
Probabilistic Strategies for Pursuit in Cluttered Environments with

Multiple Robots

Geoffrey Hollinger, Athanasios Kehagias, and Sanjiv Singh

Abstract— In this paper, we describe a method for coordinat-
ing multiple robots in a pursuit-evasion domain. We examine
the problem of multiple robotic pursuers attempting to locate
a non-adversarial mobile evader in an indoor environment.
Unlike many other approaches to this problem, our method
seeks to minimize expected time of capture rather than guar-
anteeing capture. This allows us to examine the performance
of our algorithm in complex and cluttered environments where
guaranteed capture is difficult or impossible with limited pur-
suers. We present a probabilistic formulation of the problem,
discretize the environment, and define cost heuristics for use

in planning. We then propose a scalable algorithm using an
entropy cost heuristic that searches possible movement paths
to determine coordination strategies for the robotic pursuers.
We present simulated results describing the performance of
our algorithm against state of the art alternatives in a complex
office environment. Our algorithm successfully reduces capture
time with limited pursuers in an environment beyond the scope
of many other approaches.

I. INTRODUCTION

The applications of pursuit-evasion are as diverse as they

are numerous. In urban search and rescue scenarios, it is

often necessary to search urban environments for survivors or

first responders, some of whom may be moving. In military

applications, human or mechanized infantry often need to

locate friendly or hostile targets in theaters of battle or peace

keeping situations. Furthermore, pursuit-evasion is rooted in

game theory and economics. World markets and the stock

exchange operate under similar principles to those of pursuit-

evasion. The goal of pursuit-evasion is to develop strategies

for coordinating agents when the future actions of potentially

adversarial agents are unknown or partially known.

The major application that has inspired our work is that

of autonomous robotic assistance for human first responders

in disaster scenarios using range-only sensors [14]. In such

potentially confusing situations, robots can help to track the

location of first responders and relay that information back

to them. To track first responders with range-only sonar

sensors, robots must maintain line-of-sight sensor contact

with them. In noisy, dynamic environments, loss of contact

with first responders is an inevitable possibility. Once robots

have lost contact, pursuit-evasion strategies are necessary to

relocate the first responder. This paper provides principled

This material is based upon work supported by the National Science
Foundation under Grant No. IIS-0426945.

G. Hollinger and S. Singh are with The Robotics Institute, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
gholling@andrew.cmu.edu, ssingh@ri.cmu.edu

A. Kehagias is with the Div. of Mathematics, Dep. of Math., Phys., and
Comp. Sciences, Faculty of Engineering, Aristotle University of Thessa-
loniki, Thessaloniki GR54124, Greece kehagiat@mail.auth.gr

methods for coordinating robots in this scenario. Combining

the methods we describe in this paper with range-only

tracking methods yields a complete solution to the problem

of tracking a non-adversarial first responder in a disaster

scenario.

We make the assumption in this paper that the evader is

non-adversarial and moves randomly in the environment.

This assumption is consistent with the task of locating a

first responder or moving survivor in a disaster scenario.

The methods in this paper are also easily applicable to

a stationary “evader” (see Section IV). For the task of

finding a moving survivor, it may also be advantageous to

utilize environmental clues such as smoke, voices, and heat

gradients. If such information is known, it can easily be

incorporated into our framework by modifying the dispersion

model.

In this paper, we develop coordination algorithms for

multiple robots pursuing a non-adversarial mobile evader

in indoor environments. Our algorithms are designed to

minimize the expected time of capture. This approach is

particularly relevant in complex environments where the

guaranteed capture of an evader would be lengthy or im-

possible. In many of the applications described above, it is

desirable to capture the evader in as little time as possible

to increase chances of survival, mission success, or profit.

We formulate this problem using a probabilistic framework

on a coarsely discretized map. We improve on methods

previously used for locating stationary targets by developing

a principled method for incorporating the evader’s movement

model, and we define several one-step cost heuristics for

use in path planning. We propose a decoupled method for

searching the space of paths in the environment, and we

present simulated results showing the performance of our

algorithm in a complex office environment. The novelties

of our method include: the integration of motion modeling

into a probabilistic representation of the evader’s state, the

formulation of a scalable planning algorithm for multiple

pursuers, and the use of entropy and target probability

cost heuristics for pursuit-evasion planning. Our methods

reduce expected time of capture with limited pursuers in an

environment beyond the scope of many current methods.

