
 

 

 

  

Abstract—This paper addresses the problems of 

automatically planning Autonomous Underwater Vehicle 

(AUV) paths which best exploit complex current data, from 

computational estuarine model forecasts, while also avoiding 

obstacles. In particular we examine the possibilities for a novel 

type of AUV mission deployment in fast flowing tidal river 

regions which experience bi-directional current flow. These 

environments are interesting in that, by choosing an 

appropriate path in space and time, an AUV may both bypass 

adverse currents which are too fast to be overcome by the 

vehicle’s motors and also exploit favorable currents to achieve 

far greater speeds than the motors could otherwise provide, 

while substantially saving energy. The AUV can “ride” currents 

both up and down the river, enabling extended monitoring of 

otherwise energy-exhausting, fast flow environments. The 

paper discusses suitable path parameterizations, cost functions 

and optimization techniques which enable optimal AUV paths 

to be efficiently generated. These paths take maximum 

advantage of the river currents in order to minimize energy 

expenditure, journey time and other cost parameters. The 

resulting path planner can automatically suggest useful 

alternative mission start and end times and locations to those 

specified by the user. Examples are presented for navigation in 

a simple simulation of the fast flowing Hudson River waters 

around Manhattan. 

I. INTRODUCTION 

ONVENTIONAL deployment of Autonomous Underwater 

Vehicles (AUVs) typically involves a human user 

specifying a mission path in terms of a series of waypoints, 

[1]. The AUV then uses onboard control strategies to keep to 

a path which passes through these waypoints. Various 

control techniques respond intelligently to sensor stimuli in 

order to correct position errors and also to autonomously 

plan local path deviations for obstacle avoidance, e.g. [2], 

[3]. These techniques have proved adequate for long range 

missions in open sea, where forecast currents are relatively 

homogeneous over large regions and where deviations from 

the intended path can be relatively easily and safely 

corrected. 

 In contrast we wish to deploy an AUV in a swift flowing 
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tidal river estuary which contains currents that are faster than 

the maximum speed of the robot; vary rapidly with position 

in the river (often reversing direction with a few meters of 

position change); and which change significantly with time 

(often reversing direction over a tidal cycle). It is a 

fundamental requirement, for deploying a robot in these 

environments, that the path be optimized with respect to a-

priori knowledge of these currents which can be reliably 

derived from computational estuarine model now-casts and 

forecasts, [4], [5]. Unfortunately, the optimal choice of path 

in these complex and varying conditions will rarely be 

obvious to a human user. It is also desirable that the robot be 

able to regularly re-plan the remainder of its mission in order 

to compensate for previous motion errors, avoid newly 

detected obstacles and exploit updated and corrected current 

information which can be communicated to the robot 

periodically throughout its mission. We present a technique 

which enables an AUV to autonomously plan optimal paths 

which exploit useful currents, avoid adverse currents, 

maximize speed, minimize energy expenditure and avoid 

obstacles. The user must specify approximate locations and 

times for the beginning and end of the mission. Additional 

midpoints or waypoints may be specified if desired. The path 

planner is capable of suggesting useful modified or 

alternative positions and times for any user specified points. 

 Much of the AUV path planning literature focuses on 

short term local path planning for the avoidance of detected 

obstacles, e.g. [2], [3]. A smaller body of literature addresses 

the problems of long range global path planning and some of 

this work explores ways of optimizing paths with respect to 

current velocity data. Previous work predominantly 

approaches this problem by reducing the space to a small set 

of nodes, assigning costs to straight line edges connecting 

nodes, and then searching the resulting graph for the best 

route. In contrast, our technique requires no such 

discretization or simplification of the motion space. 

Sequeira and Ribeiro, [6], [7], reduce the motion space to 

a graph of connected nodes which include the vertices of 

known obstacle regions, modeled as cuboidal blocks. 

