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Abstract— Robust controllers for robot manipulators ensure
stability properties of the closed loop system, even if only partial
knowledge of the dynamic model of the manipulator is available.
Existing derivations of robust control laws, while guaranteeing
the stability result, present an undesired interaction between the
gains of the controller of the nominal system and the robust
control term.

Based on a structured representation of the model uncer-
tainty, this paper presents a derivation of the robust control law
where these limitations are removed. A case study is discussed
to show the benefits of the proposed approach. New insight
in the robust control problem for more general mechanical
systems might arise from structuring the model uncertainty as
proposed in this paper.

I. INTRODUCTION

Model-based control of robotic manipulators has been a

research issue for several decades. The equations of motion

of the manipulator lend themselves to the application of

advanced and elegant control laws. Practical applicability

of the control laws based on the inverse dynamics of the

manipulator has been however hampered in the past by

limitations in the computing power of the available hardware.

Nowadays computing power is no longer a significant issue

and model based controller are being used even in industrial

manipulators [1]. A renewed interest towards model based

techniques is therefore justified, especially if this interest is

motivated by the attempt to facilitate practical applicability

of such advanced controllers.

In a realistic scenario perfect knowledge of the dynamic

model of the manipulator can never be assumed. Robust con-

trollers that integrate an inverse dynamics controller based on

a nominal model of the system with an outer loop, suitably

designed in order to robustify the closed loop system, have

been proposed in the past and are now included in robotics

textbooks [2], [3]. A comprehensive survey of robust control

techniques developed until the beginning of the 90’s can be

found in [4]. Distinguished contributions in the field include

[5], [6], [7].

The most well known robust control law, discussed in [2]

and [3], is based on the derivation of the robust control action

from the Lyapunov’s second method. Although the derivation

is elegant and based on clever arguments, we believe that the

final result suffers from an inherent contradiction, where the

robust term must be larger (in norm) the larger the control

gains of the nominal PD controller are. This contradiction

(already pointed out in [4]) is in turn the direct consequence

of a representation of model uncertainty that does not account

for the different nature of the uncertain terms. This entails

that the bound on the uncertainty used in the derivation of

the robust control law unexpectedly depends on the controller

gains: the larger the controller gains are, the more uncertain

the system looks as far as the design of the robust controller

is concerned.

In this paper a different representation of the uncertainty in

the dynamic model is proposed, in order to overcome these

difficulties. The non nominal terms are in fact separated into

a structural perturbation to the nominal error dynamics, due

to modeling errors in the identification of the inertia matrix,

and an additional uncertainty perturbation that is related to

modeling errors in the description of the other nonlinear

terms (centrifugal, Coriolis and gravitational ones). This

structure of the uncertainty (already proposed in [8] for the

stability analysis of decentralised PID controllers and here

applied to the robust control problem) allows to formulate a

different robust stability proof. While the proof might appear

somewhat more involved (a Lyapunov argument is still used,

but the Lyapunov function is based on the solution of a

Riccati equation rather than a Lyapunov one) the result is

neater. The design of the robust controller is clearly separated

from the design of the PD controller for the nominal system.

The proof is also constructive and yields a simple recipe to

design a robust controller.

Setting the robust control problem for robot manipulators

in the framework of the quadratic stability problem, as in

the present paper, gives also insight in system structure

and might be beneficial in studying different closed loop

controlled mechanical systems.

The paper is organised as follows: Section II reviews the

background in the design of the robust inverse dynamics

control; Section III proposes the structure of the uncertainty

suitable for a different outer loop design, which is dealt with

in Section IV. A case study, based on a two-link planar

manipulator, is discussed in Section V, after which some

concluding remarks are proposed.

II. BACKGROUND ON THE ROBUST INVERSE

DYNAMICS CONTROL

The robust inverse dynamics control as proposed in

robotics textbooks [2], [3] will be reviewed here. The purpose

is to identify the point where the mathematical development

could be improved and to facilitate the comparison of the

newly proposed stability proof with the present one.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrD9.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4478



A. Dynamic modeling

Consider thus the Euler-Lagrange equations of motion [2],

[3] of a n-links rigid manipulator

M(q)q̈+C(q, q̇)q̇+Fq̇+g(q) = u (1)

where

• q ∈R
n and u ∈R

n are the vectors of joint variables and

joint torques, respectively;

• M(q) ∈ R
n×n is the inertia matrix;

• C(q, q̇)q̇ ∈ R
n is the vector of Coriolis and centrifugal

terms;

• F ∈ R
n×n is a diagonal matrix of viscous friction

coefficients;

• g(q) ∈ R
n is the vector of gravitational torques.

