
 
 

 

  

Abstract—This paper presents a novel approach to electronic 
compassing for robot in an indoor environment. Operation of 
compass (magnetometer) is assumed on a mobile robot that is 
capable to traverse a complete circular path. The electronic 
compass is used to estimate a robot absolute heading with re-
spect to the magnetic North. This is only compass approach 
where an evaluation of quality of calibration and magnetic 
environment is important as much as calibration itself. In this 
method, compass is able to detect the external magnetic inter-
ference and estimate it numerically. The approach also relates 
to automatic calibration and requires one full 360-degree rota-
tion and multiple points for further analysis. This enhanced 
calibration procedure is performed in the magnetic field domain 
and implemented using a non-iterative algebraic technique. The 
quality of calibration is a function of input data goodness and 
how successful is the fitting procedure. The magnetic environ-
ment evaluation is performed by the distortion factor that is 
calculated at the end of calibration and helps to estimate quan-
titatively local external magnetic distortions and their influence 
on a heading measurement. The validity of this approach has 
been verified experimentally by using robot with electronic 
compass. 

I. INTRODUCTION 
Electronic compasses are widely used in modern applica-

tions. Many vehicles, including vehicles used by consumers 
have built-in compasses.  

An electronic compass is a device that indicates the yaw 
heading to an object by measuring the earth’s magnetic field. 
If the compass is built into a vehicle, the compass may simply 
indicate the direction the vehicle is headed. In minimal con-
figuration the output from two of magnetometers mounted at 
right angles to each other is used to compute the direction of 
the horizontal component of the Earth’s magnetic field. 

In spite of some problems due to magnetic interferences, 
compasses have become more popular in indoor robotic ap-
plications. However, those problems still have to be solved. 
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II. REVIEW & DISCUSSION 
Every compass on a vehicle will suffer from local deviation 

effects, due to local magnetic interferences such as site mag-
netic anomalies, cabling, the electrical motors, batteries and 
boards – almost any ferrous or magnetic object. Since the 
Earth’s magnetic field is weak and metal objects distort that 
field, one must calibrate the output of an electronic compass 
to achieve reasonably accurate results. 

If the magnetic interference from compass host platform is 
constant, it can effectively be compensated. 

The traditional compass calibration involves placing the 
compass on a mechanical device that rotates the compass to 
known orientations. If the compass is disposed in a vehicle, 
this involves moving the vehicle (and its compass) in a circle. 
The compass output is recorded and compared against a 
known orientation, calculating corrections to the compass 
measurements (more detailed description is in [1]). While this 
method is effective, it is laborious and slow task [2].  

However, some on-board magnetic interferences are vari-
able. Mainly they come from the electrical motors. The 
well-known solution is a shielding [1], which can be enough 
effective. Recognizing a profit of the shielding, in our ex-
periments we have found that variable interferences of elec-
trical motors are not main contribution factor to deviation 
caused by the host platform. The effect of variable interfer-
ences of motors is significantly reduced simply placing a 
compass as far as possible from the motors. 

Tilting an electronic compass can create heading errors. 
However we do not consider that in this paper, since many 
researchers have already done it as in [3]-[4]. 

Indoor operation of wheeled robot with compass has some 
features. A human-built indoor environment has a lot of 
sources of magnetic interference such as reinforced concrete 
structures (floor and walls), pipes, built-in cabling, wiring 
and different metal and magnetic objects. If a height of 
compass location above the floor is low, the compass ex-
periences a magnetic interference from floor fields which 
may be stronger then one that comes from host platform. 

The fundamental problem of compass navigation and ori-
entation in an indoor environment is a deviation produced by 
external magnetic interference. The amount and direction of 
the magnetic interference is unpredictable and cannot be 
modeled numerically or compensated through calibration. 
Such external magnetic interferences may dramatically in-
crease errors in compass. Application of the common Kalman 
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Filter approach has not produced a satisfactory answer ([1], 
[5]) to the problem because the difficulty of modeling ex-
ternal magnetic interference. 

Although external magnetic interference cannot be com-
pensated, there are some properties of magnetic fields that 
can be used to detect the interference. In that case, at least the 
user will know if the compass readings are correct or not. 

