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Abstract— Outside of the laboratory, accurate models of
ground impact dynamics are either difficult or impossible to
obtain. Instead, a rigid ground model is often used in gait and
controller design, which simplifies the system model and allows
attention to remain focused on other aspects of running. In
real-world terrain this simplification may overlook important
dynamic effects. Immediately following a foot touchdown event,
sensitivity to ground stiffness is at its highest and at the same
time the accuracies of state estimates are at their lowest. Even
if ground stiffness is known and state estimates are accurate,
actuator bandwidth limitations make immediate compensation
difficult. Taking inspiration from nature, we propose a novel
solution to attenuate the effects of unexpected ground stiffness
changes using a unified control system comprised of hardware
passive dynamics and open-loop software control policies.

I. INTRODUCTION

As humans walk or run across tile, concrete, grass, sand

and any number of other surfaces, we unconsciously ad-

just leg stiffness to compensate for significant variations

in ground stiffness. A person running in the dark lacks

visual reference to ground changes, yet can often run without

falling. In general, animals (including bipeds) are excep-

tionally good at running robustly over rough terrain, rarely

stumbling even at high speeds. Intuitively we recognize that

animals cannot be controlling the precise toe position or the

toe forces at ground impact. For animals to exhibit such

stability, passive dynamic effects that help attenuate ground

uncertainty are likely to exist, in addition to the obvious

stabilizing effect of neuromuscular control. Indeed, in tests

where human subjects hop on surfaces that change stiffness

unexpectedly, a compensating leg stiffness adjustment is

measured that occurs more quickly than would be possible

with conscious or reflexive neural responses [1], further sup-

porting the existence of passively stabilizing effects resulting

from the human morphology.

Taking inspiration from nature, we propose a method for

attenuating ground uncertainties in robotic running that is

loosely based on pre-activation of muscles and the energy-

storing properties of tendons. Arguing that the developed

policy corresponds with the strategy actually employed by

animals is beyond the scope of this paper. However, we

demonstrate through simulation that a physical leg spring,

combined with an open-loop time-based spring set point

trajectory that is triggered at ground impact, results in
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Fig. 1. Left: The spring-mass model, constrained to hop vertically. The
mass and leg spring stiffness are constants, but the position of the spring
set point, labeled v in the figure, can be controlled. The length of the leg
spring is represented as X. The overall leg length is represented as (X +
v = ℓ). The ground surface is compliant, and deflects under the force
applied by the leg spring by an amount ∆g . The position of the center of
mass relative to the undeflected ground surface is labeled y. Right: The
basic Spring Loaded Inverted Pendulum model, modified with a knee and
rotational spring, constrained to hop vertically.

robustness against ground stiffness uncertainty in the first

portions of stance, during which software control is relatively

ineffective. After the transient dynamics of impact have

passed, and for the rest of the duration of stance, a software

controller can influence the behavior of the system.

The rationale for seeking a passively stabilizing effect

may not be obvious. In robots with sufficient actuation, a

computer control system can control most of the high-level

behavior of a robot. However, in these same robots, passive

stabilization becomes important when the time scale of a

perturbation is sufficiently fast that the software control sys-

tem cannot influence the robot dynamics quickly enough. In

animals, neural delay may be the limiting factor which deter-

mines which aspects of control are better handled passively,

rather than through active control. In robots, computational

delay (perhaps due to sensor filtering) or actuator limitations

(perhaps due to the band-limiting effects of rotor inertia on

torque delivery) are more likely to limit the effectiveness

of software control. For example, during toe impact, the

software has little effect on the instantaneous response of

the system. The instantaneous response will be a function of

the leg stiffness, toe mass, and other physical properties.