Currents are handled in a very simplistic fashion, with large 

regions of significant current represented as cuboidal blocks 

of constant current speed and direction. The centroids of 

these current regions are also added as nodes to the graph of 

motion space. Energy costs are now added to graph edges in 

proportion to any adverse current velocities which they 

traverse and a minimum cost route through the graph is 
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found using the Dijkstra algorithm. More recent work (Garau 

et al., [8]) is restricted to considerations of motion on a 2D 

plane. The plane is divided into a coarse grid of equi-spaced 

nodes, which are connected by edges to form a graph. Each 

edge is assigned a cost according to estimated journey time, 

assuming constant motor speed, and the minimum cost route 

is found with an A* search. This approach has a number of 

drawbacks for estuarine navigation. Firstly, since only 2D 

motion is addressed, the technique is unable to plan paths 

which dive or climb to avoid adverse current layers or to 

exploit useful current layers. This ability is crucial to 

successful navigation in a tidal estuary where two stratified 

layers of water are often traveling in opposite directions at 

high speeds. Secondly, the technique is unable to plan for 

variable AUV power output. Thus an AUV is unable to fully 

exploit the currents for certain applications where drifting 

with useful currents at minimal motor speeds is essential for 

prolonging mission lifetimes. Thirdly, although the authors 

consider spatially varying current fields, the problem of 

current velocities which vary with time is not addressed. In 

contrast, in our estuarine application, currents vary 

substantially over relatively short timescales, often reversing 

direction over tidal cycles. The ability to handle temporal 

current variation is important. Fourthly, Garau et al. note a 

substantial computation time of around 35 seconds to plan 

paths of order 1km length, presumably using a dedicated 

offline CPU. If the method were to be extended to the 

necessary 3D motion space, this time would increase 

significantly, even more so if only part of the CPU time of an 

onboard AUV controller could be assigned to the task. This 

makes the method inappropriate for enabling an AUV to 

regularly re-plan the remainder of its path in response to 

updated current or obstacle data during the mission. Carroll 

et al., [9], also use A* search to find safe paths through a 

map of known obstacles and unsafe regions, derived from a 

detailed database of depth information, obstacles and 

exclusion zones. This work does not address the problem of 

path optimization with respect to currents. The authors also 

note significant computation times for A* path planning 

(order 10-100s CPU time with currents sampled only once 

every nautical mile). Alvarez et al., [10], do address variable 

current speeds in a 3D environment, using genetic algorithms 

to find an optimal path while avoiding convergence on local 

cost minima. The approach also involves partitioning the 

search space into a relatively coarse grid of cells and then 

searching a space of possible paths which link these cells. 3D 

currents are simplified to representations as a small number 

of discreet 2D layers. The current speeds encountered are 

relatively small (maximum 0.65ms
-1

) compared to those 

addressed in this paper and the currents are approximately 

locally constant (varying over tens or hundreds of km) in 

contrast to those addressed in this paper which vary 

significantly over distances of a few meters. Other uses of 

genetic algorithms include [11], which describes a method 

for optimal path planning for Unmanned Aerial Vehicles 

(UAVs) with respect to forecast wind velocities. The genetic 

algorithm enables the evolution of multiple candidate paths 

composed of component primitives (e.g. arcs and straight 

line sections). The authors also propose that the robot should 

regularly re-plan the remainder of its mission to take 

advantage of updated wind speed forecasts. An advantage of 

genetic algorithms is that they can be particularly robust 

against convergence on local minima. A disadvantage is that 

they require a large number of different path candidates to be 

considered and evaluated simultaneously which can be 

computationally expensive. Other approaches to handling 

complex, varying currents include Fuzzy Logic, e.g. [3] 

which is primarily concerned with rapid local control of the 

AUV to avoid detected obstacles in the presence of ocean 

currents. Long range global path planning is not addressed. 

