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Abstract— Swedish wheeled mobile robots have remarkable
mobility properties allowing them to rotate and translate at
the same time. Being holonomic systems, their kinematics
model results in the possibility of designing separate and
independent position and heading trajectory tracking control
laws. Nevertheless, if these control laws should be implemented
in the presence of unaccounted actuator peak velocity limits,
the resulting saturated linear and angular velocity commands
could interfere with each other thus dramatically affecting
the overall expected performance. Based on Lyapunov’s direct
method, a position and heading trajectory tracking control law
for Swedish wheeled robots is developed. It explicitly accounts
for actuator velocity saturation by using ideas from a prioritized
task based control framework.

I. INTRODUCTION

The basic idea of task based kinematical control of ro-
bots consists [1][2][3] in exploiting eventual kinematical
redundancy to try to accomplish more than one motion
task. For example in the simplest case there are only two
tasks present and we assume for the moment actuators
to be ideal (i.e. that any commanded velocity is instantly
and perfectly implemented). Then according to the standard
approach for redundant manipulators the two tasks would be
accomplished as follows: denoting with q the n dimensional
column vector of joint space variables, with J(q) ∈ Rp×n

the full rank, high priority, task Jacobian matrix and with
v a p dimensional desired operational space, high priority
task, velocity vector (p ≤ n), the commanded joint space
velocities q̇d would be split into:

q̇d = J†(q)v + PJ q̇2 (1)

being J† a pseudo-inverse of J with JJ† = Ip×p and PJ :=(
In×n − J†(q)J(q)

)
the projection to the kernel, see e.g.

[1], pg. 98. Being filtered by a projector in the null space of
J , the joint velocity vector q̇2 corresponds to the low priority
task as opposed to J† v that corresponds to the high priority
one. Indeed, assuming no actuator velocity saturation, q̇d

given by equation (1) will always guarantee v to be perfectly
realized whereas q̇2 might even not be implemented at all if
it should happen to be in the kernel PJ .

Since this idea of task based kinematics control has been
developed, main stream research has focused in particular
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on extending the above formulation to the case of many
concurrent tasks, on the definition of useful lower priority
tasks (by example maximizing manipulability indexes in
redundant manipulators) and on coping with singularities of
J(q) in case it should not be full rank for all admissible
values of q. Minor attention has been instead devoted to
the problems that arise in the presence of actuator torque
or velocity saturation. In the above described saturation free
setting, as lower priority tasks are projected in the kernel
of the Jacobians of higher priority ones, the former ”do
no harm” to the latter: this will no longer hold true when
actuator velocity saturation should be present, in spite of the
projection of lower priority tasks in the Jacobian kernel of
higher priority ones. The paper addresses the issues relative
to actuator velocity saturation based upon a kinematics ro-
bot description, whereas dynamic effects including eventual
actuator torque saturations are not accounted for.

Should the low priority task cause even a single (of the
n) actuators to saturate its velocity, the high priority task
could be irremediably corrupted. As a simple example take a
differential drive robot which travels on a straight line with
constant linear velocity of both wheels being e.g. at some
fraction q of the possible maximum wheel speeds vmax.
Since the angular velocity will go with the difference of left
and right wheel speeds, the maximum curvature of a feasible
path in this situation is limited to the headroom left by the
differences of the obtainable ”left over” speeds of 1 − q.

