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Abstract— Motion profiles such as Swing Free and Input Shap-
ing are intended to eliminate residual vibrations. This paper
demonstrates a simple generalized method of creating and
understanding pulse-based profiles, and presents an approach
to suppress a wider band of induced vibration than previously
attainable. The current approach of Input Shaping ignores the
potential contributions the base profile and pulse shape can
have on the profile. When examined from a signal processing
point of view these pulse-based profiles can be thought of as
sampled low pass filters. The sampling of the filter kernel de-
fines the magnitude of the pulses, but as in any digital system it
also produces aliasing. An interpolating filter can then be used
to both remove the aliasing and to smooth and shape the base
profile. This dual purpose of the interpolating filter allows the
use of the Swing Free step input in conjunction with a rate-limit
as a base profile. A generalized methodology is proposed which
can create smooth motion profiles with continuous derivatives,
while keeping the computational efficient of traditional Input
Shaping. Experimental validation of two multi-DOF systems is
shown.

I. INTRODUCTION

This paper describes a new method to create smooth

pulse-based profiles with control of the smoothness and

frequency spectrum of the profile. With this method, pulse

trains can be generated that act as low-pass filters to suppress

a wider range of frequencies than previous pulse profiles.

The method is based on both exploiting the frequency spec-

trum of the base profile and viewing pulse trains as sampled

profiles that create aliasing in the frequency domain. The

building of profiles from simple components creates profiles

that allow position and velocity commands to be modified

in real-time.

We will first examine existing pulse-based and low-

pass profiles then introduce the rate-limit as an underlying

foundation of the new profiles. With the use of Boxcar

filters the rate-limit will be smoothed in the time domain to

create continuous velocity and acceleration profiles. Pulse-

based Input Shaping will then be generalized into sampled

alias-based profiles. Finally, the simple alias profiles will

be expanded to IFIR filters by giving the time domain

smoothing of the Boxcar a dual functionality. The Boxcar

filters will both smooth in the time domain and act as

anti-alias filters in the frequency domain. This new method
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will create smooth profiles with an improved frequency

spectrum while maintaining the computational efficiency of

the original Swing Free and Input Shaping methods.

A. Background of Pulse-Based Profiles

Posicast control was the first use of pulses to eliminated

unwanted oscillations in lightly-damped systems [1], [2].

Posicast control was developed as a compensator to be used

in conjugation with an existing control system. Posicast

control was then expanded to the realm of profile generation

by creating profiles that eliminate or reduce the unwanted

residual vibrations starting with the Swing Free motion work

of Starr [3]. Alici, et al. [5] expanded Starr’s work by

creating a cycloid position profile that also created Swing

Free motion. In more recent work, Singer and Seering

focused on creating profiles that, act like notch filters elimi-

nating a small set of predetermined frequency ranges. Their

first paper on Input Shaping [6] inspired numerous other

papers on the subject including research by Singer, Seering,

Singhose, Derezinski, Chuang, Pao, Crain, Porter, Tuttle,

and Lau [7]–[15], among others. Whereas Smith solved the

problem in the s-domain by canceling poles with zeros,

Starr solved the problem from an energy perspective, and

Singer and Seering’s Input Shaping extended Starr’s work

by approaching the problem from a time-frequency domain

perspective. Both approaches created profiles that first excite

then cancel out a range of frequencies in the system that is

being driven. Starr’s original work solved the problem by

ramping up the velocity in two steps separated by half the

period of the frequency of the system. Singer and Seering

approached the problem by convolving a double pulse kernel

with a position profile. Their pulses were also separated by

half the period of the natural frequency of the system. This

is effectively identical to Starr’s work, since the derivative or

velocity of a convolved double pulse is a two step velocity

profile as used by Starr. The double step or double pulse

technique in theory will completely eliminate the residual

vibrations of a system with one known damped frequency.