In known publications most authors ([1], [5], [6]) consider 
two practical methods for detecting such magnetic distur-
bances: redundant sensors [5] (typical example of this method 
is a gyro-aided compass) and differential compass [6].  

A major problem with the gyro-aided compass method ([7], 
[8]) is the requirement of a pre-calibrated heading rate gyro. 
Moreover, the gyro due to inherent bias drift problems has to 
be recalibrated more often than the compass.  

The differential compass approach increases cost of the 
system and also may have problems with magnetic interfer-
ence. 

We propose alternative method that uses only compass to 
detect the interference and estimate it numerically. To the best 
of our knowledge this method has not been suggested before. 

It is known fact that locus (or x-y plot) of raw data from two 
perpendicularly mounted magnetometers has ellipse-like 
shape because of various magnetic distortions and distor-
tion-free measurement gives a circle. Probability of event that 
distorted data give a locus close to circle shape is negligible 
small. The locus already contains some detectable signs of 
external interference and those can be extracted using dif-
ferent data analysis techniques. 

After analysis of different calibration methods we have 
found that so called magnetometer-based approach is enough 
effective because raw magnetometer data is directly corrected, 
eliminating the need for a compass error model.  

In addition, an optimal combination of higher sampling 
rate and calibration quick rotational motion can dramatically 
improve a speed of calibration, reducing a need for smaller 
number of calibration points to perform fast. The calibration 
operation can now be done in 5 seconds or less if a rotational 
robot speed is about 80 deg/s. The present approach provides 
a fast, automated solution to the problem of application of an 
electronic compass for mobile robot and allows evaluating 
local magnetic distortions without using additional sensors.  

The robot chassis used in our experiments is the vehicle 
(Fig. 1) with differential steering - two individually con-
trolled drive wheels on each side of base with casters in front 
and rear for stability. Such configuration allows the robot to 
spin in place about vertical axis. Our approach is also appli-
cable to car-like robot, when it is driven in a complete circle. 
However, it is evident that car-like steering configuration 
gives less satisfactory results than differential steering one.  

III. COMPASS DATA PROCESSING 

A. Approach 
As a rule, multiple (x, y) points must be acquired to prop-

erly calibrate the compass. The points are collected in a loop; 
and an algorithm can be coded so the loop stops when con-
dition of the end becomes true. A requirement for using this 
algorithm is that the vehicle is rotated through one complete 
circle, so that there is an equal representation of magne-
tometer readings in all directions. A calibration procedure 
must provide the compass with all 360 degrees of direction as 
well maintaining an equal amount of samples from each 
direction. An unequal number of samples in all directions 
may result in poor performance. Also true, if calibration does 
not expose the compass to all 360 degrees, will result in poor 
performance. 

We focus on static compass measurements of robot orien-
tation because it gives more stable and proper results. Our 
approach is a synergy of three important procedures: cali-
bration, evaluation of its quality, and detection of magnetic 
interference with its numerical evaluation. 

Consider a local level magnetometer data set:  
1 2
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where Xr and Yr are magnetometer raw data sets for x and y 
axes respectively, and n is a number of points. 

After acquisition phase of the calibration has been done, 
one can build a graph of the data. Fig. 2 shows a typical graph 
of all the points acquired in an indoor environment. The graph 
is elliptical with the major axis approximately along the X. 
The elliptical figure is due to the X values having a greater 
gain than the Y values and soft iron effects. The center of the 
ellipse is also off the origin. 

Hard iron error is first characterized by identifying the 
location of the center of the circle (or ellipse if soft iron errors 
are present). One of variants is simply done by taking the 
 average of Xr and Yr measurement sets, as proposed in [2]: 

1 1

1 1,
n n

h r i h r i
i i

x x y y
n n= =

= =∑ ∑   

where (xh, yh) are hard iron offsets for x and y. 
Another variant is to compute the calibration values based 

on the maximum and minimum X and Y values acquired. 
These values can later be used to correct the raw X and Y 
values acquired when computing the heading. 
 

 
Fig. 1.  Scheme of mobile robot (top view) with compass 
and gyro (for verification of compass measurements). 
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Fig. 2.  Raw data points for calibration; (xc, yc) – coordinates of 
estimated center. 