In some applications a simplistic and common way out
of this problem is to uniformly scale q̇d in order to re-
enter within the actuator limits, but this may cause serious
performance degradation of the high priority task induced by
the lower priority one. Rather than uniformly scaling q̇d, the
solution proposed in this paper builds on the idea of scaling
the commanded joint velocities relative to lower priority
tasks in favor of higher priority ones. The proposed method
is tested on the trajectory tracking control problem for an
omni-drive mobile robot. Omni-drive robots are equipped
with so called Swedish (or Mecanum) wheels. A Swedish
wheel differs from a common wheel in the fact that rollers
are mounted on its perimeter. As reported in [4], the Swedish
(or Mecanum) wheel was invented in 1973 by Bengt Ilon,
an engineer working for the Swedish company Mecanum
AB. The interest in such kind of wheels is related to the
possibility of developing omni-directional robots in the sense
of that the robot ”have a full mobility in the plane which
means that they can move at each instant in any direction
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without any reorientation” [5]. As opposed to traditional
wheel car-like or differentially driven mobile robots, the
translational velocity vector of a Swedish wheeled vehicle
can point in an arbitrary direction at any time without
reorienting the wheels. Otherwise stated, Swedish wheeled
vehicles are not affected by non-holonomic constraints: as
far as the structural properties of the kinematics model of
a Swedish wheeled robot is concerned, angular and linear
velocities are independent. As a consequence one can design
separate and independent trajectory tracking guidance control
laws for position and heading. Yet if these control laws
are implemented in the presence of unaccounted actuator
saturation, the resulting saturated linear and angular velocity
commands could interfere with each other.

Our contribution is the application of the idea of task based
scheduling to the non-redundant joint space decomposition as
a direct sum. Furthermore we design a general schema to deal
with velocity saturating actuators, where we proof overall
convergence of tracking errors to zero in spite of the actuator
saturations theoretically using Lyapunov methods. Finally we
apply the kinematical control system to the specific problem
of trajectory tracking for a Swedish wheeled mobile robot.

The outline of the paper is as follows: after describing the
general schema to deal with actuator velocity saturation in
Section II, the robot model on which the method is tested is
reported in Section III. The trajectory tracking control law
is designed and analyzed in Section IV while experimental
results and conclusions are addressed in Sections V and VI
respectively. The present paper generalizes recent prelimi-
nary results presented in [6].

II. TASK BASED KINEMATICAL CONTROL IN THE

PRESENCE OF ACTUATOR SATURATION

Assume that applying standard task Jacobian projection
methods (as, by example, in [7]) a commanded joint velocity
vector should results in:

q̇d =
N∑

l=1

q̇l (2)

being q̇l : l ∈ [1, N ], N independent task inputs ordered
by decreasing priority with increasing index (q̇1 has highest
priority). Any physical actuator will be able to produce only
a bounded velocity: this implies that the commanded joint
velocity vector should satisfy ‖q̇d‖∞ ≤ q̇max for some
strictly positive threshold velocity q̇max. In general, given
also that task joint commands q̇l are often the output of
feedback control laws, there is no guarantee that ‖q̇d‖∞ ≤
q̇max is actually satisfied at all times. To cope with this,
the basic idea is to replace the plain sum in equation (2)
with a weighted sum in which weights are dynamically
and recursively computed so that i) lower priority tasks
are scaled at the expense of higher priority ones, ii) the
constraint ‖q̇d‖∞ ≤ q̇max is satisfied at all times and iii)
the overall resulting law still meets the requirements of
the saturation free designed law (2). Consider the function

σ : R × [0,∞) −→ R such that

σ(x, c) =

⎧⎨
⎩

0 if x = 0
1 if 0 < |x| < c
c/|x| otherwise,

(3)

where the non negative second argument c of σ(x, c) will
be called the capacity of x. By definition σ(x, c) is sim-
ply a nonnegative scalar scaling factor such that xσ(x, c)
is ”clipped” to c sign(x) whenever |x| should exceed the
capacity c and is equal to x otherwise, i.e. xσ(x, c) is simply
the saturated version of x in the range [−c, c]. Also notice
that by its very definition

σ(x, 0) = 0 ∀ x, (4)

namely if x should be assigned zero capacity, then
xσ(x, 0) = 0 for any value of x. Consider then the modified
commanded joint velocity vector:

q̇d =
N∑

j=1

q̇j σ
(‖q̇j‖∞ , cj

)
(5)

where each task capacity is recursively and dynamically
computed as:

c1(t) ≤ q̇max (constant, i.e. ċ1(t) = 0)
c2(t) = c1 − ‖q̇1‖∞ σ (‖q̇1‖∞ , c1)
c3(t) = c2(t) − ‖q̇2‖∞ σ (‖q̇2‖∞ , c2(t))

... =
... (6)

cN (t) = cN−1(t) − ‖q̇N−1‖∞ σ (‖q̇N−1‖∞ , cN−1(t)) .