But if a system has multiple modes, or if the frequencies

are not known exactly, the double pulse system degenerates

and may actually increase the residual vibration. Singhose,

Singer and Seering [11] took Input Shaping further by

introducing a technique to reduce the sensitivity to frequency
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errors and to allow for multiple modes. Their improved

technique implements three to five pulses to increase the

sensitivity or width of the effective notch filter. The temporal

spacing of the pulses in all the impulse-based Input Shaping

methods by Starr and Singhose, Singer and Seering is equal

to one half the period of the frequency to be eliminated.

II. ANALYSIS OF EXISTING PULSE-BASED PROFILES

Profiles convolved with a series of pulses can create

motion that will not result in residual vibration in a driven

system (Figure 1). Actually, pulse-based profiles first intro-

duce vibrations into a system, then cancel out the vibrations

when the final series of pulses is applied. Figure 2 shows

a series of frequency spectra produced by a three-hump

extra-insensitive (EI) shaper. The figure shows the resulting

spectra as successive pulses in an EI shaper are applied

to a system. The first pulse creates a flat spectrum that

excites all frequencies. As each additional pulse is added,

the width of the notch increases and the magnitude of the

spectrum decreases. If this pulse train is convolved with a

step in position, a profile is generated that will cancel out all

residual vibration over a given frequency range. This is the

basic implementation of Swing Free motion (from a signal

processing view) as first described by Starr (Figure 1).

A) B)

C) D)

Time

Time

Frequency

SFt∆

Time

SFt∆

ω

Fig. 1. Swing Free motion with ∆tSF = π/ω. Step A) Position profile,
B) Velocity profile C) Acceleration profile D) Frequency spectrum with
null point at ω = 2 rad/sec.

However, the position, velocity, and acceleration profiles

that are created are not smooth. The pulses can be substituted

with continuous shapes, but the profile will still have a

series of large-amplitude short-duration surges. Increasing

the width of the pulse decreases the required acceleration

amplitudes, causing the overall length of the kernel to grow.

Input Shaping avoids this problem by convolving the pulse

trains with an existing smooth base profile. The base profile

acts like a filter which smooths out the pulses, thus avoiding

the need to give the pulses width.

III. A NEW SIGNAL PROCESSING VIEW OF PROFILE

GENERATION

The current approach of Input Shaping ignores the po-

tential contributions the base profile and pulses shaping can

Spectrum after 
1st pulse

Spectrum after 
2nd pulse

Spectrum after 
3rd pulse

Spectrum after 
4th pulse

Spectrum 
after 5th pulse

time time time timetime

FrequencyNotch

Fig. 2. Input Shaping excites a system with its first pulse. As each
successive pulse is applied to the system, the frequency spectrum magnitude
is reduced and the notch widens.

have on the profile. Traditional Input Shaping also ignores

how pulse trains in the time domain create aliasing in the

frequency domain. If the entire profile generation procedure

is viewed as a signal processing problem including the base

profile, simple pulse-based profiles can be generated that

take advantage and build upon the concepts of Swing Free,

Input Shaping, and aliasing.

A. The Building Blocks of Motion Profiles

Using the convolution operator, complex motion profiles

can be built up from simple components. The three basic

components used in this paper will be (1) the rate-limit, (2)

the Dirac pulse, and (3) the Boxcar function. The underlying

foundation of all of the profiles will be a rate-limit. As the

foundation of each profile, it will control the transient or

slew velocity of the profile. Filtered pulse-based shaping will

be added to the rate-limit.

B. The rate-limited Profile

The simplest profile generation algorithm is a rate-limit

(Figure 3). If the desired end position, or required traverse

distance (Pf ), is passed through a rate-limit, a ramp position

profile is generated with a corresponding ramped velocity

profile (Figure 3). The actual velocity profile is generated

by differentiating the position profile (v = d/dt(P )). The
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Fig. 3. Simple rate-limit profile.

magnitude of the velocity profile (Vmax) is set by the rate-

limit (Vrl). The slew velocity will then be held at the

rate-limit value. This is not a very smooth profile (infinite

acceleration and jerk). However, this simple profile generator
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has the advantage of requiring no initial computation, has

no special cases and can be easily updated at any time with

a new velocity or end position with no recomputing. Simply

change the rate-limit (Vrl) or set a new end position. The

rate-limit also facilitates recomputing the profile if a new

end position is entered during motion. Again, simply pass

the new end position into the rate-limit.

