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Abstract— Nowadays, robust and light-weight parts used in
the automobile and aeronautics industry are made of carbon
fibres. To increase the mechanical toughness of the parts the
carbon fibres are stitched in the preforming process using a
sewing robot. However, current systems miss high flexibility and
rely on manual programming of each part. The main target of
this work is to develop an automatic system that autonomously
sets the structure strengthening seams. Therefore, a rapid and
flexible following of the carbon textile edges is required. Due
to the black and reflective carbon fibres a laser-stripe sensor is
necessary and the processing of the range data is a challenging
task. The paper proposes a real time approach where different
edge detection methodologies are combined in a voting scheme
to increase the edge tracking robustness. The experimental
results demonstrate the feasibility of a fully automated, sensor-
guided robotic sewing process. The seam can be located to
within 0.65mm at a detection rate of 99.3% for individual scans.

I. INTRODUCTION

Textiles made of carbon fibres as integral part of structures
and materials become more and more important for the
automobile and aeronautics industries. Infiltrating the carbon
fibres with resin, robust and light-weight components can
be manufactured. So far, several layer of carbon fibre mats
are stitched together in the preforming process to model the
parts. But gluing these carbon fibre mats stresses the parts in
the final hardening step and therefore, a new technology is
needed to improve the preforming process. Sewing instead of
gluing serves as enhancement of the mechanical part prop-
erties in terms of impact or toughness. Since sewing heads
are adopted for robotics use, this process is predestinated to
be automated, where Fig.1 shows an industrial robot with a
blindstiching head sewing carbon fibre mats.

Traditional teach in programming for a flexible robotic
production is no longer state of the art, hence, sensors are
used to guide the robot for an autonomous behavior. To
reinforce the structure of the carbon fibres the seams are
set along the edges of the mats. Hence, the sewing process
can be fully automated using optical sensors to follow these
edges, which is the aim of the project REDUX1. In this
project a laser range sensor is used in front of the sewing
head to guide the robot along the carbon fibre edges. The
novel contribution of this project is a fully automated sensor-
guided sewing robot for carbon textiles.

1All intentions in this report are aided by the German Federal Ministry
of Education and Research (Project No.: 01RI05089 - 01RI05096) and by
the Austrian Science Foundation (Project No.: 810568/1553 SCK/SAI). The
responsibility for the content of this publication is with the authors.

Fig. 1. Industrial sewing robot with blindstitching head.

Concerning the robot guidance, the challenging task is the
reliable, robust edge detection and tracking in order to set the
seams correctly. Laser range sensing is the given appropriate
way of measurement. The difficulties to be handled are
the black and reflective carbon fibres, which cause more
noise and ghost points than other materials, an edge height
less than 1mm, and disturbances caused by spiky filaments.
Fig. 2 gives an impression - in a close up view - of the typical
unfiltered profile raw data. The jump-edge to be detected is
indicated with a red ellipse. A further requirement is to detect
the edges at a rate of at least 30Hz to enable an efficient
sewing process.

Fig. 2. Close-up view of different laser-stripe profiles including the edge.

The contribution of this paper is a reliable and robust
method to detect the edge between two carbon fibre layers.
First we introduce three different methods suitable to solve
this task. While one is an adaptation of the model fit
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technique [19], two new methods are introduced, the local
weighted-voting and the accumulated gradient method. To
obtain dependable results a two out of three voting scheme
is applied. The experiments will show that the result is a
detection rate of up to 99.3% for a localization of the edge
within ±12 pixels.

The structure of the paper is as follows: In the next
section the state of the art of robotic textile sewing as well
as the edge detection in 2D and 3D image processing is
presented. Section II introduces a brief overview of the
robotic system and its components. Section III introduces
the signal preprocessing and Section IV the approach for
the edge detection method is described in detail. Section V
gives some experimental results concerning the detection
performance and Section VI finally conclude the paper.

A. State of the Art

1) Sewing Robotics: In the past two decades a lot of
automated sewing machines and robots have been developed
mainly used for the garment industries [12], [7], whereas a
robotic sewing system handling carbon fibres has been pro-
posed only recently [6]. The reason being is that only single
side stitching can be used for this material. A distinction is
drawn between blindstitching [3], the one side stitching with
two needles [20] and the tufting technology [18].

