
EKF SLAM updates in O(n) with Divide and Conquer SLAM

L.M. Paz, P. Jensfelt, J.D. Tardós and J. Neira

Abstract— In this paper we describe Divide and Conquer
SLAM (D&C SLAM), an algorithm for performing Simulta-
neous Localization and Mapping using the Extended Kalman
Filter. D&C SLAM overcomes the two fundamental limitations
of standard EKF SLAM: 1- the computational cost per step is
reduced from O(n2) to O(n) (the cost full SLAM is reduced
from O(n3) to O(n2)); 2- the resulting vehicle and map
estimates have better consistency properties than standard
EKF SLAM in the sense that the computed state covariance
adequately represents the real error in the estimation. Unlike
many current large scale EKF SLAM techniques, this algorithm
computes an exact solution, without relying on approximations
or simplifications to reduce computational complexity. Also,
estimates and covariances are available when needed by data
association without any further computation. Empirical results
show that, as a bi-product of reduced computations, and with-
out losing precision because of approximations, D&C SLAM
has better consistency properties than standard EKF SLAM.
Both characteristics allow to extend the range of environments
that can be mapped in real time using EKF. We describe the
algorithm and study its computational cost and consistency
properties.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) consists
in building a map of an unknown environment by traversing it
using a vehicle with an onboard sensor, while simultaneously
determining the vehicle location within the map. In the
Extended Kalman Filter solution to SLAM (EKF SLAM),
this problem is stated as a stochastic estimation process, in
which a move-sense-update cycle is carried out. At every
step, the EKF is used to obtain the state vector estimate x̂
containing the vehicle pose and n feature locations, along
with the estimated error covariance matrix P.

The EKF solution to SLAM has been used successfully
in small scale environments. However, the O(n2) cost of
updating the covariance matrix at each step limits the use of
EKF SLAM in large environments [3], [9]. This has been
subject of much interest in research. Early improvements
include Postponement [12], the Compressed EKF filter [9],
and Local Map Sequencing [16]. These algorithms work on
local areas of the stochastic map and are essentially constant
time most of the time, although they require periodical
O(n2) updates. More recently, researchers have pointed out
the approximate sparseness of the information matrix, the
inverse of the full covariance matrix P, that suggests using
the Extended Information Filter, the dual of the Extended

L.M. Paz, J.D. Tardós and J. Neira are with the Departamento
de Informática e Ingenieria de Sistemas, Centro Politécnico Superior,
Universidad de Zaragoza, Zaragoza, Spain {linapaz, jneira,
tardos}@unizar.es

P. Jensfelt is with the Royal Institute of Technology (KTH), Stockholm,
Sweden patric@nada.kth.se

n

n/2 n/2

n/4 n/4n/4 n/4

2p

p p

4p

2p 2p

p pp p m local maps

m/2 joins

4 joins

2 joins

1 join, 1 resulting map

Fig. 1. Binary tree representing the hierarchy of maps that are created
and joined in D&C SLAM. The leaves of the tree are the sequence of
local maps of minimal size (p) that the algorithm computes with normal
EKF SLAM. The intermediate nodes represent the maps resulting from
intermediate joining steps that are carried out, and their final size.

Kalman Filter, for SLAM updates. The Sparse Extended
Information Filter (SEIF) algorithm [17] approximates the
information matrix by a sparse form that allows O(1) updates
and O(n) computations of the state vector x. Nontheless,
data association becomes more difficult when covariance
matrix is not available, and the approximation can yield
overconfident estimations of the state [6]. This overconfi-
dence is overcome by the Exactly Sparse Extended Infor-
mation Filter (ESEIF) [18] with a strategy that produces an
exactly sparse Information matrix with no introduction of
inaccuracies through sparsification. The Thin Junction Tree
Filter algorithm [14] works on the Gaussian graphical model
represented by the Information matrix, and achieves high
scalability by working on an approximation where weak links
are broken. The Treemap algorithm [8] is a closely related
technique.