This paper is organized as follows. Section II describes

related work in the area of pursuit-evasion, surveillance,

and search. Section III provides a mathematical definition of

the pursuit-evasion problem for multiple pursuers searching

for a mobile, non-adversarial evader. Section IV describes

our coordination algorithm including our discretization tech-

nique, dispersion modeling, cost functions, and path plan-

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrB12.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3870

ning. Section V presents simulated results for a complex

indoor environment. Finally, Section VI draws conclusions

and discusses future directions for this work.

II. RELATED WORK

Pursuit-evasion has been heavily researched in the fields

of computer science, robotics, and mathematics. Cheng gives

a short survey of previous work in pursuit-evasion [3]. This

survey includes both recent and historical developments in

the area. Parsons did some of the earliest work on examining

pursuit-evasion in graphs [15]. He considered the graph to

be a system of tunnels in which an evader was hiding, and

he defined the search number of a graph: the minimum

number of guards necessary to catch an adversarial evader

with arbitrary speed. Adler et al. extended pursuit-evasion on

graphs to randomized environments by examining the hunter

and rabbit problem [1]. They define the escape length of a

strategy as the worst case expected number of rounds for the

hunter to catch the rabbit, and they derive error bounds for

various hunter strategies. Isler et al. advanced the concept of

probabilistic pursuit-evasion to polygonal environments [10].

They develop coordination strategies for one or two pursuers

in simple polygonal environments based on the assumption

that an adversarial evader does not have knowledge of some

actions made by the pursuer.

More recently, LaValle and Guibas developed pursuit-

evasion strategies for multiple pursuers in polygonal environ-

ments [7], [12], [13]. Their algorithm discretizes polygonal

environments into conservative visibility regions and then

uses an information space approach to develop complete

algorithms that guarantee capture in simple environments.

Gerkey extended these methods to cases where the pursuer

has a limited field-of-view [6]. For a single pursuer, these

algorithms are guaranteed to find a solution if one exists.

When scaled to multiple pursuers, however, they lose this

property. Additionally, these algorithms are difficult to extend

to complex environments because of the sheer number of

(often very small) cells necessary in a conservative visibility

discretization. These algorithms are also not applicable to

complex environments in which capture cannot be guaran-

teed. This drawback becomes particularly prominent with

limited pursuers and in any environment with a loop.

Other similar research has been conducted in the areas

of urban surveillance and urban search and rescue. For

example, Hegazy presents methods for coordinating multiple

robotic pursuers in urban environments [9], and Liao et al.

develop a framework for tracking mobile targets in complex

environments with limited sensor information [14]. Ferris,

Hahnel, and Fox use a particle filter with Gaussian processes

to track a human using wireless signal strength [5]. They

discretize the environment into a mixed graph of 1D hallways

and 2D rooms, but they do not extend their work into the

pursuit-evasion domain. With some modifications, a particle

filter method like theirs could be used to provide a similar

role in pursuit-evasion planning as our dispersion and capture

matrices. Our method provides a computationally efficient

alternative to this approach.

Our algorithm falls most closely with those designed to

solve the “search” variation of pursuit-evasion. Sarmiento

et al. present a framework for searching polygonal envi-

ronments with multiple robotic pursuers using a one-step

cost heuristic [16]. They do not extend this work to mo-

bile evaders, and they do not present results in large-scale

environments. In Section V, we compare our cost-heuristics

to those developed by Sarmineto et al.

The pursuit-evasion problem we discuss here has strong

similarities to a problem which has been studied extensively

in the Markov Decision Processes (MDP) and Partially

Observable MDP (POMDP) literature. The first formulation

and solution of this problem is given by Eaton and Zadeh [4].

They deal with the problem of formulating an optimal

control sequence for a pursuer chasing an evader through

a finite number of positions. The pursuer attempts to place

itself in the same position as the evader in the minimum

expected time. Extensions for the case of multiple pursuers

are immediate. The important difference between Eaton and

Zadeh’s (the MDP) problem and the one we discuss here is

that they assume that the evader’s position is always known.