C. Smoothing the rate-limit with Boxcar Filters

The simple rate-limit of the previous section can create

a versatile profile with many advantages over the classic

method of blending polynomial segments. Two major con-

cerns with a simple rate-limit are the discontinuous velocity

and infinite acceleration. However, the velocity of the posi-

tion profile can be smoothed by convolving the profile with

simple Finite Impulse Response (FIR) filter kernels such as

the Boxcar filter [21].

When passed through a boxcar filter, the velocity of

the position profile is transformed from a rectangle to

trapezoidal profile (Figure 4). Khalsa first developed this

technique in 1982 and presented his findings in 1990 [4].

Fanuc Ltd. (patent 5,057,756) [28] and Samsung Electronics

Co. Ltd. (patent 6,046,564) [30] used this same technique

to smooth velocity profiles.
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Fig. 4. Rate-limit profile with a boxcar filter (∆tbc = 0.5 seconds).

If this position profile is convolved with another Boxcar

filter, the velocity profile is transformed into a trapezoidal

with blended ends (Figure 5). Each time a Boxcar is con-

volved with the profile, the next derivative with respect to

time becomes continuous and the time required to traverse

the profile is increased by the length of the Boxcar (∆tbc).

The time spent in each of the trapezoidal sections is 2 ∆tbc
and the time spent at the slew velocity (Vmax) is reduced by

2 ∆tbc. Thus, the total time added to the profile is 2 ∆tbc.

The general expression for the total time spent in a rate-

limited profile convoluted with nbc Boxcars is:

tpf =
Pf

Vrl

+ nbc∆tbc (1)
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Fig. 5. Two-pass Boxcar filter profile (∆tbc = 0.4 seconds).

D. The Convolution and Pulse-Based Profiles

In section III-C a smooth profile was created from a rate-

limit and Boxcar filters. A pulse-based profile such as the

three-hump EI can be convolved with this smooth profile

to create a motion trajectory that will cancel out unwanted

residual vibration. This is essentially the technique used in

traditional Input Shaping. Using the associative property of

the convolution, the order used to produce profiles with the

convolution operator is not important. We can think of Input

Shaping as a series of pulses convolved with a smoothing

filter (Boxcar or any other FIR filter), the result of which is

then convolved with a rate-limit foundation profile.

By changing the order in which the profile is generated,

we can use the smoothing filter to improve the frequency

spectrum of the final profile. Profiles can then be created

in three steps. First, create a pulse-based profile that will

eliminate residual vibrations at the desired frequencies.

Second, add a smoothing filter that both smooths the profile

and further improves the spectrum of the profile. Third,

combine the pulses, the smoothing filter and the rate-limit

to create a final profile.

E. Aliased Motion Profiles

By considering the discrete domain, greater understanding

of the previous work by Starr, Singhose, Singer and Seering

can be obtained. Input Shaping profiles are a series of pulses

separated by a constant time TS. For example, the three-

hump EI shaper is a series of five pulses (Figure 6(A)).

If the three-hump EI shaper is viewed as five samples of a

continuous curve, and it is noted that sampling always causes

aliasing in the frequency domain, the peaks in the frequency

spectrum of Figure 6(B) can be interpreted as aliasing due

to sampling. A quick calculation confirms that the peaks are

at the aliasing frequency due to sampling.

ΩS = n
2π

TS

(2)

Where:

ΩS = Aliasing frequencies due to sampling
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n = Aliasing peaks (n = 1, 2, 3, . . .)
TS = Sampling period

When TS = 1

ΩS = 2π, 4π, 6π, · · · , 2nπ.