Most of these algorithms focus on computational is-
sues, ignoring another important limitation of standard EKF
SLAM that has gained attention recently: the effect of
linearizations in the consistency of the final vehicle and
feature estimates. Given that SLAM is a nonlinear problem,
the Kalman Filter, designed for linear systems, is extended
by linearizing around the current estimate. This introduces
errors in the estimation process that can render the result
inconsistent, in the sense that the computed state covariance
P does not represent the real error in the estimation [11], [4],
[1]. Among other things, this shuts down data association,
which is based on contrasting predicted feature locations
with observations made by the sensor. Thus, important
processes in SLAM like loop closing are crippled. The
Unscented Kalman Filter (UKF) [10] avoids linearization
via a parametrization of means and covariances through

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThA1.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1657

selected points to which the nonlinear transformation is
applied. Unscented SLAM has been shown to have improved
consistency properties [13]. Graphical SLAM [7] works on
the Gaussian graphical model, and handles non-linearities
and reversible data associations. These solutions however
ignore the computational complexity problem.

In this paper we propose Divide and Conquer SLAM
(D&C SLAM), an EKF SLAM algorithm that addresses both
the computational problem and the consistency problem. It
is based on the idea of Local Map Sequencing proposed in
[16]. In Local Map Sequencing, instead of working on a
single absolute map, a sequence of local independent maps
of equal constant size are generated as the vehicle traverses
the environment, and then joined at fixed intervals during the
process to produce the final absolute map. For local maps of
fixed size, it was shown in [16] that the computational cost
could be reduced by a large constant factor, but was still
O(n2) in every map joining step. The algorithm proposed
here works with a binary tree of local maps of different
sizes (see fig. 1), so that the number of map joining steps is
minimized and map joining can be performed in an amortized
way. We show that the computational complexity at each
step is reduced from O(n2) to O(n), with a total cost
for full SLAM of O(n2) compared to O(n3) for standard
EKF SLAM. Furthermore, map joining is known to exhibit
better consistency properties than full EKF SLAM [15], [5].
Here we show that the parametrization which the proposed
algorithm carries out on the environment map produces
always vehicle and map estimates with better consistency
properties than those provided by standard EKF SLAM.
Since the algorithm works with the Kalman Filter form and
no approximations or simplifications are required, central
processes such as data association can be carried out as in
standard EKF SLAM with no further processing.

This paper is organized as follows: section II contains a
description of the proposed algorithm, and a study of its
computational cost. In section III we study the consistency
properties of D&C SLAM in the simulated experiments. We
have used a simulated experiment because Monte Carlo runs
allow to gather statistically significant evidence about the
consistency properties of the algorithms being compared.
Finally in section IV we draw the main conclusions of this
work and discuss future directions of research. Appendix
I contains the mathematical details of the improved map
joining process that we use in this work.

II. THE DIVIDE AND CONQUER SLAM
ALGORITHM

The central idea of D&C SLAM is very simple: instead of
doing Local Map Sequencing, building a sequence of local
maps of some fixed size (see [15] for a discussion on how
to decide this size for a given sensor and environment), and
then joinining them sequentially to form the complete map,
D&C SLAM joins local maps in a binary tree fashion (see
fig. 1). Standard EKF SLAM is carried out up to a fixed
maximal (small) size p. For a given environment requiring
m such local maps, they will be joined into m/2 local maps

Algorithm 1 dc slam:
sequential implementation using a stack.

stack = new()
m0 = ekf slam()
stack = push(m0, stack)
{
Main loop: postorder traversing of the map tree.
}
repeat

mk = ekf slam()
while ¬ empty(stack) and then
size(mk) ≥ size(top(stack)) do

m = top(stack)
stack = pop(stack)
mk = join(m, mk)

end while
stack = push(mk, stack)

until end of map
{
Wrap up: join all maps in stack for full map recovery.
}
while ¬ empty(stack) do

m = top(stack)
stack = pop(stack)
mk = join(m, mk)

end while
return (mk)

of double size, which in turn will be joined into m/4 local
maps of quadruple size, until the final map of size n will be
the result of joining 2 maps of size n/2.