Assuming that an exact inverse dynamics control cannot be

achieved in practice, due to the uncertainties in the system

parameters, a realistic inverse dynamics control input can be

written as [2], [3]

u = M̂(q)y+Ĉ(q, q̇)q̇+ F̂ q̇+ ĝ(q) (2)

where y is the new control input and the notation ˆ(·)
represents the estimated value of (·). Introducing then vector

n(q, q̇), defined as

n(q, q̇) = C(q, q̇)q̇+Fq̇+g(q)

the modeling error is represented by

M̃(q) = M̂(q)−M(q) ñ(q, q̇) = n̂(q, q̇)−n(q, q̇)

Substituting now equation (2) into the manipulator model (1)

yields

q̈ = y−η(q, q̇,y) (3)

where

η(q, q̇,y) = −M(q)−1
(

M̃(q)y+ ñ(q, q̇)
)

=
(

I −M(q)−1M̂(q)
)

y−M(q)−1ñ(q, q̇) (4)

is called the uncertainty.

Theoretically, the application of the inverse dynamics control

law, that perfectly cancels the nonlinearities in the robot

equations of motion, turns the manipulator model into a

set of double integrators. Instead, when a practical imple-

mentation of inverse dynamics control is considered, the

resulting linearised model is more complicated (as reported

in equation (3)), as the double integrators are now perturbed

by the uncertainty, coming from a non perfect feedback

linearisation.

B. Robust control

Consider now a control y as

y = q̈d +KD (q̇d − q̇)+KP (qd −q)+w (5)

where qd ∈ R
n is the vector of desired joint trajectories, KP

and KD are two diagonal positive definite matrices and w is

a new control input. In terms of the tracking error

e =

[

q̃
˙̃q

]

=

[

qd −q

q̇d − q̇

]

the application of the control laws (2) and (5) to the robot

equations of motion (1) yields

ė = Ae+B(η −w) (6)

where

A =

[

0 I

−KP −KD

]

B =

[

0

I

]

In view of the error system here introduced, the robust PD

control law (5) is formed by three different contributions that

can be interpreted as follows:

• a PD linear feedback to stabilise the nominal system

ė = Ae;

• a feedforward action (q̈d) to compensate the accelera-

tions of the desired trajectory;

• an additional control term w designed to overcome the

potentially destabilising effect of the uncertainty η .

Matrix A is Hurwitz, if KP and KD are two diagonal positive

definite matrices. Thus, picking KP and KD as follows

KP = diag
(

ω2
1 , . . . ,ω2

n

)

KD = diag(2ζ1ω1, . . . ,2ζnωn)

a nominal error dynamics characterised by a frequency ωi

and a damping factor ζi is established for each joint.

On the other hand, the additional control term w can be

designed following the Lyapunov’s second method [2], [3].
Consider a candidate Lyapunov function

V (e) = eT Pe > 0 ∀e 6= 0

Its time derivative, along the trajectories of the error system,

will be

V̇ = ėT Pe+ eT Pė

= eT
(

AT P+PA
)

e+2eT PB(η −w)
(7)

Since A is Hurwitz, one can arbitrarily choose a positive

definite matrix Q and let P be the unique symmetric positive

definite matrix that satisfies the Lyapunov equation

AT P+PA = −Q

Equation (7) can be thus rewritten as

V̇ = −eT Qe+2zT (η −w) (8)

where z = BT Pe. If z = 0 the second term of (8) vanishes,

otherwise w can be chosen as

w = ρ (‖e‖)
z

‖z‖

Using the Cauchy-Schwartz inequality yields

zT

(

η −ρ (‖e‖)
z

‖z‖

)

≤ ‖z‖‖η‖−ρ (‖e‖)‖z‖

= ‖z‖(‖η‖−ρ (‖e‖))

Hence picking ρ (‖e‖)≥‖η‖ the second term of (8) becomes

negative and thus

V̇ ≤−eT Qe < 0

The origin of the state space
(

q̃, ˙̃q
)

is therefore a globally

asymptotically stable equilibrium point.
In conclusion, to accomplish the robust inverse dynamics

control a suitable value for ρ (‖e‖) have to be determined

and to this end an upper bound to ‖η‖ is required.
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C. Determination of a suitable ρ (‖e‖)

Different approaches can be adopted (see e.g. [2], [3]) to

determine a suitable gain ρ (‖e‖) for the additional control

term w. In the following, these approaches will be briefly

analysed.