Notice that by construction all the above task capacities are
non negative, i.e. cj ≥ 0 ∀ j ∈ [1, N ], and that

cj ≤ cj−1 ∀ j ∈ [2, N ]

ci = 0 =⇒ cj = 0 ∀ j > i

namely if a given task is assigned zero capacity, all the lower
priority tasks will also automatically have zero capacity and
all their weights in the sum (5) will be zero. The capacity of
task i can be viewed as the residual capacity after the higher
priority task i − 1 has been commanded; thus, by example,
c2 will be zero (and also cj : j > 2) if the task 1 input
q̇1 is saturating all its capacity c1. In words, each task will
be commanded with a non null weight only if the higher
priority task have not saturated. The fact that c1 needs not
to exceed q̇max is due to the fact that task 1 alone should
not saturate the actuator capacity q̇max; moreover given that
cj+1 ≤ cj ∀ j ∈ [1, n − 1] the condition c1 ≤ q̇max

guarantees that each term in the sum equation (5) will
have infinity norm smaller or equal to the threshold q̇max.
Most important, also the total control signal equation (5)
has infinity norm smaller or equal than q̇max. The proof can
be obtained by summing the last N−1 equations in equation
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(6) implying:

c1 =
N−1∑
k=1

‖q̇k‖∞ σ (‖q̇k‖∞ , ck(t)) + cN

≥
N∑

k=1

‖q̇k‖∞ σ (‖q̇k‖∞ , ck(t)) . (7)

From equations (5, 6, 7)

‖q̇d‖∞ ≤
N∑

k=1

‖q̇k‖∞ σ (‖q̇k‖∞ , ck(t)) ≤ c1 ≤ q̇max. (8)

The proposed kinematical control law given by equations (5)
and (6) will thus guarantee that the commanded joint velocity
remains bounded while preventing lower priority tasks to
corrupt higher priority ones by inducing actuator saturation.
Remarkably experience has shown that many Lyapunov
based task oriented control laws of the form of equation
(2) can be quite easily shown to conserve their convergence
properties when implemented in the form of equations (5 -
6). While a detailed analysis of the general conditions under
which this can be proven is ongoing research, a significant
experimental example of a trajectory tracking control law for
an omni-directional robot is presented next.

III. ROBOT KINEMATICS MODELING

Fig. 1. Three wheel omni-drive robot used for the experiments: bottom
view including body fixed frame (axis kB goes inside the picture pointing
towards the top of the robot)

With reference to Fig. 1, a three wheel omni-drive mobile
robot is considered. The wheels have equal radius ρ and their
main axis, i.e. hub axis, are assumed to always lie parallel
to a fixed ground plane P having unit vector k ⊥ P . An
orthonormal body fixed frame < B >= {iB, jB,kB} is
chosen such that iB × jB = kB = k. The three wheels are
symmetrically located at 120o degrees from each other at a
same distance b = ‖bh‖ ∀ h = {1, 2, 3} from the robot’s
center. Calling vc the linear velocity of the robots center and
ω k its angular velocity vector, the vehicle kinematics model

can be expressed through the linear and angular velocity
Jacobian matrices as:

Bvc = Jlv q̇ : Jlv ∈ R2×3 (9)

ω = Jω q̇ : Jω ∈ R1×3. (10)

where the superscript B in Bvc indicates that the components
of vector Jlv q̇ are given in the body fixed frame < B >. In
particular [8],

Jω = − ρ

3 b
(1 1 1) (11)

Jlv =
ρ

3

(
0

√
3 −√

3
−2 1 1

)
. (12)

It is important to notice that both Jω and Jlv given in
equations (11) and (12) are full rank and that

Jlv JT
ω = 0. (13)

As shown in the sequel, this last equation allows to design
separate kinematics control laws for linear and angular
velocities.