Carrying out this process sequentially amounts to travers-
ing the binary tree in postorder, and can be easily imple-
mented using a stack of maps (see Algorithm I).

A. Computational Complexity of full D&C SLAM

Without loss of generality, consider performing SLAM in
an environment where the density of features is uniform. At
every step k, the onboard sensor of limited range provides
a set of measurements. During exploration, a fraction will
correspond to features already in the map, and the rest will
correspond to new features that should be included in the
map. While we carry out a straightforward trajectory (before
loop closing, see fig. 2), the map will grow in size in
proportion to k. Thus, the cost of an update will be O(k2),
and the final cost of full EKF SLAM will be cubic on the
total number of steps.

Assume mapping such an environment using D&C SLAM,
starting with local maps of some fixed maximal size of p
features. If the total size of the environment requires m
such maps to be covered fully, the total number of map
features will be at most n = p m. The cost of building
each map of p features will be O(p3). Considering only the
higher order term, each local map will cost K1 p3. Thus, the
computational cost of these m local maps will be K1 p3 m.

ThA1.1

1658

Fig. 2. Initial trajectory and map for the simulated 3D experiment.

In the proposed algorithm, these m maps will be joined
into m/2 maps of approximately double size (slightly less
when there are repeated features). Map joining is O(n2) on
the final map size n. Again considering only the higher order
computational cost, each of these map joinings will thus
have a K2 (p + p)2 computational cost, for a total cost of
K2 (2p)2 (m/2). These in turn will be joined into m/4 maps
at a cost of K2 (4p)2 each, for a total cost of K2 (4p)2 (m/4).
Continuing in this fashion, the total computational cost of
this process will be:

C = K1 p3 m +
log2 m∑

i=1

K2
m

2i
(2i p)2

= K1 p3 m +
log2 m∑

i=1

K2 p2 m

2i
(2i)2

= K1 p3 m + K2 p2 m

log2 m∑
i=1

2i

The sum is a geometric progression of the type:

m∑
i=1

ri =
rm+1 − r

r − 1

Thus, in this case:

C = K1 p3 m + K2 p2 n

(
2log2 m+1 − 2

2 − 1

)

= K1 p3 m + K2 p2 m (2 m − 2)
= 2 K2 p2 m2 +

(
K1 p3 − 2 K2 p2

)
m

Given that n = p m:

C = 2 K2 n2 +
(
K1 p2 − 2 K2 p

)
n

This means that D&C SLAM performs SLAM with a total
cost quadratic with the size of the environment, as compared
with the cubic cost of standard EKF SLAM.

B. Computational Complexity of D&C SLAM per step

Fig. 3 (top) shows the computational cost per step for
256 steps of D&C SLAM versus EKF SLAM in a sim-
ulated experiment in which the vehicle performs a 1m
motion at every step in a 3D environment of 1036 features.
The odometry of the vehicle has errors in each motion
step with a standard deviation of 10cm in the x direction
(the direction of motion), 5cm in y and z directions, and
(1deg, 0.5deg, 0.5deg) for Roll, Pitch and Yaw angles. We
simulate an onboard range and bearing sensor with a range
of 3m, so that 12 features are normally seen at every step.
The measurement error is 2% of the distance in range, and
0.5deg in bearing.