The width of the frequency notch of three-hump EI Input

Shaping can be doubled by simply halving the sampling

period of the continuous curve. Since Input Shaping was not

derived from sampling a continuous curve, an assumption

on the shape of the continuous profile must be made. A

first approximation of the curve can be made by using a

linear interpolation between the original pulses of a three-

hump EI Input Shaping profile (TS new = TS/2). The newly

resampled three-hump EI shaper is shown in Figure 6(C)

with its frequency spectrum in Figure 6(D). As can be seen,

the aliasing peak moves as predicted by equation (2)(ΩS =
4π, · · · , 4nπ).

The Gaussian curve produces the most compact frequency

spectrum for a given width in the time domain [25]. Thus, it

makes sense to fit the Gaussian curve to the three-hump EI

Input Shaper to produce a profile with no aliasing. Figure

6(E) is a truncated Gaussian fitted to the five pulses of

a three-hump EI Input Shaper. It can be seen that the

frequency spectrum of the Gaussian matches that of the EI

Input Shaper, but with no aliasing. Thus, the continuous

curve increases the usable upper limit of the Input Shaper

to infinity.
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Fig. 6. Sampled view of three-hump EI shaper, (A) three-hump EI shaper,
(B) Frequency spectrum of EI shaper, (C) three-hump EI shaper re-sampled
with linear interpolation, (D) Frequency spectrum of re-sampled with linear
interpolation, (E) Gaussian curve fitted to three-hump EI shaper points, (F)
Frequency spectrum of fitted Gaussian curve.

F. Alias-Based Profiles

From Figure 6 it appears that continuous profiles will

always outperform pulse-based profiles. Pulse profiles can

be replaced with smooth continuous kernels with frequency

spectra capable of eliminating residual vibration, or not

inducing vibration initially. As stated above, one such kernel

is the Gaussian curve.

A truncated continuous Gaussian curve as shown in Fig-

ure 6 gives superior results when a wide frequency spectrum

notch is required. However when the implementation of a

profile is taken into consideration, pulse-based profiles have

an advantage. The profile in Figure 6(E) is 5 seconds long.

If a digital system runs at 100 Hz then the FIR kernel will

have 500 taps (500 terms in its kernel). This requires 500

multiplications and 500 additions to compute the convolution

each frame. The genius of the three-hump EI shaper and any

pulse-based Input Shaping is that even though it is 4 seconds

long it can be implemented as only 5 taps requiring only 5

multiplications and 5 additions.

When Input shaping profiles are viewed as continuous

profiles that have been sampled, the realm of pulse-based

profiles can be expanded and generalized. The width of the

frequency notch created from a sampled curve is defined by

the original unsampled curve and the sampling period ∆TS .

The shape or the width of the original continuous curve

defines the left side or low frequency side of the notch.

Before a curve such as the Gaussian is sampled it can be

thought of as a low-pass filter (Figure 7(A-B)). The sampling

of the curve creates the alias right side or high frequency

side of the notch (Figure 7(C-D)).

A) B)

C) D)

E) F)

Time

Time

Time
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Frequency

Frequency

S
T

S
T

SΩ

SΩ

Fig. 7. Effects of sampling of a continuous curve, (A,B) Continuous
Gaussian curve and frequency spectrum (C,D) Continuous Gaussian curve
with sampling period of TS = 0.4 from t = −2.8 to 2.8 with aliasing at
ω = 2π/TS = 5π (E,F) Continuous Gaussian curve with sampling period
of TS = 0.4 from t = −1.2 to 1.2 with aliasing at ω = 2π/TS = 5π.

Creating an alias-based profile is done in two steps. First,

design a low-pass filter to form the left side of the notch

ωL (Figure 8). The design of the low-pass filter can be done

with any technique. But since only pure DC is required to be

passed, the use of a windowing filter is all that is required.

