
 
 

 

  

Abstract—Continuum robotic manipulators, termed trunks, 
mimic the astounding capabilities of elephant trunks and octo-
pus arms by bending in smooth arcs. Several approaches to 
kinematic analysis of continuum trunks complement a wide 
variety of available continuum robots. However, these kinemat-
ics exhibit singularity-like conditions when the trunk assumes a 
straight posture, which is essential to complete many tasks. The 
novel limiting-case analysis presented in this paper eliminates 
these problems, demonstrating that the unique causes of the 
problem are rooted in the continuum formulation and cannot 
be solved by traditional rigid-link singularity analysis. Three 
practical examples demonstrate the necessity of this analysis 
presented, enabling the trunk to successfully perform each 
task. 

I. INTRODUCTION 
HE unparalleled dexterity of biological structures free of 
skeletal constraints remain a marvel of dexterity and 

possess an amazing range of abilities. An elephant’s trunk 
provides sufficient force to grasp and maneuver large tree 
trunks while providing the agility and gentleness to pick up 
a peanut. The arms of an octopus provide the creature with a 
means of propulsion, prey capture, environmental explora-
tion, and self defense. Tongues likewise enable mastication, 
prey capture in the case of some reptiles, cleaning, and sens-
ing. Continuum robots seek to replicate these remarkable 
abilities by incorporating flexible materials in their construc-
tion, yielding structures which bend in continuous curves. A 
number of commercial and research robots overviewed in 
[1] provide many mechanical platforms with which to real-
ize these possibilities, and ongoing work in kinematic [2, 3, 
4, 5, 6, 7] and dynamic [7, 8, 9] analysis of these structures 
supplies a mathematical basis to specify the desired shape of 
these robots. The kinematic formulations referenced above 
model the manipulator, henceforward termed a trunk, as a 
serially connected series of arc segments each possessing 
some radius r. 

One immediate difficulty typified in Fig. 1 and shared by 
all these formulations commonly occurs when one or more 
of the sections of the trunk do not bend, in which case the 
bending radius of the trunk section becomes ∞ . This gives 
rise to two problems. First, numerical evaluation of the 
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kinematics at this point then inevitably involves terms in-
cluding r, resulting in undefined results. However, mathe-
matically evaluating lim

r→∞
 produces expressions which can 

then be numerically evaluated to produce correct results. 
Second, evaluation near the limiting case of a straight trunk 
in finite-precision machine arithmetic produces numerical 
instability. These problems, heretofore unaddressed to the 
best of the author’s knowledge, render the kinematics un-
computable in the common unbent trunk configuration and 
produce unexpected results when trunk trajectories pass 
through or near this configuration. 

This paper presents a careful analysis of the kinematic 
equations of continuum trunks, combining in a single ex-
pression the ability to accurately compute the kinematics 
away from, at, or near these limiting cases in finite-precision 
machine arithmetic. Analysis of this approach demonstrates 
its correctness when compared with mathematically evaluat-
ing expressions at lim

r→∞
. This novel technique is therefore 

essential when computing real-time practical kinematics for 
a trunk and can be broadly applied to all the works cited 
above. 

Several kinematic approaches exist in the literature. Mod-
eling the movement of snakes [10] produced continuum-like 
kinematics in 2-D. An alternate approach involves choosing 
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(a) (b)
Fig. 1. Common straight configurations which require a limiting-case analy-
sis. In (a), the first section of the OctArm continuum robot maintains a 
straight posture to perform a grasping task. Image (b) shows a simulated 
continuum trunk with two straightened sections, enabling it to reach a work-
space boundary. 
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a mathematically convenient curve then fitting a trunk to it 
[11], often an imprecise approximation for continuum ro-
bots. Examining the physics of flexible structures demon-
strates that continuum trunks bend with constant curvature, 
forming an arc of a circle, in the absence of external forces 
such as gravity [8]. This insight yielded several kinematic 
formulations [2, 3, 4, 5, 6, 7] which convert either: trunk 
shape, measured in a direction of curvature φ, amount of 
curvature 1 rκ =  defined as the inverse of the radius of the 
arc, and arc length s; actuator lengths 1 3l − ; or per-actuator 
pressures for pneumatic trunks to trunk tip coordinates. 