In our problem, the position of the evader is unknown,

which implies that the joint pursuer/evader state is partially

observable. The MDP problem has been extended to cover

partially observable Markov chains as well, but a solution

which is both exact and computationally practical has not

yet been found [2], [8]. Our algorithm in this paper does

not directly solve the underlying POMDP because of poor

scalability when adding additional pursuers.

III. PROBLEM DEFINITION

To describe the state of the world in a pursuit-evasion

scenario, we must develop representations of the environment

and the locations of the pursuers and evaders. Assume that

the state of a pursuer at time t is known to be XP (t),
and the state of an evader at any time t is known with

a certain probability to be XE(t) = p. We can adapt

this formulation to multiple pursuers i at any time t by

expanding XP (t) to XP

i
(t). In a polygonal environment,

this problem is continuous. To collapse the problem into a

discrete domain, discretize the environment (see Section IV)

into a number of cells, 1 . . .N . The state of the ith pursuer

is now fully defined by XP
i

(t) = n where n is the cell

in which the pursuer is currently located. Now, define a

capture event at time t as the occurrence of XP

i
(t) = XE(t)

for any pursuer i. To define the state of the evader, let p

be a row vector such that p = [p0, . . . , pN] where values

p1 . . . pN represent the probability that the evader is in the

corresponding cell. Let the value p0 represent the probability

that the evader has already been captured by the pursuers.

Refer to this as the “capture state.” The vector p now defines

a probability distribution function over the evader’s position

in the environment (with the addition of a capture state).

The pursuers’ goal is to minimize the expected time

of reaching a capture event. Thus, the pursuers seek to

maximize the probability that the evader is in the capture

state at any given time t. The coordination problem is then

FrB12.1

3871

defined as the determination of paths for the pursuers such

that the probability of capture is maximized at any given

time.

IV. ALGORITHM DESCRIPTION

A. Map Discretization

Our method for discretization takes advantage of the

inherent characteristics of indoor environments. To discretize

an indoor map by hand, simply label convex hallways and

rooms as cells and arbitrarily collapse overlapping sections.

This method is simple enough that it can be performed by

hand even for large maps. Fig. 1 shows an example with

a small map, and Fig. 3 gives an example discretization

for a large map. Taking into account the cell adjacency in

a discretized map yields an undirected graph that can be

searched by the pursuers. This ties our research into that of

probabilistic graph search. Fig. 2 shows the undirected graph

derived from the house map.

This method for discretization also has the advantage of

guaranteeing that a pursuer in a given convex cell will have

line-of-sight to an evader in the same cell. This allows the

capture event to be reduced to the attainment of line-of-sight

to the evader. This makes intuitive sense because gaining

line-of-sight effectively collapses the unknown state of the

evader to a known state. Gaining line-of-sight is relevant to

nearly all sensors that a robotic pursuer would possess.

In comparison with the visibility-based discretization pro-

posed by LaValle and Guibas [7], our discretization tech-

nique yields far fewer cells making it more applicable

to large, complex environments. The tradeoff is that our

discretization does not provide a discretization suitable for

use with LaValle and Guibas’s visibility-based pursuit algo-

rithms.

Fig. 1. Small house map used for pursuit-evasion simulation

B. Dispersion and Capture Modeling

To integrate a motion model of the evader into our pursuit-

evasion framework and better define capture events, we

develop “capture” and “dispersion” matrices for application

to the evader’s state vector. As presented in Section III,

the location of the evader is represented by a vector p =
[p0, . . . , pN] where p0 represents the probability the evader

has already been captured, and p1 . . . pN represent the proba-

bility the evader is in the corresponding discretized cell. We

can mathematically represent a capture event on that state

Fig. 2. Undirected graph built from house discretization

Fig. 3. Office building map used for pursuit-evasion simulation (dotted
lines show discretization boundaries)

vector by defining a matrix that moves all probability1 from

all cells visible from pursuer i’s current cell XP
i

(t) to the

capture state. The appropriate capture matrix CXP

i
(t) for cell

XP
i

(t) is applied at time t to yield p(t+1) = p(t)CXP

i
(t). For

example, if we assume that the pursuer cannot see through

doorways, the capture matrix for a pursuer in cell 1 of the

environment in Fig. 1 would be the 10x10 identity with the

second row unity value shifted to the first column.