We can see that the computational cost of D&C SLAM
is very low for most steps compared with standard EKF
SLAM, except in those steps that are a power of 2. In
those cases, several map joinings may take place at the same
step to complete the map. This results in a slightly higher
computational cost for D&C compared with EKF. All map
joining operations are quadratic on the number of features
on the resulting map. However, in D&C SLAM, the map to
be generated at step k will not be required for joining until
step 2 k. We can therefore amortize the cost O(k2) of this
join by dividing it up between steps k to 2 k − 1 in equal
O(k) computations for each step. We must however take into
account all joinings to be computed at each step. If k is a
power of 2 (k = 2j), j joinings will take place at step k,
with a cost O(22)+ . . .+O((2j)2). To carry out the last join
in the step, the previous join j − 1 in the same step should
be complete. Thus if we wish to amortize all joins, we must
wait until step k + k/2 for join j − 1 to be complete, and
then start join j. For this reason, the amortized version of
this algorithm is carried out by dividing up the largest join
at step k into steps k + k/2 to k + k − 1 in equal O(2 k)
computations for each step. The next-to-largest join in the
step will be divided into steps k + k/4 to k + k/2 − 1 in
equal O(k) computations each, and so on. In this way, the
cost of D&C SLAM per step becomes linear with n in the
amortized version.

Fig. 3 (middle) shows the resulting amortized cost for 256
steps in this simple simulation. Note that at steps i = 2j , the
cost falls steeply. As said before, in these steps j joins should
be computed, but since join i required the map resulting
from join i− 1, all j joins are postponed. If at any moment
during the map building process the full map is required for
another task, it can be computed in a single O(n2) step. D&C
SLAM can then continue normally with this single map in
the stack. Fig. 3 (bottom) shows the total execution time of
both algorithms. Given that the computational cost per step
of D&C SLAM is lower than that of EKF SLAM most of
the time, the total cost of D&C SLAM increases very slowly
compared to the total cost of EKF SLAM.

ThA1.1

1659

50 100 150 200 250

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Step

T
im

e
(s

)

EKF
D&C

50 100 150 200 250

0.5

1

1.5

2

2.5

3

3.5

4

Step

T
im

e
(s

)

EKF
D&C

50 100 150 200 250

50

100

150

200

250

300

350

Step

T
im

e
(s

)

EKF
D&C

Fig. 3. Cost per step of D&C v.s. EKF SLAM (top); Amortized cost per
step of D&C and EKF SLAM (middle). Total execution time of EKF .vs.
D&C SLAM (bottom).

III. CONSISTENCY IN D&C SLAM

Consistency analysis determines how well the covariance
matrix P represents the error in estimate x̂.

If the ground truth solution x for the state variables is
available, a statistical test for filter consistency can be carried
out on the state estimate (x̂, P). The Normalized Estimation
Error Squared (NEES) is defined as:

D2 = (x − x̂)T P−1 (x − x̂) (1)

Consistency is then checked using a chi-squared test:

D2 ≤ χ2
r,1−α (2)

where r = dim(x) and α is the desired significance level
(usually 0.05). If we define the consistency index of a given
estimation (x̂, P) with respect to its true value x as:

CI =
D2

χ2
r,1−α

, (3)

the estimation is consistent with ground truth when CI < 1,
and inconsistent (overconfident) when CI > 1.

We tested consistency of both standard EKF and D&C
SLAM algorithms by carrying out 20 Monte Carlo runs
on the simulated experiment. Figure 4, top left, shows the
evolution of the mean consistency index of the vehicle
orientation (roll angle) during all steps of the simulation.
We can see that the D&C estimate always has a lower
consistency index than the standard EKF estimate, and falls
out of consistency at a much lower rate. Fig. 4 (bottom,
left) shows the mean consistency index for all features in
the map. Again, the D&C feature estimates have always a
lower consistency index than those of standard EKF SLAM
and fall out of consistency at a much lower rate. Note that for
D&C SLAM, consistency is pointed out by triangles in those
steps which are a power of 2, when a full map is available
(although we compute consistency at every step).

Figures 4 (right) show the evolution of the mean absolute
roll error of the vehicle (top) and mean absolute lateral error
for all features (bottom). The 2σ bounds for the theoretical
(without noise) and computed (with noise) uncertainty of
both standard EKF and Divide and Conquer SLAM algo-
rithms are also drawn. We can see that the error increases at
a slower rate in the case of D&C SLAM; we can also see
that the main cause of inconsistency in the standard EKF
SLAM is the fast rate at which the computed uncertainty
falls below its theoretical value.