 In contrast to previous work, our method offers a highly 

flexible path parameterization which avoids the need for any 

discretization or coarse partitioning of the motion space. The 

method allows for current velocities in any direction, which 

vary continuously in space and time, with arbitrary resolution 

to whatever level of accuracy can be supplied by the current 

model being used. The method enables the continuous 

adjustment of waypoints in both space and time with an 

arbitrarily fine resolution, i.e. no discretization, forming 

paths of any shape through 3D space and time. As well as 

finding an optimal route between user specified start and end 

points, the path planner is able to suggest modified locations 

and times for start and end points which may be 

advantageous to the mission. Path planning parameters can 

be easily modified by the user in order to emphasize 

different mission priorities, e.g. minimum energy 

expenditure versus minimum journey time. Unlike much of 

the literature, we consider energy costs due to acceleration in 

addition to drag forces. The efficient path planning routine 

runs rapidly (less than 1s with un-optimized Java code on an 

ordinary 2.6GHz PC) and so is suitable for enabling the 

robot to regularly re-plan the remainder of its mission in 

order to avoid newly detected obstacles and exploit any 

updated current velocity data which might become available 

during the mission. 

II. ESTUARINE CIRCULATION 

An estuary has large currents that can easily exceed the 

top speed of an AUV. There are two repeatable primary 

driving forces; tides which oscillate the water with a 

predictable superposition of sinusoidal constituents, and 

gravitational flow, where a lens of lighter fresh water at the 

surface pushes out to sea, while heavier salt water flows in at 

the bottom. Superimposed on this are also wind effects 

which are far more variable. For proof of principle of our 

AUV path planner, we have used a simplified analytical 

solution of two-layer estuarine flow due to Officer, [12], 

where the river width and depth are constant and river flow 

is balanced by gravitational currents: 

FrC12.4

4266



 

 

 

( ) ( )2
0

32
3

1
2

3
891

48

1
nvnn

K

hg
v

m
y −++−=

ρ

λ
    (1) 

where  ∫===
0

0     ,    ,

h

y dzvr
h

r
v

h

z
n  

where yv is the current speed in the along river (y) direction, 

h is the (uniform) depth of the water, z denotes vertical 

position relative to the surface, and z=0 is mean sea level. 

Velocity is maximum at the surface, zero approximately 40% 

down in the water column, maximum inflow (up-river 

current) is approximately 80% of the way down, and the 

current is zero at the bottom (see figures for profile shape). 

In a real estuary, the situation is more complicated. The 

full solution to the Navier-Stokes governing equation is not 

analytically solvable, so computer models are used. For the 

New York area, we use ECOMSED, a derivative of the 

Princeton Ocean Model (POM), [4], a full 3D ocean 

circulation model using a curvilinear grid in the horizontal, 

sigma coordinates in the vertical, and optimized for 

configuring the details of an estuarine environment. Our 

operational New York Harbor Observing and Prediction 

System (NYHOPS) model runs daily, producing a 24 hour 

hind-cast and 48 hour forecast, which can be viewed on our 

website at http://www.stevens.edu/maritimeforecast. A new 

high resolution model is currently in experimental 

development. 

We have created a continuous interface to this model so 

that we can unplug the simplified estuarine flow, used here 

for proof of principle, and plug in the full nonlinear 

NYHOPS daily run output. Since the functional interface 

requests the environmental values as a function of x, y, z, and 

time, the AUV path planner is encapsulated from the details 

of the particular grid or model being used, and as new 

models improve, the path planner can therefore take 

advantage of the latest available information. 

III. PATH PLANNING 

A. Path parameterization and cost evaluation 

Many underwater robot vehicles are non-holonomic, 

however we assume simple holonomic kinematics for long 

range path planning since the path length is very large 

compared with the size of the robot and sharp turns are 

usually unnecessary. Also, for our application, we envision 

the use of AUV vehicles such as the NPS Phoenix, [3], 

which incorporate additional thrusters to enable kinematic 

decoupling of various different motion directions, enabling 

almost fully holonomic motion. At any point in time, the 

robot position and absolute velocity (relative to land) can be 

expressed as a state vector: 

( ) ( )TT
ttttttt zyxzyx xxS &&&& ,,,,,, ==      (2) 

The environment is characterized by 3D current 

velocities, C  derived from our computational estuarine 

model, which vary in space and time: 
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A candidate path is represented as a series of n straight 

line segments which connect n+1 nodes. Since node times 

and inter-nodal speeds can be varied, the nodes occupy a 4D 

space consisting of 3D position and time. Each path segment 

is parameterized by the start and end node 

positions, ( )1, +ii NN  and a duration for the segment it∆ . 