Under the current assumption that capture is guaranteed

in the pursuer’s current cell and not possible in neighboring

cells, the capture matrices contain diagonal unity values

except for the row corresponding to the current cell. Relaxing

either of these assumptions would allow for more complex

capture matrices.

Similarly, we can define dispersion matrices to represent

the expected motion of the evader in the environment. As

discussed previously, discretization of the environment yields

an undirected graph of possible evader movements between

cells. Based on a motion model, we can assign probabilities

to each of these movements and define a matrix that properly

disperses the evader’s probable location. We can then apply

this matrix P at time t to yield a new evader state vector at

time t + 1 as in Equation 1.

p(t + 1) = p(t)P (1)

For instance, if we assume an equal probability that the

evader will remain still or move to any adjacent cell at the

next time step, the dispersion matrix for the environment in

Fig. 1 would be:

1The capture matrix can also contain non-unity values if the probability
of seeing an evader when it is in a pursuer’s line-of-site is less than one.
This would be the case with noisy sensors.

FrB12.1

3872

P =

1 0 0 0 0 0 0 0 0 0

0 1
3 0 0 1

3 0 0 0 1
3 0

0 0 1
3 0 0 0 0 0 1

3
1
3

0 0 0 1
2

1
2 0 0 0 0 0

0
1

6
0

1

6

1

6

1

6

1

6
0 0

1

6

0 0 0 0 1
3

1
3 0 1

3 0 0

0 0 0 0 1
3 0 1

3
1
3 0 0

0 0 0 0 0 1
3

1
3

1
3 0 0

0 1
3

1
3 0 0 0 0 0 1

3 0

0 0 1
3 0 1

3 0 0 0 0 1
3

The top row of the capture matrix corresponds to the

capture state. For reference, row 5 (emboldened) corresponds

to the probabilities associated with cell 4. It is important to

note that while there are as many capture matrices as there

are cells in an environment, there is a single dispersion matrix

for the entire environment.

The capture matrix of a pursuer i and the dispersion matrix

can be concatenated yielding a new evader state vector as in

Equation 2.

p(t + 1) = p(t)PCXP

i
(t) (2)

In larger environments, it is desirable to use multiple

pursuers to search for a single evader. To expand to multiple

pursuers, the capture matrices for all pursuers can also be

concatenated to yield the new state as in Equation 3.

p(t + 1) = p(t)P [

R
∏

i=1

CXP

i
(t)], (3)

where R is the number of robotic pursuers.

To perform this step, it is necessary for the pursuers

to communicate their states at each time step. Together,

the dispersion and capture matrices provide a method for

properly modifying the evader’s probable position vector

when advancing time steps.

The computational complexity of the dispersion and cap-

ture matrix application is determined by the number of cells

in the environment (the size of the matrices) and the number

of pursuers: O(nc3) where n is the number of pursuers and c

is the number of cells in the environment. Since the matrices

are often sparse, this complexity can sometimes be further

reduced.

The dispersion and capture matrix formulation can also

be easily modified to account for measurements that provide

a prior on the distribution of the evader. If a pursuer

receives information about the evader’s position, e.g. range

to the evader, and this information is insufficient to warrant

a capture event, a matrix M can be formed to encode

this information and applied during the forward time-step.

Another advantage of this problem formulation is the ease

of which prior knowledge of the evader’s position can be

incorporated into the framework. If the evader’s position is

known with some certainty to be in a subset of the graph,

the initial p vector can be initialized with the appropriate

probabilities. This is particularly relevant if the pursuers

had line-of-sight and then lost it. In this case, they would

know that the evader is near its previous known location.

The incorporation of measurements and the use of prior

knowledge further integrate our methods into a full tracking

solution as described in Section I.

C. Cost Functions

Since the expected time of capture of the evader cannot

be known exactly during planning, we develop heuristic cost

functions to guide coordination of robotic pursuers.