Previous approaches to the problem of an infinite trunk 
radius when the trunk is straight include requiring the trunk 
to be bent at all times [4], though most papers simply do not 
address the problem. Classical rigid-link robotic analysis 
provides little help; indeed, it lacks even a common termi-
nology for the problem. Singularities formally describe con-
figurations in which the Jacobian of a manipulator loses 
rank. However, in the case of a continuum robot the rank of 
the Jacobian does not change when the trunk is straight. In-
stead, the Jacobian becomes undefined due to limiting cases 
embedded within it, thus motivating the title of this work. 
Careful examination of these cases provides methods to cor-
rectly work around this problem. As a specific case, this 
paper applies these techniques to the kinematics in [2]. 

II. LIMITING-CASE ANALYSIS 
Work in [1] classifies continuum robots in three types: in-
trinsic, extrinsic, and hybrid. Because each trunk section 
possesses no more than three degrees of freedom, most hard-
ware prototypes choose a design featuring three actuators. 
Intrinsic designs [2, 4, 5, 6, 7] produce movement by vary-
ing pressures in three flexible tubes while extrinsic and hy-
brid trunks [12, 13, 14] use three cables to determine shape. 
Kinematics developed in [2] provide expressions for both 
intrinsic and extrinsic/hybrid trunks, covering the majority 
of the hardware designs available. 

As derived in [2], the length l  of three actuators deter-
mines the shape of one section of the trunk. A review of the 
equations used to derive forward kinematics and forward 
velocity kinematics reveals multiple instances of the actuator 
length squared difference term  

 2 2 2
1 2 3 1 2 2 3 1 3g l l l l l l l l l+ + − − − . (1) 

For example, the an entry from the homogenous transforma-
tion matrix A which maps actuator lengths 1 3l −  to a transla-
tion and rotation of the trunk tip [2] is 

 
( )2

3 2 2
1,1

3
1 sin

2 3
l l g

g d

⎛ ⎞⎛ ⎞−
⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

A  (2) 

where 1 3l −  gives the three actuator lengths and d defines the 
radius of the trunk’s cross-section. The remaining elements 

of A are given in (8). The Jacobian J which maps actuator 
velocities to tip velocities likewise contains the g term [2]. 
Only one element of the lengthy J matrix is given here, 

 
( ) 2

3 2

6,1

3 sin
3

g
l l

d

g

⎛ ⎞
− ⎜ ⎟⎜ ⎟

⎝ ⎠=J . (3) 

These equations can be analytically evaluated at their lim-
iting case when 0g → . As shown in the appendix, g is pro-
portional to the distance of a point [ ]T

1 2 3l l l  in 3-D space 
from the line 1 2 3l l l= = . Assuming actuator lengths 1 3l −  to be 
real, 1 2 30g l l l= ⇔ = = . Therefore, evaluation of equation 

(2) at its limiting case of 1,10
lim
g →

=A  
( )

22
3 23

1
2 3

l l g
g d

⎛ ⎞−
− =⎜ ⎟⎜ ⎟

⎝ ⎠
 

( )2
3 2

21 1
6

l l
d
−

− = , noting that 
0

limsin
x

x x
→

=  and that 2 3l l=  be-

cause 0g = . Similar applications to the remainder of the A 
matrix yield 

 

1 0 0 0
0 1 0 0
0 0 1
0 0 0 1

l

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  (4) 

where 1 2 3l l l l= = . That is, when all three actuators are of 
equal length l, the trunk extends along the +z axis by l. 

Likewise, examination of J when evaluated as 0g →  re-

veals 6,10
lim
g →

=J  
( )

2

3 23
3

l l g
g d

⎛ ⎞−
=⎜ ⎟⎜ ⎟

⎝ ⎠
 

( )3 2
2

3
0

9
l l
d

−
=  as the 

actuator length squared difference term g approaches zero, 
again recalling that 

0
limsin
x

x x
→

=  and that 1 2 30g l l l= ⇔ = = . 
Evaluating the remainder of the J matrix gives 

 

0 3 6 3 6
3 6 6

1 3 1 3 1 3
2 3 1 3 1 3

0 3 3 3 3
0 0 0

l d l d
l d l d l d

d d d

d d

⎡ ⎤−
⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥=

− −⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

J . (5) 