Hence the entire path can be described with a single vector 

of n+1 nodal positions and desired inter-nodal times: 
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where the next segment duration at the end of the 

journey, nt∆  can be constrained to be zero. Note that the 

combination of node positions and segment durations 

determines unique values for the robot’s net velocity 

components during the i
th

 path segment: 
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Any candidate path can be evaluated according to a cost 

function. The entire path is evaluated progressively from 

beginning to end. For each successive pair of nodes, 

( )1, +ii NN , the straight line inter-nodal path segment is 

broken down iteratively into small, straight line sub-steps 

until the difference in average current speeds between any 

two consecutive steps falls below a specified value. 

Since a constant net speed is demanded for the segment it 

is possible to determine the start and end times for each of 

these sub-steps so that current velocities can be found, even 

when currents are time varying. Each sub-step is assigned a 

current velocity, C  found by averaging the current velocity 

values at the beginning and end of the sub-step. Now, the 

components of the overall velocity which must be 

contributed by the robot’s motors can be found, for any sub-

step, as: 
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giving the required motor speed (speed relative to the water 

due to the robot’s thrusters) for the sub-step as: 

222
zyxmotor MMMV ++=       (7) 

This speed can be used with an energy cost function to 

determine the cost of energy expenditure for the sub-step. 

For proof of principle we use a simple energy cost function 

comprising two components, a drag term and acceleration 

term: 
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 where dragF  and accelF  are the forces required to 

overcome drag and provide acceleration, tM and tM
&

 are 

the velocity and acceleration of the AUV relative to the 

water and 1k  and 2k are constants relating to the water 

density, effective AUV cross section area and the AUV 

mass. Note that any other energy function can be easily 

substituted here as required. 

 Each sub-step is checked to see if the required motor 

speed motorV  exceeds the greatest speed of the 

vehicle maxV . If so, an additional cost term is added: 

( ) 2
max_cost LVVL motorspeedexcess −+=∆     (9) 

where L is a large number. The first part of this additional 

cost term prevents optimization algorithms from choosing 

any path which requires an impossible motor speed, by 

providing a large step jump in cost for such a path. The 

second part provides a steep gradient which rapidly forces 

the optimization algorithm to change the path to one with 

allowable motor speeds, if the path optimization process 

happens to be initialized with a path which already requires 

impossible motor speeds. 

 The total energy cost for the entire path can now be 

evaluated as a series of numerical integrations over all sub-

steps of each inter-nodal path segment: 
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where 
subit∆  denotes the duration of sub-steps on the path 

segment connecting nodes i and i+1. 

 This technique can easily be extended to incorporate 

obstacle avoidance by the addition of potential field-like cost 

terms. Obstacles and forbidden regions are modeled by 

boundaries which enclose the physical space of the obstacle 

plus an additional safety margin. To exclude the AUV from 

known obstacle regions, a large step cost is added to any 

path sub-step which lies inside the obstacle region plus an 

additional gradient term, based on distance of the AUV from 

the object boundary, to force the path out of the region. 

Because of the speed of the path planning algorithm, this 

method can be used for avoiding newly detected obstacles as 

well as known existing obstacles, provided that the time until 

collision is large compared to order 1s. For more imminent 

collisions, emergency path detouring algorithms can be 

adopted from the literature, e.g. [3]. Note that new obstacle 

information might not only be derived from the robot’s 

onboard sensors but also might be communicated to the 

AUV from external sources, for example the vision based 

surveillance system that we are developing for boat tracking 

on the Hudson River or radar-based tracking of large ships. 