IV. TRAJECTORY TRACKING CONTROL LAW DESIGN

Given an inertial (global) frame < G >= (i, j,k) with
k := (i × j) ⊥ P being P the floor plane, a reference
(planar) trajectory is a 2D differentiable curve rd(t) in P
with curvilinear abscissa

s(t) :=
∫ t

t0

∥∥∥∥d rd(τ)
dτ

∥∥∥∥ dτ (14)

and unit tangent vector

td =
d rd

ds
. (15)

The kinematics trajectory tracking problem consists in find-
ing a control law for the systems input q̇ such that the
position and heading tracking errors

er(t) := rd(t) − rc(t) (16)

eϕ(t) := ϕd(t) − ϕ(t) (17)

converge to zero, namely such that:

lim
t→∞ er(t) = lim

t→∞ (rd(t) − rc(t)) = 0 (18)

lim
t→∞ eϕ(t) = lim

t→∞ (ϕd(t) − ϕ(t)) = 0 (19)

being rc(t) the position in < G > of a reference point
(e.g. the geometrical center or the center of mass) of the
robot, ϕ(t) its heading, ϕd(t) the desired reference heading,
er(t) = (rd(t) − rc(t)) the position tracking error and
eϕ(t) = (ϕd(t)−ϕ(t)) the heading error. Notice that for non-
holonomic vehicles having a unicycle or car-like kinematics
model, the reference heading ϕd(t) is not arbitrary, but needs
to coincide with the heading of the trajectories unit tangent
vector td. To the contrary given any position reference
trajectory rd(t), a Swedish wheeled vehicle will be free
to track any arbitrary heading ϕd(t) that does not need to
coincide with the heading of td.

ThC7.3

2613



A. Trajectory tracking controller design

In accordance with the notation previously introduced,
consider equations (9-10) being vc = ṙc(t) and ω = ϕ̇(t)
the time derivatives of the robots position rc(t) and heading
ϕ(t). To solve the above stated trajectory tracking problem,
consider the Lyapunov candidate function

V =
1
2
eT

r Kr er +
1
2
eT

ϕ Kϕ eϕ (20)

being Kr ∈ R2×2 a symmetric positive definite (Kr > 0)
matrix and Kϕ a positive constant. The time derivative of V
results in

V̇ = eT
r Kr (ṙd(t) − Jlvq̇) + eT

ϕ Kϕ (ϕ̇d(t) − Jωq̇) . (21)

Denoting with J†
lv and J†

ω the right pseudo-inverse matrices
of full rank Jlv and Jω respectively (Jlv and Jω are full rank
by hypothesis),

J†
lv = JT

lv

(
Jlv JT

lv

)−1
and J†

ω = JT
ω

(
Jω JT

ω

)−1
(22)

a possible value for q̇ making V̇ in equation (21) negative
definite is:

q̇d(t) = q̇lvd(t) + q̇ϕd(t) (23)

q̇lvd(t) = J†
lv ( ṙd(t) + Kr er(t) ) (24)

q̇ϕd(t) = J†
ω ( ϕ̇d(t) + Kϕ eϕ(t) ) (25)

implying in closed loop

V̇ = −eT
r Kr Kr er − (Kϕ eϕ)2 < 0. (26)

As for standard tracking controllers, the solution in equation
(23) is a combination of feedforward terms proportional to
the reference linear and angular velocities and a feedback
term. The proposed solution guarantees global exponential
stability of equilibrium er = 0, eϕ = 0 of the error
dynamics, thus (robustly) solving the trajectory tracking
problem. Control law (23) is the sum of two contributions:
the first (24) relative to position tracking and the second (25)
to heading tracking. In the light of property (13), it should
be noticed that the two contributions do not interfere with
each other, namely the contribution of q̇lvd to the robots
angular velocity and the contribution of q̇ϕd to the robots
linear velocity are both null, i.e.