As a result, there are two expressions for the A matrix and 
the J matrix, depending on the equality of the actuator 
length l . When 1 2 3l l l= = , these matrices are given in (4) 
and (5); otherwise, they are non-linear functions which de-
pend on l  as given in [2] and in (8). This leads to a number 
of problems when attempting to evaluate A or J at a specific 
configuration of the trunk. First, numerical accuracy prob-
lems resulting from the use of finite-precision machine 
arithmetic arise in a region of the configuration space as the 
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actuator length squared difference term g tends toward zero. 
Further analysis is required to determine the size of this re-
gion, which depends on the accuracy of the finite-precision 
arithmetic used. Second, when using the limiting case analy-
sis, solutions for each section of the trunk require two for-
mulas, one for the typical case and a second to handle the 
limiting case. In an n-section trunk, this results in the need 
for 2n  equations to handle all combinations of limiting and 
non-limiting cases for all sections. Third, finding and ana-
lyzing these cases, in which limiting cases from earlier, 
proximal sections will couple into the equations for later, 
distal sections, is a daunting task. Consider, for example, 
how expression (3), one matrix element in a single-section 
Jacobian, must grow when computing a four-section Jaco-
bian (corresponding to the hardware in [3]) which requires 

42 16=  sets of equations, all of which will contain fractional 
powers of the actuator length squared difference term inside 
sin, 1sin− , cos, and 1cos−  functions which much be analyzed 
for limiting cases. These three problems indicate the need 
for an alternative, comprehensive analysis which, in one 
expression, provides accurate numerical results for finite-
precision arithmetic at or near the limiting case for a multi-
section trunk. 

A. Error metric 
Therefore, this work pursues a simpler approach, though one 
which requires additional off-line analysis. Instead of em-
ploying the limiting-case expressions outlined in the previ-
ous section, the original equations defining A or J can be 
evaluated near, but not at, the limiting case. This approach 
both solves the problem of evaluating these expressions at 
their limiting point, which would otherwise produce a di-
vide-by-zero floating-point exception, and numerical insta-
bilities near the limiting point due to finite precision effects. 

To perform such an analysis requires a definition of error 
and method of computing it. A straightforward error metric 
would be to examine  

 machine exact−M M  (6) 

where M is either A or J, machineM  is the matrix evaluated in 
finite-precision machine arithmetic, and exactM  gives the ex-
act value of the matrix. However, computing the desired 
matrix involves evaluating trigonometric functions and frac-

tional powers, precluding computation of an exact value. 
Instead, a more practical approach is to use a high, but fi-
nite-precision result for exactM . To evaluate the accuracy of 

exactM , recall the limits evaluated earlier of the form 
( )1 2 30

lim , ,
g

l l l
→

=M C, which states that for a given error 0ε >  

there exists a perturbation 0Δ >  such that 

 ( )1 2 3, ,l l l ε+ Δ − <M C , (7) 

where C is the analytically-determined limit of the form 
given in (4) and (5). This inequality holds under accurate 
numerical evaluation and fails otherwise, providing a test to 
determine the valid region for a finite-precision calculation. 

For example, consider Fig. 2, showing the evaluation of J 
at 60 decimal digits of precision using Maple where trunk 
parameters are 1d =  and 1 2 3 10l l l= = = . This graph demon-
strates that (7) cannot be satisfied due to numerical accuracy 
problems when 1910−Δ < . Therefore, we deem this J “exact” 
outside this region, when 1910−Δ > , and proceed with exami-
nation of the error defined by (6). 

This clear understanding of error then enables an analysis 
of the numerical performance of the A and J matrices near 
their limiting point, as discussed in the following section. 

B. Comprehensive analysis 
The analysis begins with the essential observation that all 

limiting cases in both A and J occur only when the actuator 
lengths are equal (resulting in a locally straight trunk), due 
to terms of the form 1 g, where g is defined in (1), which 
tends to zero in this case. As given in (1), computing g in-
volves the sum and difference of the product of actuator 
lengths. Rewriting as 

 ( ) ( ) ( )( )2 2
2 1 3 1 2 1 3 1g l l l l l l l l= − + − − − −  (9) 

instead evaluates g in terms of the squared differences be-
tween actuator lengths. For example, using IEEE 754 dou-
ble-precision floating-point arithmetic [15] which provides 
53 bits or ~16 decimal digits of precision, at the point 
1 10l = + Δ and 2 3 10l l= =  any value for which 71.01 10−Δ < ⋅  
produces 0g =  when computing g using (1) while a much 
smaller 168.89 10−Δ < ⋅  produces 0g =  when computing g 
using (9). To prevent the 0g =  condition and consequent 

