorithm
Round and Connect is a feasible integral solution. In the
following, we analyze the performance of the algorithm
using the fact that the LP optimal value is a lower bound
on the ILP optimal value. We first show that the view
part of the cost of the solution given by the algorithm is
bounded and then bound the total cost using a feasible hybrid
solution with integral viewpoint assignments and fractional
edge assignments.

1) View cost analysis: In the following, we show that the
LP optimal viewpoint assignments of the chosen viewpoints
are lower bounded by 1

F , Lemma 2. This follow immediately
from a simple observation based on the feasibility of the LP
solution, Proposition 1. The results are then used in bounding
the view cost part of the algorithmic solution, Corollary 3.

Proposition 1: For any surface patch, there exists a view-
point that covers it with the corresponding LP optimal
viewpoint assignment greater than 1

F , i.e., ∀j ∈ S, ∃i ∈
V(j) : y∗

i ≥ 1
F .

Proof: We show this by contradiction. Assume that
for some surface patch j ∈ S, all the LP optimal viewpoint
assignments are strictly less than 1

F , i.e., y∗
i < 1

F , ∀i ∈ V(j).
By recalling that view frequency F is the maximum number
of viewpoint that covers any surface patch (i.e., |V(j)| ≤
F, ∀j ∈ S), we must have,

∑

i∈V(j)

y∗
i <

∑

i∈V(j)

1

F
= |V(j)| · 1

F
≤ 1

The above implies that for j ∈ S, the sum of covering
viewpoint assignments is strictly less than 1, or in other
words, surface j is not covered. This contradicts the fea-
sibility of the LP solution.

Lemma 2: The LP optimal viewpoint assignment for each
viewpoint chosen by Algorithm Round and Connect is lower
bounded by 1

F , i.e., y∗
i ≥ 1

F , ∀i ∈ V ′.
Proof: It is equivalent to show that the above algorithm

cannot choose any viewpoint whose LP optimal viewpoint
assignment is less than 1

F . We show this by contradiction.
Assume we choose one viewpoint i with y∗

i < 1
F . By

the Round and Connect algorithm, the Round Step, at the
iteration when i is picked, it has the maximum LP optimal
viewpoint assignment among the viewpoints that covers the
remaining uncovered surface(s). We arbitrarily choose one
uncovered surface patch that i covers. By Proposition 1, there
exists another i′ for which y∗

i′ ≥ 1
F . This implies y∗

i′ > y∗
i .

i′ has not yet been chosen, since otherwise all its covering

WeB11.4

714

surface pathes including this uncovered one would have been
deleted from uncovered surface patch set. This contradicts
that i has the largest LP solution, y∗

i , among unchosen
viewpoints that cover uncovered surface patch(es).

Lemma 2 implies that the view cost part of the algorithmic
solution is bounded by the view cost of the LP optimal, as
stated in Corollary 3.

Corollary 3: Algorithm Round and Connect gives an inte-
gral solution with view cost at most F times the view cost of
the LP optimal solution, i.e., wv

∑
i∈V y′

i ≤ F ·wv

∑
i∈V y∗

i .
Proof: By Lemma 2, we have Fy∗

i ≥ 1, for all the
chosen viewpoint i ∈ V ′. It follows that

wv

∑

i∈V
y′ = wv

∑

i∈V′
1 ≤ F · wv

∑

i∈V′
y∗ ≤ F · wv

∑

i∈V
y∗

2) Total cost analysis: In the following, after stating the
half integrality gap1 result of the Steiner tree problem [21],
we show that the solution given by the algorithm Round and
Connect has a total cost at most 2F times the LP optimal
value. Since the LP optimal value is a lower bound on the
ILP solution, we now show that the algorithm Round and
Connect has approximation ratio of 2F .

Lemma 4: For the Steiner tree problem, the integrality gap
between the IP and its relaxed LP is 2.