Firstly, the following assumptions are enforced

0 < Bm ≤ ‖M−1(q)‖ ≤ BM ≤ ∞ ∀q

‖I −M−1(q)M̂(q)‖ ≤ α ≤ 1 ∀q

sup
t≥0

‖q̈d‖ < QM < ∞ ∀q̈d

(see [3] for more details and an interpretation of these

assumptions).

From the definition of η the following upper bound is

obtained

‖η‖ ≤ ‖I −M−1M̂‖{‖q̈d‖+‖K‖‖e‖+‖w‖}+‖M−1‖‖ñ‖

≤ α {QM +‖K‖‖e‖+ρ (‖e‖)}+BMΦ(‖e‖) (9)

where K = diag(KP,KD).
Hence, one can satisfy the inequality ρ (‖e‖) ≥ ‖η‖ assum-

ing

ρ (‖e‖) ≥
1

1−α
{αQM +α‖K‖‖e‖+BMΦ(‖e‖)} (10)

A first approach, adopted in [3], lies in assuming a

constant bound to ‖ñ‖ and to ‖e‖ and, consequently, a

constant gain ρ . In fact, assuming that

‖ñ‖ ≤ Φ < ∞ ∀q, q̇

‖e‖ ≤ EM ∀q, q̇,qd , q̇d

from equation (10) it follows

ρ ≥
1

1−α
{αQM +α‖K‖EM +BMΦ}

A different approach can be adopted assuming Φ and ρ
dependent upon the error norm (see also [2]).

Given three positive scalars α0, α1 and α2, one can assume

that

‖ñ‖ ≤ α0 +α1‖e‖+α2‖e‖2 ∀q, q̇,qd , q̇d (11)

and consequently

ρ (‖e‖) = β0 +β1‖e‖+β2‖e‖2 (12)

where

β0 ≥
αQM +α0BM

1−α
, β1 ≥

α‖K‖+α1BM

1−α
, β2 ≥

α2BM

1−α
(13)

satisfies the inequality ρ (‖e‖) ≥ ‖η‖.

III. STRUCTURING MODEL UNCERTAINTY

A closer analysis of the approaches presented in Section II-

C reveals that whatever formulation is adopted to determine

a suitable ρ (‖e‖) it always depends on the PD gains KP and

KD (this drawback was already pointed out in [4]).

This situation is obviously quite unfortunate: increasing

the gains of PD controller, in order to speed up the closed

loop system and improve performance, has an adverse ef-

fect on the robustifying term, whose amplitude increases.

However, this is a just a consequence of the way the pertur-

bation to the nominal dynamics of the manipulator has been

reproduced in the model. Once the uncertainty η has been

expressed as in (4), the inequality (9) follows, expressing

a bound over the norm of η . On the right hand side of

this inequality the norm of matrix K appears. This means

that increasing the controller gains actually increases the

bound on the uncertainty, thus calling for a more energetic

correction of the robust controller.

This unnecessary interaction between the linear controller

for the nominal system and the robust controller can be

removed if a more detailed representation of the uncertainty

is considered. As a matter of fact the said undesired interac-

tion stems from the fact that different uncertainty terms are

dealt with in the same way. A different approach consists in

separating the uncertainties that affect the error system (6)

into two terms:

• a structural perturbation to the nominal error dynamics

– described by matrix A – due to modeling errors in the

identification of the inertia matrix M(q);
• an additional uncertainty perturbation that is related to

modeling errors in the description of the nonlinear term

n(q, q̇).

Equation (6) can in fact be rearranged as follows

ė = Ae−B∆BT Ae+Bψ −Bv (14)

where

∆ = I −M−1M̂ ψ = ∆q̈d −M−1ñ v = M−1M̂w

The term ∆ is related to the uncertainty in the estimation

of the inertia matrix: if a perfect estimate of this matrix is

available, matrix ∆ vanishes. All the other terms of the model

uncertainty have been gathered in vector ψ . Notice that in

this alternative formulation the term ψ does not depend on

the controller gains anymore. This has a clear consequence

in the design of the outer loop controller, as detailed in next

Section.

IV. A DIFFERENT OUTER LOOP DESIGN

Assuming that all the joints share the same error dynamics,

i.e.