( ) ( ) ( )( )( ) ( ) ( )( )( )

( )( )( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( )

2
3 2 3 2 2 3 1 3 2 1 2 33 2

2 2 2
3 2 2 3 2 33 2 2 3 1 2 3 1 1 2 32 3 1

3 2 2 3 1 1 2 3

3 1 3 2 1 3 13
1

4 4 2 4

3 3 3 63 2 1 3 2 12
4 4 42

3 2
2 2 2

g g gg

gg gg
g

g g g
g

l l c l l l l l c d l l l l l cl l s
g g g g

l l l l l l cl l l l l c d l l l l l l cl l l s
c

g g gg

l l s l l l s d l l l s
c

g g g

=

− − − + − − − + + −−
− − −

− − + −− + − − + − + + −+ −
+ −

− + − + +
−

A

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 
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1 1 0g =  calculations, a small perturbation of 3082.26 10−⋅  
(the smallest representable double-precision floating-point 
number) can be added to the g computed in (9) without af-
fecting the resulting accuracy of the computations. 

In the case of the A matrix, careful hand analysis of the 
terms involved leads to the expression given in (8), where g 
is defined in the paragraph above and includes a tiny addi-
tive perturbation, d gives the distance from the trunk center 
to an actuator center (the “radius of actuation”), 

( )cos 2 3gc g d= , and ( )sin 2 3gs g d= . In the matrix, 
first note that terms such as ( )3 2l l−  and ( )2 3 12l l l+ −  ap-
proach 0 as g goes to 0. This causes most off-diagonal terms 
to become 0 and diagonal terms to tend to 1, agreeing with 
the results in (4), since cos 0 1gc = =  in this case. The excep-
tion to this trend is 3,4A , whose numerical properties yield 
the desired limiting-case results of l when 0g → . Therefore, 
the analysis given in the previous section shows that (7) 
evaluated with =M A  can be satisfied for all actuator 
lengths in double-precision floating point arithmetic, obviat-
ing need for further high-precision (60 decimal digit) analy-
sis. The A matrix for a multi-section trunk is the product of 
the per-section A matrices, providing numerically stable and 
accurate results for any number of sections. 

However, the additional complexity of the Jacobian ma-
trix makes hand analysis to achieve results similar to the A 
matrix extremely difficult. Instead, numerical instabilities in 
the region around 1 2 3l l l= =  require evaluation outside this 
region for accurate results. Simply adding a small offset to 
one of the actuator lengths as necessary to remain outside 
the region of instability avoids these limiting-case difficul-
ties. More formally, we seek a minimum value δ  for g which 
avoids numerical problems by guaranteeing that g never 
falls below δ  by requiring 

 2 2 2
1 2 3 1 2 2 3 1 3g l l l l l l l l l δ= + + − − − > . (10) 

Solving for 1l , this minimum value is violated when  

 

2 2
2 3 2 3 2 3

1

2 2
2 3 2 3 2 3

1

6 4 3 3
and

2
6 4 3 3

.
2

l l l l l l
l

l l l l l l
l

δ

δ

+ − + − −
<

+ + + − −
<

 (11) 

Therefore, define a perturbed actuator length 1pl  such that 

2 2
2 3 2 3 2 3

1

1

6 4 3 3 when (7)
is satisfied2
otherwise.

p

l l l l l l
l

l

δ⎧ + ± + − −
⎪= ⎨
⎪
⎩

 (12) 

The parameter δ  should be chosen so that it precisely en-
compasses the region around the limiting point 1 2 3l l l= =  
where machine-precision floating-point inaccuracies would 
produce 1 0 results or evaluating terms of the form ( )f g g , 
such as (2) and (3), would produce larger errors in A or J 
compared to evaluation at the perturbed point. To measure 
the size of this region, consequently determining an appro-
priate value for δ , consider the use of (6) when =M J and 

60exact =J J , where iJ  indicates a Jacobian computed with i 
decimal digits of precision. 