We carried out another simulated experiment to test the
D&C SLAM consistency when the vehicle moves along a
loop trajectory of 64 steps. The robot estimate was computed
by joining all maps available in every step. Both D&C SLAM
and EKF SLAM were executed with exactly the same data
(including random errors). Fig. 5 shows a typical situation:
EKF SLAM (top) is overconfident: errors are larger than
the computed covariances suggest, and thus loop closing is
not possible. D&C SLAM (bottom) computes estimates and
covariances that allow it to easily close the loop.

ThA1.1

1660

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

steps

In
de

x
EKF
D&C
Bound

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Steps

E
rr

or
 (

ra
d)

EKF theorical uncertainty
EKF computed uncertainty
EKF Error
D&C Theorical Uncertainty
D&C computed uncertainty
D&C Error

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

steps

In
de

x

EKF
D&C
Bound

50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

Steps

E
rr

or
 (

m
)

EKF theorical uncertainty
EKF computed uncertainty
EKF Error
D&C Theorical Uncertainty
D&C computed uncertainty
D&C Error

Fig. 4. Mean consistency index (left) and Mean Absolute error (right) for standard EKF SLAM (black) and D&C SLAM (blue). Roll Robot error(top);
lateral error for all map features (bottom); in all cases, at all steps of the vehicle trajectory.

IV. CONCLUSIONS

In this paper we propose Divide and Conquer SLAM, a
computationally more feasible alternative to standard EKF
SLAM. Its computational cost per step is O(n), as com-
pared to O(n2) for standard EKF SLAM. D&C SLAM
is a simple algorithm to implement, and in contrast with
many current efficient SLAM algorithms, all information
required for data association is available when needed with
no further processing. D&C SLAM computes the exact EKF
SLAM solution, both the estimate x̂ and covariance P, with
no approximations, and with the additional advantage of
providing always a more precise and consistent vehicle and
map estimate.

One of the main subjects of our future work will be
to study D&C with other simulations experiments (explore
and return, loop closing, lawn mowing) to show that the
amortized cost is kept linear. Also, future work will be to
carry out a large scale experiment where the advantages
and limits of D&C SLAM can be experimentally evaluated.
Data association is required to carry out the joining process

between two local maps. Depending on the type of trajectory,
the size and overlap between the maps will change. This will
require developing specialized data association algorithms to
keep the amortized cost always linear.

We hope to demonstrate that D&C SLAM is the algorithm
to use in all applications in which the Extended Kalman
Filter solution is to be used.

V. ACKNOWLEDGMENTS

This research has been funded in part by the Dirección
General de Investigación of Spain under projects DPI2003-
07986 and DPI2006-13578, the Swedish Foundation for
International Cooperation in Research and Higher Education
(STINT), under project IG2003-2 060, and the Swedish
Foundation for Strategic Research through the Centre for
Autonomous Systems.

APPENDIX I: MAP JOINING 2.0

This appendix describes the map joining process used
in D&C SLAM, an improved version with respect to the
original map joining 1.0 in [16]. The general idea is the

ThA1.1

1661

Fig. 5. Conditions on arriving at loop closing: EKF SLAM (top), D&C
SLAM (bottom). Ground true trajectory in red, estimated trajectory in blue.

same: in a sequential move-sense-update cycle, a local map
is initialized at some moment i using the current vehicle
location Ri as base reference, and thus the initial vehicle
location in the map is xRiRi = 0 an also the initial vehicle
uncertainty PRi = 0. Standard EKF SLAM is carried out
in a this move-sense-update fashion, until the map reaches a
certain size of n features F1 . . . Fn at step j. In this moment
the state vector x̂i...j will be:

x̂i...j =




x̂RiRj

x̂RiF1

...
x̂RiFn




with corresponding covariance matrix Pi...j . This map is
then closed, and a new local map mj...k = (x̂j...k,Pj...k) is
initialized in the same way (for simplicity, assume the sensor
measurements at step j are used to update the first map, and
the vehicle motion from Rj to Rj+1 is carried out in the

second map). This results in having the last vehicle location
in the first map, Rj , be the base reference of the second map,
which allows maps to be joined into a full map in a three step
process of (1) joining; (2) update; and (3) transformation, as
it is explained next.