Theories regarding passive stability effects are, by neces-

sity, based on simplified models. A one-dimensional spring-
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mass model, shown in Figure 1, is the simplest model that

can be used to illustrate the ideas of this paper. The 1DOF

model is a reduction of the 2DOF model more commonly

used for animal gait analysis [2]. These spring-mass models

are derived from biomechanical evidence that animals utilize

physical springs to store and release potential and kinetic

energy from the flight phase of a running gait [3]. The

repetitive motion of the center of mass forms a limit cycle,

with stability of the running gait corresponding to stability

of the limit cycle. By developing a clear understanding of

the interactions between hardware mechanism design and

software control system design and the limitations of each,

we believe that many disturbances, including ground stiffness

disturbances, can negotiated without the use of excessive

control effort.

II. BACKGROUND

Substantial prior research inspires and supports our model,

our simplifying assumptions, and our hypothesis. Our spring-

mass model is based on an approximation used to describe

the center of mass motion of a running animal [4]. This

behavior is partly implemented through the use of natural

dynamics of animal physiology; certain muscles and tendons

in animals function as large springs acting in series with

actuators [5], [6], [7]. Although tendons store the majority

of the spring energy, muscle trajectories also influence a

leg’s spring-like behavior, and animals adjust their muscle

trajectories to exhibit different spring-like behaviors [8]. Leg

stiffness can change quickly—experiments have shown that

humans adjust their leg stiffness to accommodate an unex-

pected change in ground stiffness within a single stride [9].

Similar experiments demonstrated that humans can change

their leg stiffness faster than any possible neural response [1].

This may be explained in part by the experimental observa-

tion that some muscle behavior is determined by pre-planned

trajectories and not by reflex or other sensory feedback [10],

[11]. In addition to muscle behavior, leg geometry con-

tributes to the overall spring-like behavior in humans [12].

Test subjects that hop on a springy surface increase leg

stiffness by landing with straighter knees, and/or by utilizing

muscle activation to increase joint stiffness.

Thus far, references have suggested that animals utilize

pre-planned, open-loop muscle trajectories for some aspects

of running or hopping gaits. It may seem that open-loop

behavior is less than ideal, but in a simulation study by

Kubow et al., a simplified planar model of cockroaches with

open-loop muscle trajectories showed stable behavior [13].

This is a good example of open-loop cyclic stability effects,

although it may be advantageous to include feedback control

when possible. This paper in particular is in agreement with

our philosophical approach, especially the introductory quote

from Raibert and Hodgins [14]:

“Many researchers in neural control think of the

nervous system as a source of commands that are

issued to the body as direct orders. We believe

that the mechanical system has a mind of its

own, governed by the physical structure and laws

of physics. Rather than issuing commands, the

nervous system can only make suggestions which

are reconciled with the physics of the system and

task at hand.”

III. HYPOTHESIS

As discussed in the Background section, humans can

adjust leg stiffness faster than any neural responses. Our most

plausible hypothesis to explain this phenomenon suggests

that muscles (analogous to the spring set point) begin move-

ment with a pre-planned time-based trajectory, triggered by

the anticipated ground contact, and calculated for a specific

ground stiffness. The time-based muscle trajectory acts in

series with the springy tendons of the leg to create an overall

spring-like leg behavior. However, because the muscle tra-

jectory is based only on time rather than on applied external

forces like the springy tendon, the leg system changes its

behavior based on the rate of applied ground force at the

toe. This change in behavior causes the leg to effectively

“stiffen” after landing on soft surfaces, and causes the leg to

effectively “soften” after landing on hard surfaces. In other

words, the actuation trajectory along with the series spring

may create a mechanical feedback mechanism that has a

stabilizing effect on the limit cycle of running. The effects are

only important during the first instants of stance, since after

some time, the software can effectively control the muscle

trajectory using sensory feedback.

A similar stabilizing effect is reproduced in the 1DOF

hoppers of Fig. 1, when an open-loop motor trajectory is used

in series with a physical leg spring to simulate the action of

a spring that is stiffer than the one physically present. Stated

differently, the presence of a soft spring in conjunction with a

set point trajectory that is compressing the spring on impact

will attenuate the destabilizing effects of ground stiffness

uncertainty.

IV. HARDWARE AND CONTROL DESIGN POLICY

In this section we explain the basic spring-mass models

of Figure 1 and some necessary simplifying assumptions.