The standard in robotic seam tracking using laser range
sensors are mainly welding applications [16], [9]. Here, the
seams are geometrically well defined and comparatively easy
to detect in the range data. Nevertheless, first attempts have
been made following textile seams on a planar workspace
using a CCD-camera [8]. However, vision systems in textile
robotics are mainly used to check the quality of the seam
after the sewing process where the sewing thread is clearly
visible [4], [1]. Summarizing to the best knowledge of the
authors, the system described in this paper is the first using
a laser range sensor for fully automated carbon fibre sewing.

2) Edge Detection: Edge detection is a popular issue
in computer vision and well investigated. In our case we
have to detect a dominating jump-edge in a noisy scan line
acquired with a laser range sensor. One of the oldest detector
is the Roberts operator [17] calculating the magnitude of
the gradient using the approximated first derivative. This
operator is very fast but sensitive to noise. Smoothing the
raw data with a Gaussian filter and calculating the zero-
crossings of the second derivatives improves the robustness
as shown with the Marr-Hildreth edge detector [14]. The
most popular operator is the Canny edge detector [2], well
suited for noisy jump-edges. That is a multi-scale Gaussian-
smoothed approach finding the locally strongest gradient
using the second derivatives and is therefore, computational
time consuming.

A totally different approach that is well suited for range
images is the scan line approximation [10]. The raw data
points are approximated by a set of bivariate polynomial
functions, where the discontinuity of the fitted functions
indicate the edge position. An improved scan line approach,

better handling outliers, is proposed by Katsoulas [11] us-
ing an additional statistical merging step. Based on these
techniques we propose a real time edge detection method
by voting the results of different detection methodologies to
achieve robust results.

II. SYSTEM APPROACH

Fig. 3 gives an overview of the system components and
their interrelations. The robot used in this study is a KUKA
125/2, 6 axis articulated robot with a maximum speed of
2m/s to implement a sewing velocity of up to 2m/min.
The laser sensor is mounted on the stitching head directly in
front of the direction of motion (Fig.1). The robot stitching
programs are created by a CAD path planning tool based on
the CAD model of the shape and draping of the carbon fibre
mats. These programs are uploaded onto the robot controller.
Since the actual draping never correspond exactly to the
model, the data of the laser sensor is processed to correct
on-line the trajectory of the stitching head and to enable the
autonomous seam following of the robot. The sensor detects
and sends the actual edge position to the robot controller,
which generates the corrected path.

Fig. 3. Flow chart of the different components.

For the seam following task we use the laser-stripe sensor
“BaseSensor” from Falldorf Sensor GmbH2. It is tuned to
carbon fibres and produces a 2D profile of the mat surface.
The width resolution of the sensor is 0.054mm and the
height resolution is 0.11mm at an average measurement
distance of 109mm. Fig. 4 offers a closeup-view of the
laser-stripe sensor and the stitching head. Processing of the
laser sensor data consists of two main parts: (1) Profile
Preprocessing and (2) Edge Detection.

Fig. 4. Closeup-view of the laser-stripe sensor on the left and the stitching
head on the right.

III. PROFILE PREPROCESSING

The task of Profile Preprocessing is filtering the data from
the sensor and normalizing it to correct for tilted and curved
profiles.

The laser-stripe sensor delivers unfiltered point clouds that
exhibit a non-linear relationship between the pixel position

2http://www.falldorfsensor.de/
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Fig. 5. Normalization of the laser-stripe profile in the preprocessing step.

in the camera frame and the real world distance. The height
profile is transformed from camera coordinates to real world
coordinates, which is solved by a bilinear transformation
using a look-up table.

To eliminate the worst outliers and noise, the laser data
of one profile is filtered sequentially by a geometrical filter
and a closing filter.

The second task of normalization is to handle the differ-
ent profiles shown in Fig. 6. In practice, demonstrated by
manufacturing examples (shown in Section V), it is required
to align the data to obtain a flat profile. This is necessary
to apply global edge detection methods. Global methods for
edge detection are working with the complete set of raw
data points of one laser-stripe profile. Instead local methods
only take a small number of pixels of the profile. Thus the
algorithms for global methods are not able to find the edge
of convex/concave or tilted edges, [13].