The simplest cost function shown in Equation 4 is the

probability of failing to capture the evader when moving

into a cell.

C(x, p(t)) = 1− px(t), (4)

where x is the cell that the pursuer is about to enter.

Another simple cost heuristic shown in Equation 5 is to

take the distance it takes to reach a given cell and divide

it by the probability of capture in that cell. This is the

cost heuristic employed by Sarmiento et al. for searching

polygonal environments [16].

C(x, p(t)) =
D(x, XP

i
(t))

px(t)
, (5)

where x is the cell that the pursuer is about to enter, and

D(x, y) is the distance between cells x and y.

The above cost heuristics have a disadvantage in that they

do not take into account probabilities across the entire graph.

They only examine the probability of capture in the cell to

which the pursuer is about to move. When planning more

than one step ahead, expected time of capture is minimized

if the pursuer maximizes capture probability in as little time

as possible. Aggregating the previous two cost heuristics over

several steps does not take this into account.

The following cost functions utilize the probability of non-

capture over all cells. This punishes the robotic pursuer for

the remaining probability in all cells and relates more directly

to expected time of capture.

One such cost heuristic shown in Equation 6 is the vec-

torial distance between the evader’s current state probability

vector and an ideal capture vector.

C(p(t)) =

N
∑

n=0

|pn(t)− pn|, (6)

where the target probability p = [1, 0, . . . , 0].
Entropy is another one-step cost function that takes into

account the state of every cell as shown in Equation 7.

C(p(t)) = −

N
∑

n=0

pn(t) log pn(t), (7)

where N is the number of cells (including capture state).

Adding a summation to any of the above cost functions

allows the robotic pursuers to search several cells ahead

FrB12.1

3873

to determine the optimal pursuit path. The resulting cost

function for a path is shown in Equation 8.

C(path) =

xd
∑

x=x0

C(x, p(t)), (8)

where x0 is the starting cell and d is the cell depth.

The task of searching all paths is simplified because the

discretization method only allows a small number of options

in each cell (the pursuer must move to one of the adjacent

cells). Furthermore, all possible paths to a given depth can

be searched with minimal computation by storing the costs

of previous paths and branching into a breadth first tree at

replanning points.

When planning using cost functions, locations in the

environment must be assigned as replanning points. These

locations, designated as checkpoints, represent the points in

the environment between which the robots move. The most

obvious checkpoints to use are the centroids of cells because

they provide quick access to adjacent cells. Another possible

location for checkpoints would be cell boundaries. In our

experiments, we found that centroids and cell boundaries

performed similarly, and we use centroids as checkpoints

in our results in Section V.

D. Coupled Coordination

Once a cost function has been defined, coordination strate-

gies for the robotic pursuers can be found by searching

possible paths in the discretized floor plan. To develop

a coupled coordination strategy, a centralized planner can

search all possible paths on the pursuit-evasion graph to

a given depth for every robotic pursuer. This will output

paths for all pursuers that minimize the cost function. This

algorithm can be decentralized by assigning identification

numbers to the pursuers and forcing each pursuer to plan for

all pursuers.

The advantage of using a coupled coordination strategy

is that the pursuers take the future positions of the other

pursuers into account during planning. However, coupled co-

ordination scales exponentially with the number of pursuers.

The number of cells that must be searched is O(bdn) where

n is the number of pursuers, d is the lookahead depth, and

b is the maximum branching factor of the cell graph. This

does not lead to a tractable solution for more than a small

number of robotic pursuers with a short lookahead.

E. Decoupled Coordination

To decouple the planning algorithm, we allow each pursuer

to plan for itself while assuming that the states of the other

pursuers are fixed. This prevents the search space from

growing in complexity with the number of pursuers. With

this assumption, each pursuer must simply search for its

optimal path given the current state information of the other

pursuers. The complexity of this planning algorithm is not

affected by the number of pursuers: O(bd). Even though

planning is decoupled, the initial positions of other pursuers

provide information that the evader is not in that cell. For

this purpose, our algorithm always communicates pursuer

locations at each time step.

Algorithm 1 gives a summary of our entire pursuer coor-

dination algorithm. We show results from both coupled and

decoupled planning in Section V.