Next, we derive the dynamics of two hoppers, one with

a linear prismatic leg spring and the other with a linear

rotational spring at the knee. From these equations, open-

loop controllers are derived that modify spring set points in

order to change the effective spring stiffness. We explain

in words the short-term stabilizing effects of these open

loop controllers, and lastly, discuss the stabilizing effects of

having a knee versus having a prismatic leg spring.

A. Model and Assumptions

The leg is a series chain of the following parts: a mass

(representing the body of a animal), a spring set point adjust-

ment (representing the net effect of leg muscle activation), a

spring (representing the net compliance of leg muscles and

tendons), and a linearly compliant1 ground surface. The leg

1Representing the ground as a massless linear spring is a major simpli-
fication of natural ground properties. This linear model is adequate for the
purposes of this initial study and could be considered a limiting case.
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may or may not have a knee, see Figure 1. In either case,

the mass is constrained to travel only on the vertical axis.

All components of the model are massless except for the

body, and as such, the entire model has only a single degree

of freedom, which is the height of the center of mass. This

degree of freedom is controlled by moving the spring set

point, so that the behavior of the leg is governed by more

than merely the properties of the passive spring.

B. System Dynamics with or without a Knee

With or without a knee, the vertical acceleration of the

center of mass of the robot, ÿ, can be found by summing the

forces at this point, resulting in

ÿ = −g +
Fy

m
, (1)

where g is the magnitude of the acceleration of gravity and

Fy is the magnitude of the force exerted in the vertical

direction by the prismatic or rotational spring.

For the hopper with a prismatic leg spring,

Fy = Kpr(ℓ0 − ℓ), (2)

where Kpr > 0 is a spring constant, ℓ0 is the rest length of

the leg (the distance from toe to body when no toe force

is applied), and ℓ is the instantaneous length of the leg.

Assuming the surface of the ground is purely elastic and

also massless, the restoring forces of the ground must match

the forces exerted by the prismatic leg spring, so that

Kpr(ℓ0 − ℓ) = Kg∆g, (3)

where Kg > 0 is the ground stiffness constant and ∆g is the

ground deflection measured vertically at the point of contact

with the toe. From the geometry of Fig. 1,

ℓ = y + ∆g. (4)

Using (2) (3) and (4), the force Fy is found in terms of y
and ℓ0,

Fy =
KgKpr

Kg + Kpr

(ℓ0 − y). (5)

Equation (1) can now be rewritten as

ÿ = −g +
1

m

(

KgKpr

Kg + Kpr

)

(ℓ0 − y), (6)

which gives the acceleration of the center of mass ÿ as a

function of the height of the center of mass y and the position

of the prismatic spring set point ℓ0. For a fixed ℓ0 and known

initial condition (t0, y0, ẏ0), the above can be solved for y(t)
giving

y(t) =
ẏ0
√

α1

sin(
√

α1 (t − t0))+

(

y0 −
α2

α1

)

cos(
√

α1 (t − t0)) +
α2

α1

(7)

where α1 = 1
m

(

KgKpr

Kg+Kpr

)

and α2 = −g + α1ℓ0.

The dynamics of a robot with a rotational knee spring can

be similarly derived, but with equations (2) and (3) replaced

by

Fy = Krot(θ0 − θ) d cos(θ/2) (8)

and
ℓ = 2d sin(θ/2) = y + ∆g

ℓ0 = 2d sin(θ0/2),
(9)

which are each based on the geometry of a hopper with a

knee spring of stiffness Krot > 0. In the general case θ
cannot be explicitly found in terms of y, Fy , and θ0 and

thus a simple closed form solution of the dynamics is not

readily available. Instead numerical integration is used to find

trajectories of the hopper with a knee.
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Fig. 2. Vertical toe force, Fy , as a function of leg deflection, (ℓ0−ℓ), for a
linear rotational knee spring. Although the function appears quite linear for a
particular spring set point, ℓ0, the stiffness does change for different values
of ℓ0. For the purposes of our simplified simulation, this is the primary
difference between a rotational knee spring and a prismatic leg spring.