Proof: See Chapter 22 of [21].
Note that the Connect Step of the algorithm Round and

Connect corresponds to the Steiner tree problem of con-
necting V ′, the IP optimal solution to which is z′e. We use
OPT ′

tree to denote the corresponding optimal value. Again,
we use OPT ∗

tree to denote the corresponding relaxed LP
optimal value. Now we are ready to show the approximation
ratio of algorithm Round and Connect.

Theorem 5: Algorithm Round and Connect has the ap-
proximation ratio of 2F , i.e., cost′ ≤ OPT ∗ · 2F .

Proof: The idea is to utilize an intermediate solution
with integral viewpoint assignments and fractional edge
assignments, i.e., the set of viewpoints chosen is V ′ and
the edge assignments are scaled F times from their ILP
optimal solution, i.e., F · z∗e . We show the edge assignments
of this intermediate solution is a feasible LP solution to the
Steiner tree problem to connect V ′. Its traveling cost is lower
bounded by OPT ∗

tree, which is not far from OPT ′
tree due

to Lemma 4. This thus establishes the approximation ratio
result. Please see [22] for details.

Theorem 5 shows that the algorithm Round and Connect,
recovers an integral solution from any LP optimal solution to
Traveling VPP and the solution cost is within 2F times the
optimal value. This implies that the integrality gap between
ILP optimal and LP optimal for Traveling VPP is at most
2F . Please also see [22] for a tight example, thus suggesting
that the 2F approximation algorithm Round and Connect is
the best possible for the LP relaxation given above.

IV. TRAVELING VPP ON A TREE

First, we claim that the approximation ratio of algorithm
Round and Connect improves to F for Traveling VPP on a

1Integrality gap for an LP is defined to be the worse-case ratio between
the cost of the IP solution and that of its LP relaxation solution [21].

Tree. This is because there is no integrality gap for “Steiner
tree on a tree”, since both the ILP optimal and LP optimal
solutions of “Steiner tree on a tree” correspond to taking the
union of the unique paths on the tree that connect the planned
viewpoints to the start position. Second, we show that the
Traveling VPP on a Tree admits a polynomial sized relaxed
LP formulation. Intuitively, for a viewpoint to be connected,
only the cuts corresponding to the edges on its unique path
(to the start s) are needed in the connection constraints, (3),
thus reducing dramatically the LP size.

Let pi denote the unique path connecting viewpoint i to
s. For an edge e =< i1, i2 >, with i1 closer to the root of
the tree, s, than i2, we use Te to denote the subtree rooted
at i2, i.e., the subset of tree vertices that are connected to
s via e. Note that e is the only edge that crosses the subset
Te, i.e., δ(Te) = {e}. The LP for Traveling VPP on a Tree
is then given as:

min wv

∑

i∈V
yi + wp

∑

e∈E

ceze

Subject to: ∀j ∈ S ,
∑

i∈V(j)

yi ≥ 1 (4)

∀i ∈ V, ∀e ∈ E : e ∈ pi, ze ≥ yi (5)

yi, ze ≥ 0, i ∈ V, e ∈ E

Since the covering constraints for the above formulation
and for Traveling VPP are the same, we only need to show
the equivalency of the connection constraints, (3) and (5). We
show this equivalency by reductions from both directions.
First, for i ∈ V and e ∈ pi, since Te is a cut that separates
viewpoint i from the start position s and e is the only edge
crossing Te, according to (3), we have

∑
e′∈δ(Te) ze′ = ze ≥

yi, (5). Second, for any cut T that separates i and s, there
must be at least an edge e ∈ pi that crosses T , i.e., e ∈
δ(T). (Otherwise i and s will not be separated by T .) So
ze ≥ yi =⇒∑

e′∈δ(T) ze′ ≥ ze ≥ yi, hence (3) and (5) are
equivalent for the tree case.