Algorithm 1 Pursuer coordination algorithm

while evader not captured: XP
i

(t) 6= XE(t) for any i do

for all pursuers i do

Transmit current pursuer’s location: XP

i
(t)

Update XP (t) with info from other pursuers

Apply dispersion and capture matrices:

p(t)← p(t− 1)P [
∏R

i=1 CXP

i
(t)]

if at checkpoint then

x0 ← XP

i
(t)

if coupled planning then

for all coupled pursuers’ paths to depth d do

Calculate: C(path) =
∑xd

x=x0
C(x, p(t))

end for

Set lowest cost goal for current robot ID

else if decoupled planning then

for all current pursuer’s paths to depth d do

Calculate: C(path) =
∑xd

x=x0
C(x, p(t))

end for

Set lowest cost goal from planner

end if

else

Move current pursuer towards next checkpoint

end if

end for

t← t + 1
end while

V. SIMULATED RESULTS

To test the above coordination algorithms, we developed a

multi-agent pursuit-evasion simulation in C++ on a 3.2 GHz

Pentium 4 processor. Our simulation environment allows for

simulation of multiple pursuers and evaders. Fig. 4 gives

screenshots of the simulation at different time steps during a

pursuit-evasion trial. The screenshots show a test run using

the office building map with two pursuers (P1 and P2) and

one evader (E).

To formulate the specific dispersion and capture matrices

for the simulation, we needed to make several assumptions.

We simplified the formulation of the capture matrices by

assuming that the robotic pursuers will always see an evader

in the same cell and never see an evader in another cell.

This approximation is reasonable because of the coarse and

convex discretization of the environment. We derived the

dispersion matrices from the possible paths of the evader

in each cell. The probability of remaining in the current cell

is proportional to the area of the cell, the speed of the evader,

and the number of adjacent cells. Similarly, the probability

of moving to an adjacent cell is proportional to the size of

the cell and the number of adjacent cells. We assumed that

the speed of the evader and pursuers were known to be 1 m/s,

FrB12.1

3874

Fig. 4. Snapshots of pursuit-evasion simulation at different time steps until
capture event. The pursuers automatically branch into the two major cycles
on the map. Darker cells denote more probable evader locations.

and that they move holonomically between cell boundaries

and centroids.

A. Complex Environment

We performed experiments in a complex office environ-

ment discretized as shown in Fig. 3. Two pursuers were

placed at the top of the map in cells 43 and 44, and an

evader was randomly placed in one of the other cells. The

evader moves randomly between the centroid and boundaries

of the cells, and the pursuers moves in accordance with

our coordination algorithms described above. Two other

pursuer coordination methods were added to the results for

comparison. In the random method, the pursuer randomly

moves between the boundaries and centroids of adjacent

cells. In the stationary pursuer method, the pursuer remains

in its starting cell. Fig. 5 gives the results of pursuit-evasion

trials on the office building floor plan.2

The results in Fig. 5 compare planning using four different

cost heuristics. The probability and distance cost heuristic

was introduced by Sarmiento et al. [16]. Since their planning

method was developed for stationary targets, we augment

it with our dispersion matrix to model a mobile evader.

Visibility-based methods, such as those developed by LaValle

and Guibas [7], are not possible with two pursuers on this

map. This is obvious by inspecting the number of cycles on

the map. A visibility-based discretization of this map would

also yield nearly one-thousand cells, and the number of edges

2The average capture times on this map were 749.319 +/- 24.6114 seconds
for the stationary strategy and 344.385 +/- 14.6694 seconds for the random
strategy. They have been left out of the figure to better show trends in the
other results.

Fig. 5. Average simulated pursuit-evasion capture times for two pursuers
over 1000 trials for coupled and decoupled coordination strategies with
different cost heuristics on a complex office map. All methods used disper-
sion matrices. Lookahead trials with coupled planning were not feasible on
this map. Error bars represent one standard error of the mean (SEM). See
footnote for results of random and stationary strategies. Starting location
of the evader was randomized, and starting locations of the pursuers were
fixed.

in any given visibility cone would make computation of a

solution in this environment infeasible.