C. An Open Loop Control Policy

In the absence of disturbances and modeling error, it is

possible to derive an open loop trajectory for the spring set

point that will result in an effective change in spring stiffness.

In the case of the hopper with a prismatic leg spring, define

the global stiffness as the net stiffness of the leg in series

with the ground, which is equal to

Kglobal =
KgKpr

Kg + Kpr

. (10)

Define a desired global stiffness as

Kglobal,des =
KgKpr,des

Kg + Kpr,des

. (11)

for a desired stiffness of the leg spring, Kpr,des > 0.

The control policy is applied to the spring set point, ℓ0.

It is an open loop, time based trajectory triggered by toe

contact with the ground, which indicates the beginning of

the stance phase. The purpose of the controller is to change

the effective leg stiffness, causing the nominal system

ÿ = −g +
Kglobal

m
(ℓ0 − y) (12)

with a moveable spring setpoint ℓ0 to behave like the desired

system

ÿ = −g +
Kglobal,des

m
(ℓ∗0 − y) (13)
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with a fixed spring setpoint ℓ∗0. To achieve matching, set

Kglobal,des(ℓ
∗

0 − y) = Kglobal(ℓ0 − y), (14)

and solve for the spring set point ℓ0 as a function of time.

Because the control law is designed to be open loop (not

require measurements of any state), set y = y∗(t), where

y∗(t) is the solution (7) with α1 = Kglobal,des/m and

α2 = −g + α1ℓ
∗

0. The resulting open loop controller is

ℓ0(t) =

(

1 −

Kglobal,des

Kglobal

)

y∗(t)+

(

Kglobal,des

Kglobal

)

ℓ∗0. (15)

Derived by a similar procedure for the hopper with a knee,

the open loop set point control policy that results in a change

in effective spring stiffness is

θ0(t) = θ∗(t) −

(

F ∗

y
(t)

Krot d cos(θ∗(t)/2)

)

, (16)

where F ∗

y
(t) and θ∗(t) are the force and angle profiles

obtained by numerical integration from the system

ÿ = −g +
Krot,des(θ

∗

0 − θ) d cos(θ/2)

m
, (17)

initialized at the touchdown time t0.

D. Remarks

We now have notation for the variables of our spring-mass

model defined in Section IV-B, so our hypothesis can be

stated in greater detail. We hypothesize that a muscle (spring

set point) trajectory, ℓ0(t), is initiated upon toe contact with

the ground. This muscle trajectory is pre-computed, based on

the expected properties of the ground (simplified to a ground

stiffness Kg in our derivations), and it is initiated at ground

contact either by anticipation of contact or by a physical

trigger. The leg spring stiffness Kpr is softer than the desired

leg stiffness Kpr,des, but the set-point trajectory ℓ0(t) causes

the spring to exert forces as if it were the correctly tuned

spring. In other words, as the spring compresses due to

ground forces, the spring set point is advancing, forcing the

spring to compress further.

If the ground is exactly the stiffness that is expected, then

the combined behaviors of the leg spring and the spring

set-point trajectory ℓ0(t) result in the correct desired leg

stiffness behavior Kpr,des. If the ground stiffness is greater

than expected, the leg spring will deflect at a faster rate than

anticipated. The spring set point trajectory ℓ0(t) is time-

based and thus completely unaffected by ground stiffness

changes, so it does not deflect faster along with the spring.

Thus, for a particular leg length, the set point deflection is a

smaller portion of the overall leg deflection, while the spring

is a greater portion. The force being applied by the leg at

its current position is lower than it would be if the leg had

taken longer to reach its current position and allowed the set

point trajectory to compress the spring further. In effect, the

stiffness of the leg has been reduced.

The effect is similar for a disturbance in the opposite

direction, landing on ground that is softer than expected.

The leg will deflect at a lower rate than normal, while the

pre-planned trajectory ℓ0(t) moves forward as planned. At a

particular leg deflection, the leg will be applying more force

than it would in the normal situation, and the stiffness of the

leg has effectively been increased.