A. The Map Joining step

Consider two sequential local maps mi...j =
(x̂i...j ,Pi...j), mj...k = (x̂j...k,Pj...k), with n features
F1 . . . Fn and m features G1 . . . Gm each:

x̂i...j =




xRiRj

xRiF1

...
xRiFn


 ; x̂j...k =




xRjRk

xRjG1

...
xRjGm


 (4)

In this approach, the joining step allows to obtain a
stochastic map m−

i...k =
(
x̂−

i...k,P−
i...k

)
in the following

simple way:

x̂−
i...k =

[
x̂i...j

x̂j...k

]
(5)

P̂−
i...k =

[
Pi..j 0
0 Pj..k

]
(6)

Note that the elements in the second map are kept in their
own reference Rj instead of being referenced to reference
frame Ri as in map joining 1.0. This has the effect of
delaying the linearization process of converting all features
to base reference Ri until the update step has taken place,
and thus an improved estimation is used for this linearization.
This is the fundamental difference between map joining 1.0
and map joining 2.0

B. The update step

Data association is carried out to determine correspon-
dences between features coming from the first and second
map. This allows to refine the vehicle and environment fea-
ture locations by the EKF update step on the state vector. Let
H be a hypothesis that pairs r features Ff1 . . . Ffr coming
from local map mi...j with features Gg1 . . . Ggr coming from
map mj...k. A modified ideal measurement equation for r
re-observed features expresses this coincidence:

hH(x̂−
i...k) =




hf1,g1

...
hfr ,gr


 = 0 (7)

where for each pairing:

hfr ,gr = xRiFfr
− xRiRj ⊕ xRjGgr

.

Linearization yields:

hH(x̂−
i...k) � hH(x̂−

i...k) + HH(x−
i...k − x̂−

i...k) (8)

where:

ThA1.1

1662

HH =
∂hH

∂x−
i...k

|(x̂−
i...k

)

=




∂hf1g1
∂xRiRj

0 · · · I 0 ∂hf1g1
∂xRjGg1

· · ·
...

...
...

...
...

...
...

∂hfrgr

∂xRiRj
0 I · · · 0 · · · ∂hfrgr

∂xRjGgr




(9)

The update step allows to obtain a new estimate m+
i...k =(

x̂+
i...k,P+

i...k

)
by applying modified EKF update equations:

x̂+
i...k = x̂−

i...k − KhH(x̂−
i...k)

P+
i...k = (I − KHH)P−

i...k

where:

K = P−
i...kH

T
H

(
HHP−

i...kH
T
H

)−1

C. The transformation step

A final step is carried out to transform all the elements
of x̂+

i...k to the same base reference Ri and obtain the final
joined map mi...k = (x̂i...k,Pi...k):

x̂i...k =




x̂RiRk

x̂RiF1

...
x̂RiFn

x̂RiG1

...
x̂RiGm




=




x̂+
RiRj

⊕ x̂+
RjRk

x̂+
RiF1

...
x̂+

RiFn

x̂+
RiRj

⊕ x̂+
RjG1

...
x̂+

RiRj
⊕ x̂+

RjGm




Pi...k =
∂x̂i...k

∂x̂+
i...k

P+
i...k

(
∂x̂i...k

∂x̂+
i...k

)T

∂x̂i...k

∂x̂+
i...k

=




∂xRiRk

∂xRiRj
0 ∂xRiRk

∂xRjRk

0

0 I 0 0
∂xRiE

∂xRiRj
0 0 ∂xRiE

∂xRjE


 (10)

Note again that this linearization is carried out once the
map has been refined in the previous update step, thus using
a better estimate.