Second, determine the right side or width of the notch by the

placement of the aliasing peak (ΩS). The sampling period

TS as defined by equation (2) (with n = 1) controls the

location of the peak in the frequency domain. The sampling

period is a simple function of ωH and ωL defining the notch

frequencies (Figure 8). The duration of the low-pass filter

can have any length, but it is best to have the duration of

low-pass filter be an integer multiple of TS .
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Fig. 8. Designing a pulse-based profile in the frequency domain. First,
design a low-pass filter to form the left side of the notch ωL. Second, the
right side or width of the notch is controlled by the sample size TS =
2π/(ωH − ωL).

As stated previously, an advantage of the pulse-based

profile is the reduction in the number of multiplies and

additions required to convolve a kernel in real time. As

discussed in section III-F, a profile that requires hundreds of

taps in a FIR filter can be reduced by orders of magnitude

with aliased pulse profiles. But the existence of pulses needs

to be addressed. In hardware, pulses can only be represented

as Boxcars. Even though a Boxcar FIR has many taps, it can

be programed in software as one tap requiring only a single

multiplication, an addition, and a subtraction. This reduction

in mathematical operations occurs because the magnitudes

of all the taps in a Boxcar FIR are the same. Thus, a Boxcar

kernel can be considered a single tap FIR filter.

G. Pulse-Based Profiles Converted to IFIR Filters

Aliased pulse-based profiles can be taken one step further

by taking advantage of converting the pulses into Boxcars.

If the width of the Boxcar pulses ∆tbc are made equal to the

alias sampling period TS , the first null point of the Boxcar

will align with the first alias peak of the pulse-base profile

(Figure 9). This eliminates almost all of the alias peaks

caused by sampling.

Replacing pulses with Boxcars (convolving the pulse

profile with a Boxcar) effectively turns a pulse profile into

an IFIR (Interpolated FIR) filter. The Boxcar filter acts like

an interpolation function between the pulses; attempting to

recreate the original unsampled profile. Any interpolation

function can be used. But the use of simple functions

will keep the computations required to a minimum. If two

Boxcar functions (of equal duration) are cascaded together

a triangle filter is formed. If the width of the triangle filter

is made twice the width of the sampling period, the triangle

filter will perform linear interpolation between the pulses of

a pulse-based profile. The resulting profile and frequency

spectrum starts to resemble the original curve. Figure 10

Boxcar of 
width ST

Alias peak due to 

sampling of  
ST

Resulting spectrum 
due to sampling and 
boxcar pulses

ST

Time

Frequency

Mag

Mag

Fig. 9. Effect of aligning null point of Boxcar function with aliasing peak.

shows a truncated Gaussian reconstructed with a triangle

interpolation filter. The interpolating function acts like a

low-pass filter that removes aliasing (anti-aliasing filter). As

with replacing pulses with Boxcars, the overall length of the

resulting kernel increases when triangles are used. A Boxcar

interpolator with a width equal to the sampling period TS

increases the length of the overall kernel by Ts. The use of

a triangle interpolator increases the length of the kernel by

2TS

=

Spectrum of pulses 

cascaded with triangle 

kernel 

Spectrum of pulses

Spectrum of triangle 

kernel 

Pulse Profile Triangle Kernel IFIR Cascaded

*
Time

Frequency

Mag

Frequency

Time Time

Mag Mag

Fig. 10. Turning pulse-based profiles into a linear segment continuous
profile using an IFIR interpolating triangle filter.

H. Putting it All Together to Create a Rate-Limited Boxcar

Aliased IFIR (RBAI) Profile

In section III-F an expression for the sampling time

to create an aliasing low-pass filter was shown (3). It

was shown in section III-G that for a Boxcar generated

interpolation filter to remove the aliasing peaks its width

must be equal to the sampling period TS. In section III-C

an expression was shown for the length of a rate-limited

smoothed profile. When combined, we get a expression for

the total time required to traverse a pulse generated profile

from the starting position to the end position.