Finally, additional cost terms are added to reflect the 

priorities of the user. If speed is important, a cost term 

proportional to the total journey time is added. It may also be 

desirable to relax the user-specified mission start and end 

positions and times so that the path planner can suggest close 

alternatives that may be advantageous. In this case a cost 

term should be added which increases with the difference 

between the user-specified start and end points and those 

suggested by the path planner. This cost term is necessary to 

prevent the path planner from collapsing the end point onto 

the start point. 

Now all cost terms are summed to give a total cost for the 

candidate path: 

endstimeobstenergytotal CostCostCostCostCost +++=  

                      (11) 

Additional weights can be added to each cost term to reflect 

the user’s priorities. For example, with suitable cost weights, 

the path planner will find a trajectory which sacrifices energy 

efficiency for reduced journey time or vice versa. 

B. Path optimization 

We note that successful optimization depends largely on a 

careful choice of path parameterization and consideration for 

the fact that certain parameters are intrinsically coupled with 

respect to energy cost. It might seem convenient to express a 

path as a series of nodes ( )iiii tzyx ,,,  in space and time. 

Thus n nodes give a 4n dimensional vector which could be 

solved with a standard gradient based non-linear 

optimization technique. Unfortunately, these parameters are 

not independent with respect to cost, which leads to two 

important optimization problems. Firstly, if the optimizer 

changes the time at one node, the time intervals for the path 

segments on both sides of that node are affected, often 

causing unexpected changes in speed and thus energy cost, 

such that a useful nodal time change can be erroneously 

rejected. Hence we instead use the parameters 

( )iiii tzyx ∆,,,  at each node so that an optimizer can 

modify the duration of one path segment independently of 

the others. Secondly, if the optimizer attempts to change the 

position of a node without changing its time, useful nodal 

position changes can be rejected because the position change 

has imposed unexpected speed (and hence energy) 

requirements on the path segments on both sides of the node. 

Therefore, whenever our optimization algorithm seeks to 

modify a nodal position, we simultaneously modify the inter-

nodal duration time in order to ensure that the position 

change does not demand corresponding speed changes. For 

example, if the optimizer modifies the position of node i 

by x∆ , the parameters are re-set with the following three 

steps:  
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Note that the time intervals, it∆ , are still held as 

independent members of the path parameterization vector 

and so can still be modified individually by the optimizer, 

independently of the position parameters ( )iii zyx ,, . Using 

a time interval rather than an explicit nodal time enables 

these times to be modified independently of the rest of the 

path. The path vector could now be optimized using a variety 

of well established nonlinear optimization techniques, [13], 

[14], providing they are suitably modified to include the 

steps above (equations 12, 13, 14). For proof of principle, 

we have used a simple, gradient based approach which 

iteratively modifies each path parameter in succession, 

starting with coarse step sizes and progressively refining 

with smaller step sizes. The initial coarse step sizes aid in 

avoiding local minima. In our experiments, this technique 

has consistently outperformed Powell’s method (dog-leg 

non-linear least squares technique), [15], which appears to be 

particularly prone to local minima convergence in this 

application. Future work may examine alternative 

optimization techniques including genetic algorithms. 

C. Determining the number of nodes 

For a given number of nodes, we have so far described 

how to evaluate the cost of any path and how to optimize the 

nodal positions and times with respect to that cost. We now 

describe how to determine the best number of nodes to 

describe the path. 

The path is initialized as a straight line with only three 

nodes, i.e. user specified start and end positions and times 

and a middle node which interpolates the positions and times 

of the start and end nodes. These three nodes are then 

optimized as described above. During the final cost 

evaluation of the three node path, the cost values of every 

path segment sub-step are recorded. For each node-node path 

segment, if the difference between the maximum and 

minimum sub-step costs exceeds a specified threshold, then 

an additional node is introduced at the segment midpoint and 

the four node path is now optimized again. This procedure 

continues until no new nodes are added. 

If the path is two way, or the AUV is required to enter 

specific areas, additional mid-points or way-points may be 

specified by the user. If so, these way-points are initially 

connected by straight line path segments with additional 

interpolated nodes placed at the segment midpoints. The 

total path is then optimized using the same procedure 

described above. 