Fig. 3.  Data after hard iron correction. 

 

 

The raw data offsets can be very effectively eliminated by 
using a simple subtraction technique. First, one may calculate 
offsets 

 = (  +  ) / 2,    = (  +  ) / 2,h rmax rmin h rmax rminx x x y y  y   
where (xrmax, yrmax) and (xrmin, yrmin) are maximum and mini-
mum values of Xr and Yr sets respectively. 

To obtain the correct heading a graph of the points (x, y) 
should show a circle or ellipse with the center in the origin. In 
first, it is necessary to subtract out the offsets 

rh r h

rh r h

X X x
Y Y y

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

.  

Fig. 3 shows how the raw (x, y) points are corrected using 
the calibration values to get the figure at the origin. 

With the hard iron error subtracted out, soft iron errors are 
now characterized by the angle of the major axis (Fig. 3, θ ) 
of the elliptical magnetometer plot (with respect to North) and 
the ratio of the major axis to the minor axis lengths. One of 
techniques to remove the soft iron effect is to rotate the 
reading by –θ  (actual angle sign is determined by direction 
clockwise (CW) or counterclockwise (CCW); in general we 
have to rotate data in direction that is opposite to current), 
scale the major axis to change the ellipse to a circle, and then 
rotate the reading back by θ .  

There are different ways how to find the θ . It is known 
fact that the angle of the major axis of the ellipse corresponds 
to the least second moment of inertia. This is found using the 
following equation 

( ) ( )10.5 tan 2MI xy xx yyU U Uθ − ⎡ ⎤= ⋅ ⋅ −⎣ ⎦ , (1) 

where Uxx, Uyy, and Uxy, are the second order x-axis, y-axis, 
and mixed moments, respectively and MIθ  is the angle cal-
culated by moment of inertia and measured in a +CW manner 
with respect to the +X axis. These moments are computed 

( )2

1

1 n

xx r i h
i

U x x
n =

= −∑ , (2) 

( )2

1

1 n

yy r i h
i

U y y
n =

= −∑ , (3) 

( )( )
1

1 n

xy r i h r i h
i

U x x y y
n =

= − −∑ . (4) 

Moment of inertia is the name given to rotational inertia, 
the rotational analog of mass for linear motion. For a point 
mass the moment of inertia is just the mass times the square of 
perpendicular distance to the rotation axis. To use the moment 
of inertia one can also consider ellipse-like magnetometer 
points as collection of point masses.  

There are some issues with (1). In first it is sensitive to data 
offset. Another issue is related to robot rotation, when it starts 
and stops at the same point doing complete circular path, 
having the constant data-sampling rate, one cannot have 
equal representation of points in all directions because of 
acceleration and deceleration it is not rotated at constant 
speed during the move. Equation (1) is also sensitive to un-
equal distribution of data, and in such cases it can give angle 
( MIθ ) with error so that removing offset and filtering are 
required. 

Another way to find the θ  angle and all other parameters is 
to fit an ellipse to scattered magnetometer data, obtain an 
ellipse polynomial equation and calculate the parameters. The 
“fitting an ellipse to data” method eliminates creating of two 
fitting models of X and Y sets that makes modeling easier. The 
ellipse fitting divides into two broad techniques: clustering 
and least-squares fitting. Least-squares techniques center on 
finding the set of parameters that minimize some distance 
measure between the data points and the ellipse. 

A general form of conic equation in arbitrary position can 
be written by an implicit second order polynomial (an ellipse 
is a type of conic section): 

2 2

F( , ) =    = 
          = x  + x y + y  + x + y +  = 0,a b c d e f

⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

a x a x
 (5) 
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where T = [a b c d e f]a is the parameter vector and 
2 2 T = [x  xy y  x y 1]x . F(a; xi) is the ‘algebraic distance’ of a 

point (x, y) to the conic F(a; x) = 0. The fitting of a general 
conic may be approached by minimizing the sum of squared 
algebraic distances 