Fig. 6. Types of different edges and no edge types.

To normalize the different profiles a quadratic least-
squares fit is used (Fig. 5). This least-square distance function
adapts the curve to the profile data by finding minimal dis-
tance to all data points. This curve fitting preserves the edge
and a normalized data profile is generated. The drawback of
the data manipulation is that the original information about
the height related to distance of sensor and the fibre mat
is lost. To avoid this, the original unchanged data is saved
in the system together with the new plane data profile. As
a direct result of normalizing the data, filling the holes,
caused from the previously filtering step, can be done trough
connecting boundary points with horizontal lines without
causing artificial edges.

IV. EDGE DETECTION

This section describes how to detect the edge between
carbon fibre mats in the normalized profiles. Of utmost
importance is to obtain reliable detections over the range of
different profiles in real-time. The idea to increase the true
positive rate of detection is to use a voting over three com-
plimentary individual edge detection methods, an approach
taken when building dependable systems such as for aviation.

Specifically, an edge is classified as detected correctly if at
least two out of three methods find the edge within a certain
tolerance. The complimentary methods implemented are:

• Model-Fitting: global least-squares fitting of an edge
model. This is adapted from [19].

• Local Weighted-Voting: the neighborhood of pre-
selected edge candidates gives their vote weighted with
the edge height. Voting is a established and robust
method [15], which is introduced in edge detection.

• Gradient-Accumulation: sums up the gradient
magnitude calculated with an increasingly kernel
size. It is inspired by the Roberts operator [17] and
mixes the global and local approach.

The following sub sections present the proposed edge detec-
tion methods in detail. The methods are based on laser-stripe
profiles with a length of 1024 pixel.

A. Model-Fitting

In model based recognition the target object shape is
represented by its geometry. E.g., a template represents an
object as a rigid curve or an image. The advantage of
model fitting is that the model encodes the object shape thus
allowing predictions of image data. Coincidental features
have less chance of being falsely recognized. To find the
optimal template location a metric or a similarity measure is
necessary that reflects, how well the image data match the
template [19].

For an explicit description, the raw data points of a profile
scan are defined as f(i) and the model-function of an upward
jump-edge (compare the right column of Fig. 6). The height
of the maximum and minimum pixel is given by

h(i, j) =
{

min(f(i)), i < j
max(f(i)), i ≥ j

(1)

where j is the position of the edge. The concept of least-
squares fitting is to find the global minimum of the squared
distances from the model to the raw data points. Thus, the
least-squares sum of a desired edge position is

S(j) =
m∑

i=1

d(i, j)2 (2)

where m is the length of the profile line and d(i, j) the
distance function:

d(i, j) = f(i) − h(i, j) (3)
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Finding then the best fit, all pixel positions in the profile
scan are evaluated and the one with the smallest sum wins:

min(S(j)) (4)

Note, due to computational efficiency a pre-selection of
possible edge candidates is previously passed. The median
value of all different heights of the data points in the
profile scan is calculated and each time the gradient of f(i)
crosses the normalized median line, these points are potential
candidates for a probable edge position. This speeds up the
computation approximately by the factor of 100.

B. Local Weighted-Voting

The proposed approach works as a local method using
weighted-voting of every pixel in a neighborhood of the
considered edge using a kernel size of usually n = 75. At the
beginning a pre-selection of potential edge candidate points
is made calculating the absolute difference of neighboring
pixels. The first thirty most significant edge candidate points
are used for further processing. Considering a right oriented
edge, the edge height – respectively the weighting factor –
of each edge candidate is calculated with

w(j) = |max(f(j + k)) − min(f(j − k))|, 1 ≤ k ≤ 3. (5)

To further improve robustness we exploit the following
constraint. As already mentioned, spiky carbon filaments
cause short but large jump-edges. To handle these unwanted
edges the local average is calculated with

a(j) =
1

2n + 1

j+n∑
i=j−n

f(i) (6)

and all points which cross the average get no weight for the
voting process. Hence, the voting function is written as

v(i, j) =




j − i, (i < j) ∧ (f(i) < a(j))
i − j, (i > j) ∧ (f(i) > a(j))