TIFIR =
Pf

Vrl

+ npulse

(

2π

ωH + ωL

)

+ nbc

(

2π

ωH + ωL

)

(4)
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The first term in equation 4 is the duration of a rate-limited

profile. The second term is the duration of the aliasing

pulses. The third term is the duration of the smoothing inter-

polating filter. The first term will usually be a constant for a

given trajectory with a required slew velocity. Adjusting the

number of pulses (npulse) and high frequency cutoff (ωH)

controls the number and spacing of the side lobes (Figure 7).

The number of Boxcar filters (nbc) controls the smoothness

of the final curve. The equivalent number of filter taps will

be the sum of npulse + nbc.

IV. EXPERIMENTAL VALIDATION

Ten Pendulums

with Different 
Natural 

Frequencies

Fig. 11. Multiple pendulums of different lengths (the comb) being driven
at the University of New Mexico by the RTU in the MTTC robotics lab.

Section 1

Section 2

Section 3

Fig. 12. Triple pendulum being driven at the University of New Mexico
by the RTU in the MTTC robotics lab.

RBAI profiles were tested on several multiple-mode sys-

tems: a multiple pendulum device (Figure 11) and a triple

pendulum (Figure 12). The profiles used to drive the systems

were designed to have a low frequency cutoff below the

lowest mode in the driven system. A Gaussian window was

used for the low frequency aliasing filter with 15 pulses.

The IFIR interpolation filter was designed as three passes of

a Boxcar function to have an infinite upper frequency limit

creating a low-pass filter profile.

Computer models of the pendula were first written to

test the feasibility of RBAI filters in MATLAB and C++.

Figures 13 and 14 show the resulting numerical simulation

of the pendula when driven with the profiles. It can be

seen that even though only an equivalent of 18 taps were

used to create the kernels their shape is nearly identical

to a Gaussian. The only noticeable difference is the RBAI

generated profiles have blended ends. Because three Boxcars

where used to create the kernels, they have continuous

position, velocity and acceleration at the truncation points.

Once convolved with the base rate-limit profiles, the final

profiles have continuous position, velocity, acceleration, jerk,

and jerk derivative.
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Fig. 13. (A-B) RBAI generated kernel (npulses = 15, nbc = 3, ∆Ts =
0.4) (C-D) Corresponding frequency spectrum of profiles.

Next the actual test articles were driven by the same

profiles to validate the profiles and the models. When driven

with the RBAI profiles, the systems showed no transient and

no noticeable residual vibration. The only noticeable motion

in the systems was a slight start up lag in the pendula. The

lag quickly disappeared with no oscillation as the systems

reached the slew velocity and when the systems came to

rest.

These experiments show that using pulse-based profiles

with an interpolation IFIR filter can create profiles that

mimic Gaussian profiles and result in wider vibration sup-

pression bandwidth than previous methods.

V. CONCLUSION

This paper demonstrates a simpler generalized view of the

creation of wide-band pulse-based profiles based on digital

signal processing windowing techniques. The method turns
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Fig. 14. RBAI generated profiles (∆P = 3m, npulses = 15,
nbc = 3, ∆Ts = 0.4) for the triple and multiple pendulum experimental
validation (A-B) Resulting position, velocity, and acceleration profiles (C-
D) Numerical simulation of pendula.

the windowing functions into an IFIR filter using Boxcar

functions for the interpolation. The IFIR filter smooths

the pulse-based profiles, allowing the resultant filter to be

applied directly over a simple rate-limited base profile. These

Rate-limited Boxcar Aliased IFIR (RBAI) filters create pro-

files that have the same computational efficiency of Input

Shaping profiles such as the three-hump EI Shaper but with

capability to create profiles that act as low-pass filters. The

use of RBAI profiles allow for the width of the notch and

the magnitude of the residual vibration in the frequency

spectrum to be adjusted separately with no limitations on

the number of pulses. Because the frequency spectrum and

residual vibration can be controlled separately, the RBAI

method produce profiles that are superior to the current Input

Shaping techniques resulting in wider vibration suppression

bandwidth than previous methods.

As implemented RBAI profiles allow for real-time update

of end position and velocity. This is achieved by creating

profiles solely from combinations of simple FIR filters.
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