( )2
A i

1
( )  = F

N

i

D
=
∑a x  (6) 

of the curve to the N data points xi. In order to avoid the trivial 
solution a = 06, and recognizing that any multiple of a solu-
tion a represents the same conic, the parameter vector a is 
constrained in some way. Many of the published algorithms 
differ only in the form of constraint applied to the parameters. 
There is more detailed discussion on the topic in [11]. We 
select a quadratic constraint in form of T  = 1a Ca  where C is 
a 6 × 6 constraint matrix. If a quadratic constraint is set on the 
parameters the minimization (6) can be solved by considering 
rank-deficient generalized eigenvalue system: 

T  = λD Da Ca ,  
where T

1 2 n = [x  x   x ]D K is the design matrix. 
Many methods of ellipse fitting rely either on generic conic 

fitting or on iterative methods to find the estimation towards 
ellipticity. Iterative methods are computationally expensive, 
difficult to implement.  

In [10] authors have developed a non-linear two-step es-
timator to least-square technique for calibration algorithm of 
solid-state strapdown magnetometers. That idea is close to 
iterative techniques as well.  

In [9] authors have shown a new method of direct el-
lipse-specific fitting while retaining the efficiency of solution 
of the linear least-squares problem (6) where the parameter 
vector a is constrained so that the conic that it represents is 
forced to be an ellipse. The solution is the equality con-
straint 24  = 1ac b− .  

Finally, the constrained ellipse fitting problem reduces to 
minimizing 2E =  Da subject to the constraint T = 1a Ca .  

Introducing the Lagrange multiplier λ  and differentiating, 
we obtain the system of simultaneous equations 

T

T

2   2 0
 = 1

λ⎧ − =⎪
⎨
⎪⎩

D Da Ca
a Ca

  

This may be rewritten as the system 
 = λSa Ca  (7) 

T  = 1a Ca   
where S is the scatter matrix TD D . This system is readily 
solved by considering the generalized eigenvectors of (7) [9]. 

After finding solution and parameters of equation (5), the 
center of the ellipse with help of fitting is (xfc, yfc), where  

( ) ( )2
fcx cd bf b ac= − − ,   ( ) ( )2

fcy af bd b ac= − − .  

The base form of semi-axis length equation is as follows 

( )
( ) ( )( ) ( )

2 2 2

22 2

2 2

1 4

af cd gb bdf acg
S

b ac M b a c c a

+ + − −
=

⎡ ⎤− + − − +⎢ ⎥⎣ ⎦

  

and finally the two semi-axes lengths are S1 = S, where 
M = c – a and S2 = S, where M = a – c. 

The angle of rotation with help of fitting is (CCW rotation 
is positive) 

( ) ( )( )0.5 arctan 2F b c aθ = ⋅ − . (8) 

Final selection of the θ reduces to choice between MIθ  
and Fθ . The way with help of fitting is more stable than using 
(1) but it can hide some input data issues (we can fit ellipse to 
almost any scattered data). In addition, in some situations a 
higher sensitivity to input data of the MIθ  can play a positive 
role, for example, when properly used it can indicate local 
distortions of data. Although in theory we could expect that 
both techniques always must give the same result, it is not 
true at practice. 

After selection of calculation method and with the major 
axis angle known, the hard iron calibrated magnetometer data 
set is rotated about the origin by the angle –θ so that the 
major axis lies along the x+ axis 

( ) ( )
( ) ( )

1

1

cos sin
sin cos

rot rh

rot rh

X X
Y Y

θ θ
θ θ

⎡ − − − ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

Then the ranges of the data are shown in Fig. 2 and found 
= (    ),    = (    ).rrange rmax rmin rrange rmax rminx x x y y y− −  (4) 

The scale conversion factor s is then determined, if 
 > rrange rrangex y then rrange rranges x y= and, if  rrange rrangey x≥  

- rrange rranges y x= .  
With θ  and s known, the magnetometer reading can be 

calibrated by rotating the reading by –θ , scaling the minor 
axis component by s, and then rotating the reading back to it’s 
original orientation 

cal

cal

X
Y

⎡ ⎤
= ⋅⎢ ⎥

⎣ ⎦
A B ,  

where
( ) ( )
( ) ( )

cos sin 1 0
sin cos 0 s

θ θ
θ θ

⎡ − ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
A  (for  > rrange rrangex y ), 

( ) ( )
( ) ( )

cos sin
sin cos

rh

rh

X
Y

θ θ
θ θ

⎡ − − − ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

B . 