0 , (i > j) ∧ (f(i) < a(j))
0 , (i < j) ∧ (f(i) > a(j))

(7)

with a voting factor i − n, respectively i + n, rating pixel
stronger that are far away to the edge pixel. The weighted
voting sum is finally given by

S(j) = w(j)
n∑

i=−n

|v(i, j)| (8)

and the edge with the maximum sum considering only the
pre-selected edge candidates wins:

max(S(j)) (9)

Note, that sometimes several fibres can be disconnected
from the edge and then two new additional jump-edges are
build. With this simple local method, the hit probability to
detect the correct edge is higher compared to the model
fitting method.

C. Gradient-Accumulation

Generally, the position of a jump-edge is characterized
trough the maximum peak of the first derivative. Inspired by
the Roberts edge detector [17] the scan line can be expressed
as continuous height function f(x). Hence, the magnitude of
the gradient is given by

g(x) =

√(
∂f(x)

∂x

)2

. (10)

Because of the pixel quantization of the profile scan, the
gradient has to be calculated on discrete values and can
therefore be approximated with

g(i) = |f(i − n) − f(i + n)|, (11)

where n is the kernel size for the approximation, usually
n = 1. Applying the gradient filter of Eq. (11) on the
noisy profile raw data f(i), this will result as well end up
in a noisy gradient function g(i). Due to the small edge
height compared to the noise, no significant gradient peak,
indicating the edge position, can be detected. So with the
classical approach, outliers and artifacts causes larger peaks
then the edge itself and detection will fail. Increasing the
kernel size n does not change this fact. Hence we propose a
new summation function.

Considering the fact that we are searching for a global
jump-edge shape, corrupted with noise, a multi-scale gradient
calculation will suppress the noise of the local outliers and
artifacts in the range data. Summing up the gradient functions
for each pixel position with different kernel sizes, the correct
edge is determined. The modified function G(i) calculates
the accumulated gradients using increasingly kernel sizes:

G(i) =
n∑

k=1

|f(i − k) − f(i + k)|

with {i ∈ N | n < i < (m − n)}
(12)

where m is the profile length. Using a kernel size of 10%
of every scan line has been found to be optimal with respect
to calculation time and performance based on testing several
thousand profiles. Finally, the maximum of G(i) localizes
the position of the edge.

D. Edge-Voting and Prediction

The above three edge detection methods are executed
independently on each profile. The idea is to use two out of
three voting to obtain a dependable result as it is common
in aviation technology. The edge of one profile is considered
detected successfully if at least two of three methods locate
the edge within a certain tolerance. The evaluation below
will show that, due to the noisy raw data, the edge detection
based on a single profile is still not satisfactory. To further
reduce the true negative rate, several profiles are considered
depending on the robot velocity.

The robot controller needs every 100ms the actual edge
position for correcting the path trajectory. The sampling rate
of the laser range sensor varies from 30Hz to 100Hz de-
pending on the reflectivity properties of the carbon fibre mats.
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Therefore, three to ten profiles are available to determine the
correct edge position. Assuming linear fibre mat edges in
between two sampling instances (100ms), all detected edge
positions – inclusive the last transmitted edge position – are
used for edge prediction. The final edge point is calculated
using a RANSAC-based line fit [5]. This further increases
robustness of edge detection as the next section will show.

V. EXPERIMENTAL RESULTS

30 different seam examples and about 20,000 thousand
profiles have been used to evaluate the above methods. All
tests were performed on AMD Athlon 64X2 Dual Core
4800+ processor with 2GB RAM. First the edge detection
behavior is shown on two examples of difficult cases, that is,
a double edge and a tilted edge profile. Then the performance
of the methods is evaluated concerning the computational
effort and the true positive rate of detection.