KP = ω2
n I KD = 2ζ ωnI

it can be easily concluded that system (14) is actually

composed of n independent subsystems with state matrices

A =

[

0 1

−ω2
n −2ζ ωn

]

B =

[

0

1

]

Matrices (A,B) of the whole system can be rearranged,

through a suitable change of coordinates, as follows

A = bdiag(A . . .A) B =
(

B
T
1 . . .BT

n

)T

where the symbol bdiag denotes a block diagonal matrix and

Bi =
[

02,i−1 B 02,n−i

]
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Let ε be the state vector of the reformulated system with

state matrices (A ,B), and consider the candidate Lyapunov

function

V (ε) = εT Pε > 0 ∀ε 6= 0

Its time derivative, along the trajectories of the system, will

be

V̇ = ε̇T Pε + εT Pε̇

= εT
(

PA +A
T P−A

T
B∆B

T P−PB∆B
T
A

)

ε

+2εT PB (ψ − v)

(15)

Consider, now, a scalar δ > 0 and assume that parameters

ωn and ζ are such that

ω2
n = δ 2κ01 2ζ ωn = δκ02

with

κ02 > 2 κ01 > κ02 −1 (16)

Let

A0 =

[

0 1

−κ01 −κ02

]

and P0 the solution of the algebraic Riccati equation

(A0 + I)T
P0 +P0 (A0 + I)+ γ2P0BB

T P0 +A
T
0 BB

T
A0 = 0

(17)

The following preliminary results are first given, omitting

the proofs.

Lemma 1. Matrix A + δ I is Hurwitz ∀δ provided that

parameters κ01 and κ02 satisfy conditions (16).

Lemma 2. Consider the transfer function

Tδ (s) = −BT A [sI − (A+δ I)]−1
B

Then

‖Tδ (s)‖∞ = ‖t(s)‖∞ = ‖BT
A0 [sI − (A0 + I)]−1

B‖∞

Lemma 3. The pair (A +δ I,C ), with C = BT A , is

observable if and only if κ01 6= 0.

Lemma 4. The solution of the algebraic Riccati equation

(A +δ I)T
P+P(A +δ I)+ γ2PBB

T P+C
T
C = 0 (18)

with C = BT A , may be written in the following form

P = bdiag(Π, . . . ,Π) Π = δBP0B

where B = diag(δ ,1) and P0 is a solution of the algebraic

Riccati equation (17).

Lemma 5. If ‖t(s)‖∞ ≤ γ−1, there exists the positive semidef-

inite stabilising solution P0 of the Riccati equation (17) and

its eigenvalues are larger than 1, i.e. λi (P0) > 1∀i. Moreover,

if (A +δ I,C ) is observable the solution is positive definite.

With the previous assumptions, in view of Lemma 1, 2 and

3, it follows that matrix A + δ I is Hurwitz and the pair

(A +δ I,C ) is observable ∀δ . These conditions are sufficient

(see Lemma 5), being ‖Tδ (s)‖∞ < γ−1, to claim the existence

of a positive definite solution P of the algebraic Riccati

equation (18).

As a consequence, expression (15) can be rewritten as

V̇ = −εT
(

2δP+ γ2PBB
T P+A

T
BB

T
A

+A
T
B∆

T
B

T P+PB∆B
T
A

)

ε +2εT PB (ψ − v)

Finally, defining

L1 = εT
ΓΓ

T ε ≥ 0, ∀ε

(

Γ = γPB +
A T B∆

T

γ

)

L2 =
(

B
T
A ε

)T
(

I −
∆

T
∆

γ2

)

(

B
T
A ε

)

≥ 0, ∀ε

being ‖∆‖ ≤ γ (and therefore ‖∆‖2/γ2 < 1), and

R = 2δεT Pε D = 2εT PB (ψ − v)

the time derivative of the Lyapunov function can be written

as

V̇ = −L1 −L2 −R +D

From Lemma 4 it follows that P is a block diagonal matrix

and Π = δBP0B. Thus

R = 2δεT Pε = 2δ 2
(

φ T
1 φ1 + · · ·+φ T

n φn

)

= 2δ 2‖φ‖2

where φi = P
1/2
0 Bεi and φ =

(

φ T
1 φ T

2 . . . φ T
n

)T
.

Finally, the term D can be analysed as in Section II. Defining

a new variable z = BT Pε , D can be rewritten as

D = 2zT (ψ − v)

= 2zT

(

ψ −ρ (‖e‖)M−1M̂
z

‖z‖

)

Using the Cauchy-Schwartz inequality this term can be

bounded as follows

D ≤ 2‖z‖(‖ψ‖−ρ (‖e‖)‖I −∆‖)

and exploiting relation (11)

ρ (‖e‖) = β0 +β1‖e‖+β2‖e‖2 (19)

where

β0 ≥
αQM +BMα0

1−α
, β1 ≥

BMα1

1−α
β2 ≥

BMα2

1−α
(20)

In conclusion, the proof proposed here is articulated in

two steps. Firstly, the global asymptotic stability of the

origin of the error system (14) for every admissible uncertain

matrix ∆, without the additional uncertainty ψ , is analysed

in the context of quadratic stability [9]. Then, to counteract

a possible reduction of the stability region, due to the effect

of the nonlinear term ψ , an appropriate additional control v

is designed.