Fig. 4 shows the plot of the corrected X, Y points (marked 
as MagY Rot2) using the calibration values. The offsets move 
the center of the figure back to the origin and the ranges are 
used to match the gain so the graph will become more close to 
circle from the original ellipse-like figure. 

Finally we can compute an angle in degrees 
( ) ( )= arctan 180 ,cal calangle y x π⋅  (9) 

where (xcal, ycal) are x and y calibrated values. 
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Fig. 4.  Calibration stages: after removing offset (MagY 
Offset), 1st rotation (MagY Rot1), gain match (MagY 
GainMatch), and final result after 2nd rotation (MagY Rot2).

Fig. 5.  Lissajous method for phase shift determination. 

 

Equation (9) uses arctangent function. Since the arctangent 
result is only in the range of 0 to 90, care is needed to take 
note of the sign of X and Y to determine the correct quadrant 
and to add the proper padding to determine a heading.  

In numerical library of many programming languages, 
there is a two-parameter atan2(y, x) function that returns 
angle, measured in radians, such that angleπ π− ≤ ≤ , using 
the signs of the parameters to find the quadrant, and 
tan(angle) = y / x, where (x, y) is a point in plane.  

B. Data Analysis 
For the data analysis is necessary to calculate some pa-

rameters which can be helpful in addition to θ . Let us define 
those parameters. 
1) Some Parameters 

Circularity is a measurement of the ratio of the actual pe-
rimeter of a particle to the perimeter of a circle with the same 
area as the particle. Circularity also has values in the range 
0-1. A perfect circle has a circularity of 1 while a very ‘spiky’ 
or irregular object has circularity closer to 0. Intuitively cir-
cularity is a measurement of irregularity or difference from a 
perfect circle. This parameter may especially be helpful for 
evaluation how successful is calibration (how close is final 
calibrated locus shape to circle). It is less practical for 
evaluation of raw data because of its sensitivity to input data 
noise. The value is computed as 

( ) = 2cR P Aπ . (10) 

where P – data perimeter, A – data area. 
A phase shift between X and Y is a good measure of dis-

tortions. One of the methods for determining the phase dif-
ference between two signals at the same frequency is called 
Lissajous figures. By examining the original plot of the two X 
and Y traces versus time, one can determine the relative phase 
shift ϕ . In this case, the signals are not plotted versus time, 
but rather one versus the other (Fig. 5). A signal must be 
centered in X-axis and the phase shift ϕ in degrees is: 

( ) ( ) = arcsin 180hl rangev yϕ π⋅ , (11) 

where vhl – distance between 2 points of intersection of ellipse 
with Y-axis , yrange – Y-axis range of fitted ellipse data. 
2) Quality of calibration 

The quality of calibration may include parameters of input 
data quality and fitting quality. If the data are sufficient for 
proper evaluation, the input data quality shows how they are 
equally distributed in circle. Here we define the quality of 
calibration as an average of included parameters. 

We can evaluate how equally data are represented in all 
directions by following coefficient of maximum difference 
(irregularity) 

( )( ) ( )( ) ( )
44 4

11 1
= max num min num num 100,md ii i

C i i i
== =

⎡ ⎤⎛ ⎞− ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑

where num = [numI numII numIII num IV], numI – number of 
points in I quadrant and etc. The number of points in each of 4 
quadrants is a simplified measure to evaluate how equally 
magnetometer readings are represented in the quadrants. To 
use equation above offset removal is required. 

A ratio of raw data and fitted ellipse area is related to 
quality of fitting 

 = rf r fR A A ,  
where Ar – raw data area, Af – area of fitted ellipse. 

The quality of calibration includes raw data and fitting 
goodness. The R-squared value (Rsq) is a measure of the 
fitting goodness and is the square of the correlation coeffi-
cient that is a ratio of variations between the variables esti-
mated using the fit equation and the actual variables. The 
measure is defined as 

( ) ( )2 2

1 1
 = 

n n

sq f i fmean r i rmean
i i

R Y y Y y
= =

− −∑ ∑ , 

where Yf – filtered set of values of fitted ellipse from (5) 
using the same input X-values, yfmean – mean value of Yf , 
yrmean – mean value of Yr. The closer the Rsq value is to 1, the 
better the equation fits the underlying data. 