A. Double-Edges

When draping the fibre mats the fibre layers in some
cases shift and the resulting edge looks like a double edge
(Fig. 7). The Figure shows that the model-fitting method
detects the correct edge (vertical line), because the sum of
the distances is minimal in this position. The local weighted-
voting method detects the same edge, because the voting
factors increase the probability to detect the correct edge.
The gradient-accumulation method detects also the correct
edge by looking after the maximum in the sum of the first
derivatives (see the course of the summed up gradient).

B. Slant-Edges

Another problematic case is shown in Fig. 8, which plots a
tilted laser-stripe profile with a slant edge after normalization.
The interesting point in this case is that every method detects
the correct edge, but at different positions in the area of the
slant edge. This naturally occurs because the three methods
implement three different criteria of edge detection.

In the edge-voting process at least two edge detection
results in one profile must be located within a tolerance
of up to 12 pixel to be considered for the edge prediction
calculation. In contrast to the example of the double-edge,
where all three methods detect the same edge position, in this
case, only the model-fitting and the gradient-accumulation
results agree and are used for the RANSAC-based edge
prediction. Note, that Figs. 7 and 8 only show a single profile
result, whereas the detected edges used for the edge voting
are indicated with a thick vertical line.

C. Duration and True Positive Rate of Detection

To obtain the result in real time all methods inclusive pre-
processing must be sufficiently fast. For robotic sewing real
time is dependent on the frequency of the sensor, which in
turn depends on the sewing speed of the robot. All tests
have been made under the same conditions, that is, the same
fibre mat type, 1,100 laser-stripe profiles for a statistical
analysis and an exposure time of 12ms. Tab. I shows the
results. When using all methods the worst enables operation

at 250Hz and confirms the suitability of the method to obtain
real-time operation. Adding the exposure time of obtaining
a profile, an effective scan rate of 62s−1 was achieved for
these experiments.

TABLE I

DURATION OF EVERY METHOD.

Methods Min Average Max

Profile Preprocessing 0.638ms 0.679ms 1.314ms
Model-Fitting 0.129ms 0.132ms 0.397ms

Local Weighted-Voting 0.208ms 0.249ms 0.502ms
Gradient-Accumulation 0.375ms 0.384ms 1.744ms

Sum including edge-voting 1.445ms 1.445ms 3.957ms

Finally, the true positive rate of detection given a certain
tolerance has been evaluated for the three edge detection
methods and the combined edge-voting method. Evaluation
is based on 2,000 semi-automatic hand labeled profiles from
different mats such as exemplified in Fig. 2. A true positive
detection is defined as a detection result within a certain pixel
tolerance of the labeled edge. Tab. II shows the results which
were achieved under the same conditions as before. Note
that a tolerance of 12 pixels corresponds to 0.65mm, which
is totally sufficient for the sewing task. Also note that the
slant edge in Fig. 8 extends over about 2mm and the seam
deviation can be several centimeters. When using the edge-
voting method, only three times the robot controller could
not be served with a valid edge position (totally scan: 1,100
profiles). The maximum deviation of the correctly detected
edges was 12 pixel.

TABLE II

TRUE POSITIVE RATE OF DETECTION OF EVERY METHOD.

Methods ±3Pixel ±10Pixel ±12Pixel

Model-Fitting 85.7% 93.4% 94.3%
Local Weighted-Voting 81.5% 84.4% 86.7%
Gradient-Accumulation 65.3% 87.4% 94.3%

Combined pos. detections 80.4% 97.5% 99.3%

VI. CONCLUSION AND FUTURE WORK

The research project “REDUX” which is partly presented,
aims to close the gap between laboratory research and
flexible industrial production. The approach of an automated
CAD-based path planning and a sensor-guided seam fol-
lowing applied for the sewing process realizes lot-size-one
production. The approach proposed in this work, detecting
the carbon fibre edges by acquiring and analyzing a laser-
stripe profile, presents a very robust way to compensate
carbon fibre draping uncertainties.

For seam following three different methods are introduced
to detect and track the edge in the presence of outliers and
artifacts in noisy range data. The experiments show that a
two out of three voting over these three methods achieves a
detection result of 99.3% and the edges are located within
0.65mm, which is totally sufficient for the sewing process,
where draping is only accurate to a few centimeters. Also
consider that for production it is not necessary that the edge
can be detected correctly in each individual profile. Profiles
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Fig. 7. All three different methods applied on a double edge: a) Model-Fitting b) Local Weighted-Voting c) Gradient-Accumulation.