Fig. 3 shows the resulting error generated by evaluating 
( ) ( )( )60 1 2 3 16 1 1 2 3 2 3 F

, , , , , , ,pl l l l l l l l lδ+ Δ − + ΔJ J  where 1pl  is 
defined by (12). Because IEEE 754 double-precision float-
ing-point arithmetic [15] specifies ~16 decimal digits of 
accuracy, 16J  approximates a machine-precision computa-
tion. These results were obtained by choosing trunk radius 

1d =  and 1 2 3 10l l l= = =  for a one-section pneumatically-
driven (intrinsically actuated) trunk. The figure was gener-
ated by injecting a range of actuator length differences of Δ  
into 1l  while also varying the minimum allowed actuator 
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Fig. 2. A plot of ( ) ( )( )1 2 3 1 2 30 F

, , lim , ,
g

error l l l l l l
→

= + Δ −J J , showing that the 

high-precision (to 60 decimal digits) Jacobian accurately approximates the 
analytically-determined limiting-case Jacobian for 1910−Δ > . 
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Fig. 3. Comparison of the error 
( ) ( )( )60 1 2 3 16 1 1 2 3 2 3 F

, , , , , , ,pl l l l l l l l lδ+ Δ − + ΔJ J  over a range of differences 
Δ  in actuator length for a two-section trunk as the minimum allowable 
actuator squared length difference term δ  changes. The use of 1pl  as defined 
by (12) guarantees this minimum. 
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length squared difference δ . 
The figure can be divided into three regions. In region D, 

1 1pl l= . Therefore, only minor differences are produced when 
comparing the machine-precision and high-precision results. 
However, as Δ  continues decreasing, the resulting actuator 
length squared difference g drops below its minimum of δ , 
splitting the results into two parts. In region C, large values 
of δ  inject an unnecessarily large perturbation into the re-
sulting 1pl  used by the machine-precision Jacobian evalua-
tion, producing error constant under changing Δ , since the 
limit δ  enforces an injection of a perturbation > Δ , varying 
only as δ  changes. In region B, overly small values of δ  
allow finite-precision affects to unnecessarily increase the 
error produced when evaluating Jacobian too close to its 
limiting point. 

As indicated by the dotted line in the figure between re-
gions B and C, an optimal value for δ  is 1010δ −= , yielding a 
maximum error of 210e −<  by injecting a perturbation of 

43.1623 10−⋅  in actuator 1’s length when the actuator length 
squared difference term is less than 1010δ −= . Setting 

1010δ −>  perturbs actuator lengths more than necessary, re-
ducing the accuracy of the results, while selecting 1010δ −<  
produces greater error or even undefined results due to fi-
nite-precision effects. Analysis of a one-section cable-driven 
(hybrid actuation) trunk and of a two-section trunk, shown 
in Fig. 4 and in Fig. 5, reveals similar limits apply to these 
cases. 

Therefore, the following algorithm insures accurate com-
putation of the Jacobian, avoiding floating-point exceptions 
when actuator lengths are equal and numerical instabilities 
when actuator lengths are almost equal. The algorithm com-
putes the value of 1pl  by evaluating (12). That is, given three 
actuator lengths 1l , 2l , and 3l  with which the Jacobian should 
be computed, the algorithm produces a possibly perturbed 
actuator length 1pl  and unperturbed lengths 2l , and 3l  with 
which the Jacobian can be computed free of numerical prob-
lems. The procedure to produce 1pl  is: 

 

1. Evaluate the inequality given in (10). 
If 2 2 2

1 2 3 1 2 2 3 1 3l l l l l l l l l δ+ + − − − > , set 1 1pl l← . 
If 2 2 2

1 2 3 1 2 2 3 1 3l l l l l l l l l δ+ + − − − ≤ , set 
2 2

2 3 2 3 2 3
1

6 4 3 3
2p

l l l l l l
l

δ+ ± + − −
← , choosing the 1pl  

closest to 1l . 
2. Compute ( )1 2 3, ,pl l lJ . 

 
In summary, the technique of perturbing actuator lengths 

when these lengths are equal by replacing 1l  with 1pl  as de-
fined in (12) successfully avoids both divide-by-zero float-
ing-point exceptions when the actuator lengths are equal and 
numeric instabilities when actuator lengths are almost equal. 