The office building results show that the decoupled plan-

ning methods with lookahead, capture matrix dispersion, and

the entropy or target probability cost heuristics yield the

lowest expected times of capture. These methods reduce

the time of capture by a factor of five over the random

method and by 17% over the methods with the cost heuristic

introduced by Sarmiento et al. [16].

The paths of the pursuers in the better performing methods

diverge to explore the two major hallways on the map.

The pursuers move around these cycles until they block the

evader’s path. This coordination strategy stems from the use

of the dispersion matrices to model the evader’s movement.

Since the evader is moving, searching the small rooms in the

environment does not yield low expected times of capture.

Instead, it is advantageous for the pursuers to move through

the long hallways and encounter the evader as it moves out

of the rooms. These results coincide with intuition, and they

further confirm that our methods lead to effective multi-robot

coordination strategies.

The decision to use two pursuers on the office map was

made because of the size of the environment and the two

major hallway cycles. Experiments with coordinating up to

five pursuers on this map were successful at reducing time of

capture over simpler methods for most evader paths. In some

cases, adding additional pursuers does not reduce capture

time because one of the pursuers gets lucky and catches

the evader in a low probability cell. Additional pursuers

decrease the luckiness of captures by reducing probabilities

in other areas of the map. This further demonstrates that our

algorithms can often perform well with few pursuers.

In the office environment, adding dispersion to the evader’s

FrB12.1

3875

motion model greatly helps in catching a mobile evader.

Adding a five cell lookahead further reduces capture time

for the entropy and target probability cost heuristics. For

the probability and probability & distance cost heuristics,

adding a lookahead actually hurts planning. This is because

these cost heuristics are inherently shortsighted in that they

do not take into account probability across the entire graph.

Thus, these cost heuristics do not differentiate between when

the cost is reduced. To minimize expected capture time,

it is advantageous for the pursuers to reduce cost early in

the planning cycle. The entropy and target probability cost

heuristics account for this.

We also ran several trials with a stationary evader using

the identity as the dispersion matrix. This forces the pursuers

to inspect each room in the map rather than cutting off

the cycles. In this case, our coordination methods using

entropy or target probability were effective at reducing time

of capture over random methods and performed similarly to

those with the probability and distance heuristic introduced

by Sarmiento et al. [16]. This shows that our methods are

also effective at coordinating pursuers to search environments

for immobile targets.

VI. CONCLUSIONS AND FUTURE WORK

Our coordination methods for robotic pursuers effectively

reduce the expected time of capture in a complex pursuit-

evasion scenario. We have shown through simulated re-

sults that searching for lowest cost paths generates plans

that greatly reduce expected capture time versus random

or stationary search methods. Our algorithms also reduce

expected capture time by 17% over methods introduced by

Sarmiento et al. [16], and they perform in environments

beyond the scope of methods introduced by LaValle and

Guibas [7]. We have also demonstrated that the decoupled

version of our planning methods works effectively, allowing

our methods to scale to both a large number of robotic

pursuers and a significant lookahead. Furthermore, we have

shown that entropy and target probability cost heuristics

improve on simpler heuristics that rely solely on distance and

probability of capture. Our dispersion and capture matrix for-

mulation integrates target motion modeling into the planning

framework, and we successfully demonstrate a method for

generating a coarse discretization of indoor environments that

is scalable to large and complex maps. Our research provides

a probabilistic solution to solving the problem of searching

for non-adversarial mobile evaders in indoor environments

with multiple robotic pursuers.

For future work, we plan to examine the performance

of our algorithm on maps with more cycles. Maps of

museums with cyclical galleries are common examples of

this type of environment. These maps add complexity to the

pursuit-evasion problem because they prevent the pursuers

from cutting off all cycles and limiting evader movement.

Additionally, we plan to extend this algorithm to a POMDP

formulation. The state representation already exhibits the

form of a POMDP with the state of the evader as the

partially observed state. A coordination algorithm could be

developed by solving this POMDP as in previous POMDP

research [11]. The major drawback to this course of action

is the poor scalability of POMDPs when adding additional

pursuers.