E. Adding a Knee

While this stabilizing effect works for a prismatic spring

in series with a set point, the effect is amplified by adding

a knee. This change of kinematics adds some complexity to

our model; rather than a basic vertical pogo stick, the system

is now a mass on top of a single degree of freedom leg

that uses a knee rather than a prismatic joint. The hopper is

still constrained to vertical hopping, the leg is still massless.

The spring is now a rotational spring at the knee rather

than a prismatic spring along the length of the leg. The

rotational spring is in series with a rotational motor, such that

deflection of the leg can be caused by deflection of the knee

spring, motion of the motor, or both. In this single degree of

freedom system, a knee is essentially a linkage that translates

the rotational knee motion to a vertical toe motion, with a

nonlinear softening mechanical advantage governed by the

sine of the knee angle.

By adding a knee, the spring behavior is determined not

only by the position of the set point and the deflection of

the spring at a particular time, but also by the orientation of

the knee relative to the deflection of the spring. Consider the

scenario in which the leg is mostly folded, and the spring is

undeflected; in other words, the motor has rotated the knee

to a mostly folded position, with no external load. In this

scenario, the effective vertical leg spring will be much softer

than with a straighter knee. Conversely, a nearly straight leg

will produce a high effective vertical stiffness.

When the robot or animal is hopping and the foot hits

softer ground, the leg will compress more slowly than ex-

pected, and the pre-planned trajectory will begin compressing

the knee spring on schedule. However, because the leg will

be straighter than expected, the vertical force on the ground

will be higher for a given spring deflection. Thus, the knee

joint is accentuating the already existing stability effect, and

the leg spring is essentially behaving like a stiffer spring,

partially compensating for the softness of the ground.

V. SIMULATION

Based on the equations of Section IV-B, a simulator was

programmed using Matlab’s ODE45 command and used to

test the behavior of the system. Parameters for simulation,

including initial conditions, are shown in Table I. In each

case, simulations were initialized with the robot in flight.

Figure 3 plots effective leg stiffness as the robot encounters

three different ground types. In each case, the desired leg

stiffness Kpr,des is 20kN/m and the actual leg stiffness Kpr

is 10kN/m. The expected ground stiffness Kg is 50kN/m.

Spring set points are modulated using the open-loop policy

of (15).

Effective leg stiffness is defined as the total force applied
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TABLE I

PARAMETERS OF THE SPRING MASS MODEL.

Parameter Units Value

Rest length of prismatic leg: ℓ0 m 0.75

Length of thigh and shin links: d m 0.5

Body mass: m kg 40

Expected ground stiffness: Kg kN/m 50

Actual ground stiffness: Kg,act kN/m varies

Desired spring stiffnesses: kN/m, kN/rad 20, 40
Kpr,des, Krot,des

Actual spring stiffnesses: kN/m, kN/rad varies, varies
Kpr, Krot

Acceleration due to gravity: g m/s2 9.81

to the ground by the spring, divided by the net leg deflection:

Kpr,eff(t) =
Fy(t)

ℓ∗0 − ℓ(t)
. (18)

As seen in Figure 3, the effective leg stiffness is higher in

response to lower ground stiffness and lower in response to

higher ground stiffness. In the absence of disturbances, that

is, when the ground stiffness is as expected, the effective

leg stiffness is equal to the desired leg stiffness. Thus, the

open-loop spring set point trajectory causes the leg stiffness

to compensate for changes in ground stiffness, even when

neither is explicitly measured.

Figure 4 explains the open-loop stiffness adjustment seen

in Figure 3. When ground stiffness is as expected, the spring

compresses and relaxes in a trajectory that complements the

spring set point trajectory ℓ0(t), and results in a spring-like

behavior identical to the desired leg spring Kpr,des. When

ground is softer than expected, the leg spring takes longer

to deflect, while the set point trajectory is independent of

ground stiffness. In comparison to landing on ground of the

expected stiffness, identical leg deflections include higher

spring deflections, resulting in higher forces, meaning that

effective leg stiffness is higher.