Jωq̇lvd = Jω

(
JT

lv

(
Jlv JT

lv

)−1
)

( ṙd + Kr er) = 0

Jlvq̇ϕd(t) = Jlv

(
JT

ω

(
Jω JT

ω

)−1
)

( ϕ̇d + Kϕ eϕ) = 0

due to 13). When designing vehicle kinematics guidance
laws it must be assumed that the lower level (actuator)
dynamics should be much faster than the kinematics. This
requirement is reflected on design choices such as actuator
power and desired reference trajectories: the former needs to
be sufficiently large for the given inertial properties of the
vehicle so that maximum vehicle accelerations can be much
larger than the maximum reference accelerations ϕ̈d(t) and
r̈d(t). As far as the ratio of maximum vehicle acceleration
over maximum reference acceleration is sufficiently large the

dynamic behavior of the kinematics guidance law will be
fine. Thus, as for any other kinematics designed guidance
solution, the proposed control law should be implemented
on Swedish wheeled vehicles with sufficiently powerful ac-
tuators with respect to the maximum reference accelerations
ϕ̈d(t) and r̈d(t). As for actuator saturation, the situation
is slightly more complex. Given the proportional nature of
the control law (23), the tracking error (either in position
or heading) or the desired reference velocities can always
happen to be large enough for the actuators to saturate. If
we choose q̇max > 0 the maximum absolute angular velocity
that the vehicles actuators are able to generate, whatever the
gains Kr and Kϕ should be, depending on ϕ̇d(t), ṙd(t),
er(t) or eϕ(t) the saturation condition

‖q̇d‖∞ ≤ q̇max (27)

may always be violated. Notice that while the feedforward
signals ϕ̇d(t) and ṙd(t) can eventually always be bounded,
the tracking error’s initial conditions are not design parame-
ters. Hence a commanded q̇d with exceeding infinity-norm
due to odd initial conditions cannot be a priori excluded.

B. Actuator Saturation

In order to implement the above described trajectory
tracking law in the presence of actuator saturation, assume
that the reference feedforward linear and angular velocities
are sufficiently small, namely that∥∥∥J†

lv ṙd(t)
∥∥∥
∞

<
1
2

q̇max ∀ t (28)

∥∥J†
ω ϕ̇d(t)

∥∥
∞ <

1
2

q̇max ∀ t. (29)

These conditions are necessary to guarantee that the tracking
task is asymptotically feasible, namely that when the position
and heading tracking errors are null the control effort of the
control law (23) is compatible with the actuator saturation
limit, i.e.

er = 0, eϕ = 0 =⇒
‖q̇d(t)‖∞ =

∥∥∥J†
lv ṙd(t) + J†

ω ϕ̇d(t)
∥∥∥
∞

≤
≤

∥∥∥J†
lv ṙd(t)

∥∥∥
∞

+
∥∥J†

ω ϕ̇d(t)
∥∥
∞ < q̇max.

As a first example, assume that position tracking is assigned
highest priority with respect to heading tracking. Then de-
fine:

q̇1 := J†
lv ṙd(t) (30)

q̇2 := J†
lv Kr er(t) (31)

q̇3 := J†
ω ϕ̇d(t) (32)

q̇4 := J†
ω Kϕ eϕ(t). (33)

With these definitions consider the control law (5-6) with

c1(t) = q̇max > 0 ∀ t

that together with the feasibility condition (28) implies

0 <
1
2

q̇max ≤ c2 ≤ q̇max,
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i.e. the tasks 1 and 2 have always non null capacity. Moreover
as by hypothesis ‖q̇1‖∞ < 0.5 q̇max (equation (28)) and c1 =
q̇max, it follows that

q̇1 σ(‖q̇1‖∞, c1) = q̇1 ∀ t.