Note that in the above formulation, the number of con-
straints is O(|S| + |E||V|), i.e., polynomial and not expo-
nential as in the formulation for the general graph case. In
our simulation, using ILOG CPlex LP solver [1], it takes
about 30 seconds to solve instances with 1000 viewpoints.

We show in [22] that we can construct from an arbitrary
Traveling VPP instance a GST instance with O(|V||S|)
vertices, O(|V||S|) edges, and |S| groups. We then apply
the randomized rounding algorithm in [9] to achieve a poly-
log approximation ratio. In conclusion, using both the LP
based algorithms, deterministic and randomized rounding
algorithms respectively, we have the approximation ratio of
either the order view frequency or a poly-log ratio, whichever
is smaller. This approximation result parallels that for the set
covering problem [21].

V. INCORPORATING OUR ALGORITHM IN ROBOT

SURVEILLANCE TASK

Our current efforts are to implement the algorithm Round
and Connect on a real system, a PowerBot mobile robot [12]
equipped with a camera system, to carry out surveillance

WeB11.4

715

tasks in our lab area, where the map, the lab layout, is
given. We briefly mention the realistic issues that needs to
be addressed toward this implementation.

Our Traveling VPP formulation assumes the viewpoint set
V and the traveling graph G connecting these viewpoints
are given. For given scenes, these viewpoints could be
either naturally given, for example, doorways are natural
viewpoints to look inside the rooms, or they could be derived
from the aspect graph of the scene [3], or by randomly
sampling the sensor configuration space, the space of the sen-
sor configurations that uniquely determines the viewpoints
[11]. To adequately sample the viewpoint space, multiple
viewpoints having the same visibility should be included,
since they may correspond to different traveling costs. We
assumed a binary coverage relationship mentioned, i.e., a
viewpoint can either cover a surface patch or not. In reality,
a viewpoint may cover a surface patch only partially. By sub-
dividing surface patches, we can maintain binary coverage
relationship. Realistic sensor field of view constraints such
as the line of sight constraint (i.e., a viewpoint sees a surface
patch only if the line segment that connects them is not
occluded), the range constraint (a viewpoint sees a surface
patch only if the distance between them is within a range),
and the incidence constraint (i.e., a viewpoint sees a surface
patch only if the angle between the line connecting them
and the surface normal is in a range) can be incorporated
via viewpoint and surface patch visibility computations. The
Traveling graph would essentially be a roadmap built in the
configuration space of the robot. This is a standard and well-
studied technique for robot motion planning [14], [15].

For accurate registration, it is desirable that two planned
consecutive viewpoints should have enough overlap in the
surface patch sets they cover [18]. This can be incorporated
using a set multicover constraint, i.e., each element in the
universe needs to be covered by a specified number of
subsets in the solution. The idea is as follows. We create
new surface patches that are composed of unions of parts
of original consecutive patches. The viewpoint set of these
created patches are those covering both consecutive patches.
By requiring that the viewpoints cover these created surface
patches twice, i.e., changing r.h.s. of (2) from 1 to 2 for
these patches added, these viewpoints can register them w.r.t.
each other and thus the overall viewpoints can all satisfy the
overlapping constraints.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced the Traveling VPP, the prob-
lem of view planning with combined view and traveling
cost. We formulated Traveling VPP into an ILP, and gave an
LP-based rounding algorithm that has the frequency factor
approximation ratio. Together with the poly-log approxima-
tion ratio achieved via a reduction to GST, Traveling VPP
can be approximated within the minimum of a constant
times frequency and a poly-logarithmic function of the input
size. Also for Traveling VPP on a Tree, a special case
motivated from the robot motion planning literature, we gave
a polynomial sized LP. We then discuss several realistic

issues and constraints towards implementing our algorithm
for a real system.

In future, we would like to generalize our result to the case
where the surface patches to cover and the robot traveling
graph are not known in advance. It is also interesting to apply
the algorithm designed in this paper to where the viewpoint
set is a continuous space, for example, the watchman route
problem. We are currently working on it [23].