Figure 5 shows how changes in effective stiffness provide

open-loop stabilizing effects in the first portions of the stance

phase, with benefits quantified in Figure 6.

VI. CONCLUSIONS AND DISCUSSION

Throughout the paper, we have talked about ground stiff-

ness as an ideal linear spring. A linear stiffness is a poor

approximation of dynamic ground properties, as is a linear

viscous damping. However, it should not affect the stabilizing

effects described in this paper. If the ground gives way

more quickly than expected at the beginning of stance, the

leg stiffens; if the ground does not give way as fast as

expected, then the leg softens. Even for complex dynamic

ground behavior, the leg stiffness adjustment will attenuate

the effects of a change in ground properties on the center of

mass motion of a running robot.
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Fig. 3. The effective leg stiffness, Kpr,eff , as a function of time for three
different ground stiffnesses. Each line results from the same pre-planned set
point trajectory ℓ0(t) and the same physical leg stiffness Kpr = 10kN/m,
but a different ground stiffness Kg,act. When the expected ground stiffness
of Kg = 50kN/m is encountered (the case of no disturbance), the effective
leg stiffness is equal to the desired leg stiffness, Kpr,des = 20kN/m, as
depicted by the solid horizontal line. The effective leg stiffness increases
when the ground stiffness is lower than expected, and vise-versa.
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Fig. 4. These figures are snapshots of the spring-mass system hopping on
three different ground stiffnesses, shown at the same leg deflection, which
occurs at different times. The leg spring has deflected a different amount
in each figure, and thus is applying a different force on the ground in
each figure. A different force at a particular deflection corresponds with a
different leg stiffness.

For variations in ground height rather than variations in

ground properties, the result is somewhat different than the

stabilizing effect described in this paper. An increase in

ground surface height causes an early toe contact, and the

soft leg spring begins deflecting before the pre-planned set

point moves; thus, the overall leg stiffness is reduced, and

the mechanical advantage of the knee accentuates the effect.

Conversely, a decrease in ground surface causes late toe

contact, such that the pre-planned trajectory extends the leg

under no spring load, straightening the knee, before the toe

contacts the ground. Thus, the overall leg stiffness increases.

We have not simulated or explored the effects on the center

of mass trajectory due to the changing leg stiffness on ground

height variations, though it will be interesting for future

work.

This research is fundamentally different from central pat-

tern generators (CPGs) or open-loop trajectories for general

control, like the stable planar cockroach simulation described

in the background section. We are considering the time-based
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Fig. 5. Top: The position of the center of mass of our spring-mass
model as a function of time. Bottom: detail of Top. Values above 0.75m
correspond to the flight phase, values below 0.75m correspond to the
stance phase. At approximately 0.5s, the ground stiffness changes from
the expected 50kN/m to an unanticipated 30kN/m. The solid bold line
is a reference trajectory, showing the center of mass trajectory in the
absence of any disturbance. Each of the other lines shows the center of
mass trajectory for different physical leg stiffnesses encountering the ground
stiffness disturbance. The softer the leg spring, the lesser the disturbance.

open-loop operation only during the initial instants of stance,

because these first instants are when sensor delay, inertias,

and computational delay prevent the software from exerting

control over the mechanical system. At first impact, with

mechanical stabilizing effects, the system begins corrective

action instantaneously. After some amount of time, the com-

puter can accurately sense the new disturbances, calculate

corrective actions, and command the motor; the motor can

then begin accelerating its rotor mass and move to a position

or velocity to implement more complex corrective actions

than are possible through natural dynamics.

We have shown an open-loop stabilizing effect for running

that is implemented through a combination of time-based

trajectory and passive spring, and is accentuated by using a

knee rather than a prismatic leg. The idea for these effects

is inspired by results from the field of biomechanics, but

validated in a mathematical simulation. Our opinion is that

this effect will be useful for running robots, but it depends

highly on the actuator limitations and the type of terrain. The

importance of these open-loop stabilizing effects for running

robots will be determined when they are examined in the

context of a specific robot.
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