Consequently

V1 =
1
2
eT

r Kr er =⇒ (34)

V̇1 = eT
r Kr

(
ṙd(t) − Jlv

[
J†

lv ṙd(t)+

+J†
lv Kr er(t)σ

(∥∥∥J†
lv Kr er(t)

∥∥∥
∞

, c2

)])
=

= −eT
r Kr Kr er(t) σ

(∥∥∥J†
lv Kr er(t)

∥∥∥
∞

, c2

)
< 0

i.e. V̇1 is negative definite that proves asymptotic global
Lyapunov stability of er = 0. Notice that q̇3 and q̇4

do not contribute to V̇1 as they belong to the null space
of Jlv (equation 13). As far as the secondary (heading)
task is concerned, convergence can also be proven through
a Lyapunov argument. The global asymptotic stability of
er = 0 guarantees that

lim
t→∞ q̇2(t) = 0 =⇒ lim

t→∞ c3 = c2 ≥ 1
2
q̇max.

Given the feasibility condition (29), this means that

∃ t∗ : q̇3 σ(‖q̇3‖∞, c3) = q̇3 and c4 > 0 ∀ t ≥ t∗.

It follows that

V2 =
1
2
eT

ϕ Kϕ eϕ =⇒ (35)

V̇2(t)
∣∣∣
t≥t∗

= eT
ϕ Kϕ (ϕ̇d(t) − Jωq̇d) =

= eT
ϕ Kϕ

[
ϕ̇d(t) − Jω(J†

ω ϕ̇d(t)+

+J†
ω Kϕ eϕ(t)σ

(∥∥J†
ω Kϕ eϕ(t)

∥∥
∞ , c4

)
)
]

=

= −eT
ϕ K2

ϕ eϕ(t)σ
(∥∥J†

ω Kϕ eϕ(t)
∥∥
∞ , c4

)
< 0

namely there exists a finite time t∗ after which the time
derivative of V2 is always negative, thus proving convergence
to zero of the heading error eϕ(t). Prior to t∗ the heading
error eϕ(t) is not guaranteed to be decreasing. Notice that
q̇1 and q̇2 do not contribute to V̇2 as they belong to the null
space of Jω (equation 13).

As a second example, heading can be selected to be the
highest priority task, it is then sufficient to select q̇1, . . . , q̇4

as

q̇1 := J†
ω ϕ̇d(t) (36)

q̇2 := J†
ω Kϕ eϕ(t) (37)

q̇3 := J†
lv ṙd(t) (38)

q̇4 := J†
lv Kr er(t) (39)

in equations (5-6); Lyapunov stability of the heading error
and asymptotic convergence of the position error could be
proven accordingly.
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Fig. 2. Experimental results. HP stands for High Priority. Refer to text for
details.