This approach has an undoubted advantage over the tradi-

tional robust inverse dynamics control introduced in Section

II. In fact, separating the uncertainty that affects the nominal

error dynamics from the one due to errors in modeling

the nonlinear term n(q, q̇), i.e. giving a structure to the

uncertainty, results into a bound on the gain ρ(‖e‖) of the

addition control w that is independent of the PD gains KP

and KD.
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V. A CASE STUDY

As a case study for the proposed approach to the design

of a robust inverse dynamics control law we will consider a

two d.o.f. planar manipulator moving in the gravity plain.

Suppose that the two links have the same length (1 m), the

same mass (50 Kg) and are connected by rotational joints.

Moreover, the arms are driven by two motors with the same

mass (5 Kg) and moment of inertia (0.01 Kg ·m2). For a

detailed description of the robot see the example reported in

[3].

The inverse dynamics controller has been designed adopt-

ing the following parameters:

• a diagonal matrix M̂, obtained evaluating the inertia of

the nominal model of the manipulator in the position

q = (0, 0)T ;

• an estimate Ĉ(q, q̇), ĝ(q) of the vector of Coriolis and

centrifugal terms and of gravitational torques, respec-

tively, derived from a model of a manipulator obtained

perturbing the mechanical parameters of the nominal

one.

A comparison between two robust inverse dynamics con-

trol laws, that make use of different relations to calculate the

gain ρ (‖e‖) of the additional control w, will be discussed.

The first control law (indicated in the following as Case A)

is based on the classical method, described in Section II, and

ρ (‖e‖) is obtained from relations (12) and (13) (remember

that in this case ρ also depends on the PD gains).

The second one (indicated in the following as Case B),

instead, is based on the method described in Section IV and

uses a gain ρ (‖e‖), obtained from relations (19) and (20),

that is independent of the PD gains.

Finally, in both the situations the same closed loop nominal

error dynamics are forced, using the following PD gains

KP = diag(25, 25) KD = diag(5, 5)

The manipulator moves on a line following a typical joint

� � � � � � �
í�

í���

í�

í���

�

���

�

���

�

���

�

7LPH�>VHF@

-
R
LQ
W�
S
R
V
LW
LR
Q
V
�>
UD
G
@

%DVH�MRLQW
(OERZ�MRLQW

Fig. 1. Joint space trajectory.

trajectory based on trapezoidal velocity profiles, as depicted

in Figs. 1 and 2.
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Fig. 3. Additional control w for Case A (red solid line) and Case B (blue
dotted line): base joint.

A comparison between relations (13) and (20) reveals, as

one can expect, that the outer loop design here proposed

results into a lower value of ρ (‖e‖) and, consequently, the

energy related to the additional control w decreases.

This fact is shown in Figs. 3 and 4 (for the base and for the

elbow joints, respectively) and in Fig. 5. Furthermore, note

that the actual energy of the additional control w (Figs. 3 and

4), i.e. the 2-norm of the signal, in Case B is 11 % lower

than the one in Case A.

Finally, the last conclusion that can be drawn from the

outer loop design proposed in Section IV concerns the effect

of the PD gains on the bound of ρ (‖e‖). From relations (13)

and (20) it is evident that increasing the bandwidth of the

nominal error system, β1 increases in Case A whereas it

remains constant in Case B.

Fig. 6 compares the time history of the gain ρ (‖e‖) for

Case A and Case B when the following PD regulator has

been considered

KP = diag(100, 100) KD = diag(10, 10)
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Fig. 4. Additional control w for Case A (red solid line) and Case B (blue
dotted line): elbow joint.

The figure clearly shows that in Case B the value of ρ (‖e‖)
remains exactly the same as the one shown in Fig. 5, while

in Case A it is clearly increased.

VI. CONCLUSIONS

The ongoing interest for model based control laws (in-

cluding robust control), due to the increase in computing

power of control hardware, motivated the revision of the

robust control law presented in this paper. Framing the model

uncertainty into a more rational structure, naturally leads to

a new design of the outer controller, where the undesired

interaction among the linear controller gains and the robust

control term is removed.

Extension of the proposed approach to more general closed

loop mechanical system is currently under study.
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