REFERENCES

[1] T. Bailey, J. Nieto, J. Guivant, M. Stevens and E. Nebot, ”Consistency
of the EKF SLAM Algorithm”, IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2006.

[2] Y. Bar-Shalom, X. Rong Li and T. Kirubarajan, ”Estimation with
Applications to Tracking and Navigation”, Wiley InterScience, 2001.

[3] J. Castellanos, and J. Tardós, ”Mobile Robot Localization and Map
Building: A Multisensor Fusion Approach”. Boston, Mass. Kluwer
Academic Publishers. 1999

[4] J. Castellanos, J. Neira and J. Tardós, ”Limits to the Consistency of
EKF-based SLAM”, 5th IFAC Symposium on Intelligent Autonomous
Vehicles, 2004.

[5] J.A. Castellanos, R. Martinez-Cantin, J.D. Tardós and J. Neira, ”Robo-
centric Map Joining: Improving the Consistency of EKF SLAM”, to
appear in Robotics and Autonomous Systems.

[6] R. Eustice, M. Walter, and J. Leonard, Sparse extended information
filters: Insights into sparsification, Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, Edmonton,
Alberta, Canada, August 2005.

[7] J. Folkesson and H. Christensen, Graphical SLAM - A Self-Correcting
Map, Proc. of the IEEE International Conference on Robotics and
Automation (ICRA’04), New Orleans, LA, USA, 2004.

[8] U. Frese, ”Treemap: An O(logn) Algorithm for Indoor Simultaneous
Localization and Mapping”, Autonomus Robots, 21(2) pp. 103-122,
2006.

[9] J. Guivant and E. Nebot, ”Optimization of the Simultaneous Local-
ization and Map-Building Algorithm for Real-Time Implementation”,
IEEE Transactions on Robotics and Automation, 17(3) pp. 242-257,
2001.

[10] S. Julier J. and Uhlmann. ”A new extension of the Kalman
Filter to nonlinear systems”, In International Symposium on
Aerospace/Defense Sensing, Simulate and Controls, Orlando, FL.
1997.

[11] S.J. Julier, J.K. Uhlmann, J.K. A Counter Example to the Theory of
Simultaneous Localization and Map Building 2001 IEEE Int. Conf.
on Robotics and Automation, 2001, 4238-4243

[12] J. Knight, A. Davison and I. Reid, ”Towards Constant Time SLAM
using Postponement” IEEE/RSJ Int’l Conf on Intelligent Robots and
Systems, pp 406-412, 2001.

[13] R. Martinez-Cantin and J. A. Castellanos, ”Unscented SLAM for
large-scale outdoor environments”, 2005 IEEE/RSJ Int. Conference on
Intelligent Robots and Systems, IROS’05, Edmonton, Alberta, Canada,
pp. 328-333.

[14] M. A. Paskin, Thin Junction Tree Filters for Simultaneous Localiza-
tion and Mapping, Proc. of the 18th Joint Conference on Artificial
Intelligence (IJCAI-03),San Francisco, CA. pp 1157–1164, 2003.

[15] L. Paz and J. Neira, ”Optimal local map size for EKF-based
SLAM”, IEEE/RSJ Int. Conference on Intelligent Robots and Systems,
IROS’06, Beijing, China.

[16] J. Tardós, J. Neira, P. Newman and J. Leonard, ”Robust Mapping
and Localization in Indoor Environments using Sonar Data” Int. J.
Robotics Research, 21, 311-330, 2002.

[17] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H.
Durrant-Whyte, ”Simultaneous Localization and Mapping with Sparse
Extended Information Filters”, The International Journal of Robotics
Research, 23, 693-716, 2004.

[18] M. Walter, R. Eustice and J. Leonard, ”A Provably Consistent Method
for Imposing Sparsity in Feature-based SLAM Information Filters”,
Proc. of the Int. Symposium of Robotics Research (ISRR), 2004.

ThA1.1

1663