V. EXPERIMENTAL RESULTS

The proposed control law has been experimentally tested
on an omni-wheeled variant of the Volksbot platform
(www.volksbot.de) [9] developed at the Fraunhofer IAIS
Institute of Sankt Augustin, Germany. The robot is about
8Kg in weight and is actuated by three 90 Watts, 24 volt
DC motors with a 1 : 5, 6 gear ratio. Low level wheel
speed control is achieved through a three channel PID motor
driver (the IAIS TMC200 board) interfaced to an on-board
laptop via a serial RS232 line, with wheel speeds delivered
back. The presented kinematics trajectory tracking control
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law is implemented on the on-board laptop. Motor power
is supplied through NiMH batteries with 3, 5 Ah capacity.
The three omni-directional wheels have a 5cm radius, are
made of lightweight plastic and are mounted at an angle
of 120o from each other. The robot is equipped with an
omni-vision system made by a 30Hz, 640×480 pixels YUV
color FireWire camera pointing towards a 70mm diameter
hyperbolic mirror. Such systems are used for map based
Monte Carlo self localization [10] [11]. Details can be found
in [12]. In order to evaluate the performance of the proposed
control solution the position and heading of the robot must be
measured reliably and compared with the desired reference
values. To this extent a test bench has been designed. We
measured the exact pose of the robot using a combination of
an external fixed laser range finder pointing on the robot and
its heading was measured by the robot itself using its omni-
vision system. These two independent devices delivered the
highest accuracy under all feasible setups, e.g. the fixed SICK
laser scanner delivers a systematic error of +/−15mm with
a random error of 1σ = 5mm.We recorded (x, y) position of
the robot, direction and wheel speeds under the two different
highest priority tasks (HP) of either correcting heading or
pose first. All collected data was suitably synchronized with
the desired references. Extensive experimental trials with
several different references have shown the effectiveness
of the proposed solution: the case of a circular reference
trajectory with constant (with respect to a fixed frame)
heading is reported in the top three subplots of figure (2). The
position and heading error plots with respect to time clearly
confirm the effectiveness of the priority assignment policy.
The growth of the position errors in the first few seconds
of the experiment (second subplot) are due to the robots
dynamics that was neglected in the control law design. As
expected, as long as the actuators guarantee large enough
accelerations with respect to the reference accelerations,
the kinematics designed control law exhibits good dynamic
performance, i.e. there is only a small lag with respect to
the ideal purely kinematics case. In the motor command
plots (lower three subplots of figure (2)), the commanded
(q̇d, dashed lines) and encoder measured wheel speeds (solid
lines) are reported with respect to time. Notice that for the
sake of performance measurement accuracy, the saturation
threshold was artificially set to the value of ±8.7rad/s (thick
solid lines) via software in order to achieve saturation at
acceptable linear speeds. The gains control law gains Kr

and Kϕ were empirically selected based upon an estimate
of the maximum tracking errors. The asymptotic position
tracking error of about 0.5[m] displayed in figure (2) is
believed to be related to (i) the finite precision with which
the robot geometrical parameters were measured to compute
the jacobian matrices and to (ii) the limited size of the
integral gain in the low level PID motor drivers.

VI. CONCLUSIONS

A trajectory tracking control law for Swedish wheeled
robots has been derived that takes explicitly into account
motor saturations. Motor saturation is always present and

may have a severe impact on motion control performances
of mobile robots. This is particularly relevant for omni-
directional mobile robots equipped with Swedish wheels:
these offer a lower grip with the floor with respect to tradi-
tional wheels resulting in a higher probability of exhibiting
skidding and/or sliding when high velocity commands are
issued. As a consequence the possibility of commanding
motor speeds always compatible with the saturation limits
is extremely important for omni-directional mobile robots.
Moreover the introduction of a task based prioritization of
heading and position tracking may have a relevant impact
on the behavior control level. The selection of heading or
position tracking tasks as higher priority ones will generally
depend on the (dynamic) role assignment: by using the
described lower level control solution the highest priority
tasks errors are guaranteed to converge faster to zero without
ever commanding motor speeds exceeding the maximum
HW allowed values. Future work directions should include
on one hand studies on how the behavior system should
take advantage of a guaranteed prioritized convergence of
the tracking errors and also an extension of the presented
technique to the dynamical model (actuator torque saturation)
of the robot.
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and Classification of Kinematic and Dynamic Models of Wheeled
Mobile Robots”, IEEE Transactions on Robotics and Automation, Vol.
12, No. 1, February 1996, pp. 47 - 62.

[6] G. Indiveri, J. Paulus, and P.G. Plöger, ”Motion Control of Swedish
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