Note that this procedure significantly enhances 

optimization speed, as compared with performing a single 

optimization on a pre-specified number of nodes. The 

majority of the optimization is performed on a small number 

of nodes, i.e. in a low dimensional optimization space. As 

new nodes are added, and the dimension of the optimization 

space increases, only a small number of additional iterations 

are usually needed at each stage. This results in an algorithm 

which is highly efficient whilst maintaining great flexibility 

by avoiding any need to discretize or partition the motion 

space. 

IV. RESULTS 

We demonstrate this technique with example missions 

intended for the Hudson River, using our 3D AUV mission 

simulation environment, based on the Graphite visualization 

toolkit, [16]. The mission is planned with respect to a bi-

directional, stratified current profile which closely resembles 

profiles encountered in the Hudson River and other estuaries. 

At different depths, stratified currents flow both up-river and 

down-river at speeds in excess of the maximum motor speed 

achievable by the AUV. The path planning system 

overcomes and exploits these currents by finding an optimal 

trajectory which enables an AUV to “ride” the currents in 

both directions. Obstacle avoidance capabilities are also 

demonstrated. 

In figure 1 the AUV is tasked with minimizing energy 

expenditure. Hence it stays near the surface (maximum 

down-river current velocity) for most of the journey, only 

using its motors in the cross-river direction while drifting 

with the down-river surface current. To minimize the need 

for motor thrust, the AUV must descend very slowly. To 

enable this, it deliberately overshoots the target, picking up 

the reverse direction (up-river) current on a deeper strata as 

it descends, with which it drifts back onto the target 

destination without the need for energy expenditure. 

In figure 2, the AUV is tasked with conserving energy 

Fig. 1. Journey from left up-river, surface, to right down-river, river bed, 

minimizing energy expenditure. CPU time for path generation 617ms. 

Arrows denote current velocity profile with depth. 
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while placing a modest emphasis on minimizing journey 

time. Now the AUV stays closer to the surface to exploit the 

maximum down-river current speed and uses greater 

downwards thrust to avoid the delay of overshooting. 

In figure 3, the AUV must avoid two pier-like obstacles 

while minimizing energy expenditure. Note the initial dive to 

the exact depth of zero current speed, to minimize energy 

cost while traversing the first obstacle in the cross-river 

direction. Again the AUV overshoots the target, enabling a 

very slow descent and traverse, with minimum motor usage. 

V. CONCLUSION 

This paper has proposed a novel kind of AUV mission in 

which an AUV “rides” the currents in both directions up and 

down a river estuary, enabling continuous patrolling of 

otherwise energy intensive, complex, changeable, high speed 

current regions, for extended mission lifetimes. 

A novel path planning strategy has been proposed which 

enables very general path shapes to be rapidly optimized 

with respect to complex, time varying current fields and 

obstacles. The technique enables an AUV to exploit prior 

knowledge of current velocities derived from a 

computational estuarine model. The technique is 

computationally efficient compared to other methods and 

runs sufficiently rapidly (<1s) to enable frequent re-planning 

of the remainder of the path in response to updated current 

information and newly detected obstacles. The technique 

offers more flexible and general treatment of arbitrary 

current velocities, path shapes and variable motor speeds 

than we have encountered elsewhere in the literature. 

We are currently extending this work to make use of real 

current data in the Hudson River, derived from our high 

resolution computational estuarine model. We are also 

incorporating real bathymetry and other true map data for the 

Hudson and Manhattan Island area. We hope to test this 

technique with a sophisticated AUV platform in the Hudson 

River estuary in the near future. 
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Fig. 2. Journey from left up-river, surface, to right down-river, river bed, 

modest emphasis on speed. CPU time for path generation 711ms. Arrows 

denote current velocity profile with depth. 

Fig. 3. Journey from left up-river, surface, to right down-river, river bed, 

avoid the obstacles, minimizing energy expenditure. CPU time for path 

generation 865ms. Arrows denote current velocity profile with depth. 
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