REFERENCES

[1] Ilog cplex. http://www.ilog.com/products/cplex.
[2] P. Bessiere, J. Ahuactzin, E. Talbi, and E. Mazer. The ariadne’s

clew algorithm: Global planning with local methods. In K. Goldber,
D. Halperin, J. Latombe, and R. Wilson, editors, Algorithmic Founda-
tion of Robbotics, pages 39–47. A K Peters, Ltd., 1995.

[3] K. Bowyer and C. Dyer. Aspect graphs: an introduction and survey
of recent results. International Journal of Imaging Systems and
Technology, 2:315–328, 1990.

[4] W. Chin and S. Ntafos. Watchman routes in simple polygons. Discrete
and Computational Geometry, 6(1):9–31, 1991.

[5] T. Danner and L. Kavraki. Randomized planning for short inspection
paths. In Proc. of IEEE International Conference on Robotics and
Automation, pages 971 – 976, 2002.

[6] G. Desaulniers, J. Desrosiers, and M. Solomon. Column Generation.
Springer, 2005.

[7] U. Feige. A threshold of lnn for approximating set cover. Journal of
the ACM, 45(4):634 – 652, July 1998.

[8] S. Fekete, R. Klein, and A. Nuchter. Online searching with an
autonomous robot. In Proc. of Workshop on Algorithmic Foundation
of Robotics, pages 350–365, 2004.

[9] N. Garg, G. Konjevod, and R. Ravi. A polylogorithmic approximation
algorithm for the group steiner tree problem. Journal of Algorithms,
37:66–84, 2000.

[10] M. Goemans and D. Williamson. A general approximation tech-
nique for constrained forest problems. SIAM Journal on Computing,
24(2):296–317, 1992.

[11] H. Gonzalez-Banos and J. Latombe. A randomized art-gallery algo-
rithm for sensor placement. In Proc. of Seventeenth ACM Symposium
on Computational Geometry, pages 232 – 240, 2001.

[12] http://www.activrobots.com/ROBOTS/power.html.
[13] V. Isler, S. Kannan, and K. Daniilidis. Local exploration: online algo-

rithms and a probabilistic framework. In Proc. of IEEE International
Conference on Robotics and Automation, pages 1913 – 1920, 2003.

[14] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):556–580, 1996.

[15] J. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[16] S. LaValle and J. Kuffner. Randomized kinodnamic planning. In
Proc. of IEEE International Conf. on Robotics and Automation, pages
473–479, 1999.

[17] Y. Mei, Y. Lu, Y. Hu, and C.S. Lee. A case study of mobile
robot’s energy consumption and conservation techniques. In Proc.
of International Conference on Advanced Robotics, pages 492– 497,
2005.

[18] W. Scott, G. Roth, and J. Rivest. View planning for automated three-
dimensional object reconstruction and inspection. ACM Computing
Surveys, 35(1):64–96, March 2003.

[19] P. Slavik. The errand scheduling problem. Technical Report 97-02,
Sate University of New York at Buffalo, 1997.

[20] C. Swamy and A. Kumar. Primal-dual algorithms for connected
facility location problems. Algorithmica, 40:245–269, 2004.

[21] V. Vazirani. Approximation algorithms. Spinger, 2001.
[22] P. Wang, R. Krishnamurti, and K. Gupta. View planning problem with

combined view and traveling costs: Problem formulation, hardness
of approximation, and approximation algorithms. Technical Report
TR2006-17, Simon Fraser University, Burnaby, B.C., Canada, May
2006. Available at ftp://fas.sfu.ca/pub/cs/TR/2006/CMPT2006-17.ps.

[23] P. Wang, R. Krishnamurti, and K. Gupta. Generalized watchman route
problem with discrete view cost. Submitted to 23rd Annual ACM
Symposium on Computational Geometry, 2007.

WeB11.4

716