Fig. 8. All three different methods applied on a slant edge: a) Model-Fitting b) Local Weighted-Voting c) Gradient-Accumulation.

are obtained every 0.02mm where several missed edges can
be easily compensated.

The presented method shows very high reliability. Thus the
approach for edge detection and localization is suited for use
in related industrial applications under difficult conditions.

Further work will deal with the development and the
prototype’s integration of a new laser range sensor with three
laser-stripes to increase the robustness and predictability
of the edge tracking system. Therefore, a new calibration
method will be needed to replace the lookup-table with an
analytic solution.
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[6] Filsinger, Dittmann, Bischoff: “Nähen als textile Preform- Technik zur
Herstellung von Faserverbundstrukturen für Luftfahrtanwendungen am
Beispiel der A380-Druckkalotte”; DGLR-Kongress, München, 2003.

[7] Gershon, D.: “Parallel Process Decomposition of a Dynamic Manip-
ulationTask: Robotic Sewing”; IEEE Transactions on Robotics and
Automation, Vol. 6, No. 3, pp. 357-367, 1990.

[8] Gershon, D., Porat, I.: “Vision Servo Control of a Robotic Sewing
System”; IEEE International Conference on Robotics and Automation,
Vol. 3, No. 6, pp. 1830-1835, 1988.

[9] Haug, K., Pritschow, G.: “Robust Laser-stripe Sensor for Automated
Weld-seam-tracking in the Shipbuilding Industry”; IEEE Conference
of the Industrial Electronics Socienty, Vol. 2, pp. 1236-1241, 1998.

[10] Jiang, X., Bunke, H.: “Edge Detection in Range Images Based on Scan
Line Approximation”; Computer Vision and Image Understanding,
Vol. 73, No. 2, February, pp. 183-199, Department of Computer
Science, 1999.

[11] Katsoulas, D., Werber, A.: “Edge Detection in Range Images of Piled
Box-like Objects”; Conference on Pattern Recognition, Vol. 2, pp. 80-
84, 2004.

[12] Krockenberger, O., Nollek, H.: “Handling within an Automatic Sewing
Cell for Trouser Legs”; Conference on Advanced Robotics, Vol. 2, pp.
1534-1537, 1991.

[13] Lee, Y.H., Park, S.Y.: “A Study of Convex/Concave Edges and Edge-
Enhancing Operators Based on the Laplacian”, IEEE Transactions on
Circuits and Systems, Vol. 37, No. 7, pp. 940-946, 1990.

[14] Marr, D., Hildreth, E.: “Theory of edge detection”; Proceedings of the
Royal Society, B 207, pp. 187-217, 1980.

[15] Parhami, B.: “Voting algorithms”; IEEE Transactions on Realibility,
Vol. 43, No. 4, pp. 617-629, 1994.

[16] Pritschow, G., Mueller, S., Hober, H.: “Fast and robust image pro-
cessing for laser stripe-sensors in arc welding automation”; IEEE -
Industrial Electronics ISIE 2002, pp. 651-656, Stuttgart, Germany,
2002.

[17] Roberts, L.G.: “Machine perception of three-dimensional solids”;
Optical and Electro-Optical Information Processing, pp. 159-197,
Cambridge, 1965.

[18] Sickinger, C., Hermann, A.: “Structural Stitching as a Method to de-
sign High performance Composites in Future”; Proceedings TechTextil
Symposium 2001, Messe Frankfurt, Frankfurt am Main, 2001.

[19] Suetens, P., Fua, P., Hanson, A.J.: “Computational Strategies for Object
Recognition”; ACM Computing Surveys, Vol. 24, No. 1, pp. 5-61,
1992.

[20] Witting, J.: “Recent Development in the Robotic Stitching Technonol-
ogy for Textile Structural Composites”; JTATM Journal of Textile and
Apparel. Technology and Management, Vol. 2, Issue 1, 2001.

FrE6.2

4763