This technique enables real-time evaluation of multi-
section Jacobians for continuum trunks, avoiding the many 
difficulties associated with a liming-case analysis. However, 
this approach requires careful choice of the minimum per-
missible actuator length squared difference term of 1010δ −=  
as demonstrated by Fig. 3 and discussed in the preceding 
paragraphs. A similar approach and analysis can also be ap-
plied to computing Jacobian and A  matrices for trunks de-
fined by an direction bending φ, amount of curvature κ , and 
trunk length s, making the approach applicable to continuum 
robots based on this parameterization. 

III. APPLICATIONS 
Three varying tasks illustrate the necessity of a straightened 
trunk to perform a variety of useful tasks. First, insertion 
tasks both begin and end with a straight trunk; bending may 
cause insertion or removal failure and possibly damage to 
the trunk. Fig. 1 illustrates the remaining two tasks, in which 
a straight posture is required for grasping and in order to 
access the workspace boundaries. Each task is detailed be-
low. 

Whether cleaning the interior of hazardous waste tanks or 
inspecting the interior of aircraft turbines, a typical task for 
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Fig. 4. Comparison of Fig. 3 repeated for a single-section cable-driven 
(hybrid actuation) trunk where the number of segments in each trunk section 
is 1n = . 

 lo
g 1

0 (
er

ro
r)

10log δ 10log Δ

–20
–15

–10
–5

0

–20
–15

–10
–5

0

–10

0

10

20

Fig. 5. Comparison of Fig. 3 repeated for a two-section trunk. 
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many trunk-like robots consists of inserting the trunk 
through a small opening then manipulating objects behind 
the opening. Critical to task completion is the insertion proc-
ess, in which the trunk must first be completely straightened. 
Next, a prismatic joint anterior to the trunk performs the 
insertion. The trunk then moves from its straight insertion 
posture to perform the desired tasks, after which it returns to 
the straight configuration and is removed via the prismatic 
joint. 

When operating a multi-section trunk near its workspace 
boundary, one or more trunk sections must often move to 
their straight configuration to provide the maximum exten-
sion necessary to reach the workspace boundary. Consider 
Fig. 1(b), in which two sections of a three-section trunk are 
straight. Any curvature in these sections would shorten the 
trunk, reducing its workspace, demonstrating the necessity 
for this analysis in order to fully utilize the robot’s work-
space. 

As a last example, consider Fig. 1(a). Here, object place-
ment may require a straight trunk configuration in order to 
accomplish the desired task of grasping then manipulating a 
plastic storage box. Other configurations may not place the 
trunk in a posture enabling it to grasp the box. 

Because this work applies to any continuum robot mod-
eled by a circular arc, it applies to many additional problems 
when the trunk assumes a straight posture. For example, the 
dynamic model given in [16], which is based on the circular 
arc assumption, can be easily extended to accommodate a 
straight trunk by applying the techniques suggested in this 
paper. 

IV. CONCLUSION 
The wide variety of continuum robots provide a remarkable 
set of manipulator abilities. Several varieties of kinematic 
formulations provide the ability to move and shape the trunk 
as desired. However, these approaches all suffer from the 
same problem of numerical instability or even undefined 
results when a continuum trunk enters or nears a straight 
configuration, which is essential for performing a wide vari-
ety of tasks. Analysis of the kinematics in this paper pro-
vides a novel method of avoiding these problems by prop-
erly factoring terms in the positional kinematics or by care-
fully perturbing actuator lengths the minimum amount nec-
essary to produce stable results for the velocity kinematics. 
An error metric allows examination of the resulting compu-
tations and demonstrates their accuracy and validity. 

APPENDIX 
As claimed in section II, g is proportional to the distance of 
a point [ ]T

1 2 3l l l l=  in 3-D space from the line 1 2 3l l l= = . 
To prove this assertion, first project the point onto the line. 
Choosing any vector which lies along the line, such as 
[ ]T1 1 1 , the projection is defined by 

 
[ ]

[ ]
[ ] [ ]

T
T T1 2 3

2T

2

1 1 1
1 1 1 1 1 1

31 1 1

l l l l⋅ + +⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

Subtracting this vector from l  yields the component of l  
perpendicular to the line ( )1 2 3, ,l l l l= . The length of this 
perpendicular component gives the distance from a point 

[ ]T
1 2 3l l l l=  in 3-D space from the line 1 2 3l l l= = . Using 

the norm to measure this distances gives 

 [ ] ( )[ ]T T1
31 2 3 1 2 3

2
1 1 1 6 3l l l l l l g− + + = , 

proving the assertion. 
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