Furthermore, our method should be extended to multiple

evaders. This extension would require an increase in the

dimensionality of the evader’s state estimation vector and

a modification of the cost functions. We also plan to in-

corporate constraints (such as minimizing distance between

pursuers) and the use of noisy measurements into the current

framework. Our method for discretization could be auto-

mated by arbitrarily collapsing convex regions found using

the Quine-McClusky method [17]. We have not implemented

this automatic discretization in this paper, but its implementa-

tion is straightforward. Finally, we plan to test our algorithms

on physical robots and verify their performance in some of

the real-world applications discussed in Section I.

VII. ACKNOWLEDGMENTS

We gratefully acknowledge Christopher Geyer for his

insightful comments.

REFERENCES

[1] M. Adler, H. Racke, N. Sivadasan, and C. Sohler, “Randomized
Pursuit-Evasion in Graphs,” Combinatorics, Probability, and Comput-

ing, 12:225–244, 2003.
[2] D. Bertsekas and J. Tsitsiklis. Parallel and distributed computation,

Prentice-Hall, 1989.
[3] P. Cheng, “A Short Survey on Pursuit-Evasion Games,” Department of

Computer Science, University of Illinois at Urbana-Champaign, 2003.
[4] J. Eaton and L. Zadeh, “Optimal pursuit strategies in discrete-state

probabilistic systems,” In Trans. ASME Ser. D, J. Basic Eng, vol. 62,
pp. 23-28, 1962.

[5] B. Ferris, D. Hahnel, and D. Fox, “Gaussian Processes for Signal
Strength-Based Location Estimation,” In Proc. of Robotics Science

and Systems, 2006.
[6] B. Gerkey, S. Thrun, and G. Gordon, “Visibility-based pursuit-evasion

with limited field of view,” Int’l Journal of Robotics Research,
25(4):299–315, 2006.

[7] L. Guibas, J. Latombe, S. LaValle, D. Lin, and R. Motwani, “Visibility-
based pursuit-evasion in a polygonal environment,” Int’l Journal of

Computational Geometry and Applications, 9(5):471–494, 1999.
[8] E. Hansen and Z. Feng, “Dynamic programming for POMDPs using a

factored state representation,” In Proc. 5th Int’l Conf. on AI, Planning,

and Scheduling, 2000.
[9] T. Hegazy, “A Distributed Approach to Dynamic Autonomous Agent

Placement for Tracking Moving Targets with Application to Monitor-
ing Urban Environments,” Ph.D. Dissertation, Georgia Tech, 2004.

[10] V. Isler, S. Kannan, and S. Khanna, “Randomized Pursuit-Evasion in a
Polygonal Environment,” IEEE Trans. Robotics, 5(21):864–875, 2005.

[11] L. P. Kaelbling, M. L. Littman, A. R. Cassand, “Planning and acting
in partially observable stochastic domains,” Artificial Intelligence,
101:99–134, 1998.

[12] S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe, and R. Motwani,
“Finding an unpredictable target in a workspace with obstacles,” In
Proc. Int’l Conf. on Robotics and Automation, 1997.

[13] S. M. LaValle, Planning Algorithms, Cambridge Univ. Press, 2006.
[14] E. Liao, G. Hollinger, J. Djugash, and S. Singh, “Preliminary Results

in Tracking Mobile Targets Using Range Sensors from Multiple
Robots,” in Distributed Autonomous Robotic Systems, Vol. 7, M. Gini
and R. Voyles, eds., Tokyo: Springer-Verlag, pp. 125–134, 2006.

[15] T. D. Parsons, “Pursuit-evasion in a graph,” In Theory and Applications

of Graphs, Y. Alavi and D. Lick, eds., Springer, pp. 426–441, 1976.
[16] A. Sarmiento, R. Murrieta-Cid, and S. Hutchinson, “A Multi-robot

Strategy for Rapidly Searching a Polygonal Environment,” in Proc.

9th Ibero-American Conf. on AI, Puebla, Mexico, 2004.
[17] J. S. Singh, M. D. Wagh, “Robot Path Planning using Intersecting

Convex Shapes: Analysis and Simulation,” IEEE Journal of Robotics

and Automation, vol. RA-3, no. 2, April 1987.

FrB12.1

3876