A ratio of standard deviation of magnetic field density to 
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mean of the magnetic field density is written as 
 

 = sm mfd mfdR S M ,  
 

where Smfd – the standard deviation of magnetic field density, 
Mmfd – mean of magnetic field density of n points after re-
moving offset. This parameter allows to evaluate data spread 
of magnetic field density during the calibration. The hori-
zontal component of magnetic field density is 

2 2 =  + h rh rhB x y , where (xrh, yrh) – raw data point after 
removing hard iron offset. 

Finally the quality of calibration in % is  
 

 = Average((100 ) 100

100 (100 100)).
md rf

sq sm

QC C R

R R

− + ⋅ +

+ ⋅ + − ⋅
 (12) 

 

For comprehensive analysis, the QC may be improved by 
addition of the circularity Rc by (10) which can be considered 
separately of QC as well and ratio of moments (2)-(4) for raw 
and fitted data. 
3) Distortion factor 

An idea behind introduction of distortion factor is an ap-
proximate evaluation on how heavily magnetic anomalies 
have distorted compass measurements. The higher distortions 
mean higher distortion factor. In this context, the factor has to 
accumulate various distortions found during the raw data 
analysis. The distortion factor is defined as 

 

( )( )
( )

1

2 3

 = 1 100  + 

         + 90  +  + ,
MI md

F

DF w C

w w C

θ

ϕ θ

⋅ ⋅ −

− ⋅ ⋅
 (13) 

 

where MIθ  – angle in (1), ϕ – phase shift in (11), Fθ  – angle 
in (8), w1, w2, w3 – empirical weight coefficients for each 
corresponding term, and C – constant.  

A general rule for selection of C is the C must have such 
value so that not distorted measurements will always give 

zero value or value close to zero. To find rational values of the 
weight factors and C some experiments are required. Once we 
set the C value and weight factors, we have to use it to make 
our data comparable for analysis. Introducing Cmd into (13), 
we want to control effect of MIθ and make it dependent on 
input data quality. Unit of measurement for the DF is degree 
because all members of (13) are angles in degrees. 

C. Algorithm and software 
In Fig. 6, a is shown the simplified flow chart of the algo-

rithm. The algorithm starts with raw data collection and 
pre-processing. The data are one-dimensional arrays of X and 
Y magnetometer readings.  

For accurate calibration more then 100 points in complete 
360-degree rotation are recommended, otherwise some es-
sential information of raw data shape (equals magnetic dis-
tortions) can be lost. The calibration may be executed at any 
reasonable speed to meet the 100 points requirement. For 
example, at condition of robot rotational speed 80 deg/s 
(corresponds to robot linear speed of 20 cm/s) and compass 
sampling rate 33 Hz, we can obtain about 148 points. 

It is strongly recommended to filter the data before use 
because it may contain different kinds of wrong information 
as data acquisition failures, outliers, unexpected spikes and 
other redundant data. It is first stage of filtering. To follow the 
rule of equal representation of magnetometer readings in all 
directions and remove redundant points we have to find a 
number of points in 4 quadrants (num) and Cmd . For filtering 
we select simple filter that calculates Euclidean distances 
between points, checks a number of points in 4 quadrants and 
removes every point of 2 points if the distance is less then the 
specified threshold, for example, 75% of mean distance 
(those points are located too close to each other, when data 
collection at low speed or at stop) at conditions of reducing 
Cmd and having more than 100 points after the filtering. 

 

a b 

Fig. 6. (a) Algorithm simplified flow chart, and (b) main window screenshot of the “SensorStation” software for compass data 
acquisition and processing. 
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In most cases, we need to iterate through this routine sev-
eral times until all redundant points are removed. In addition, 
it may be convenient for some processing routines to have 
the data sorted (data integration is done in more logical way 
if we have arranged the ellipse data dividing it into top and 
bottom points and sorted them). 

Then we calculate some raw data parameters: perimeter 
(Pr) and area (Ar). The raw data area is a part of component 
for estimation of quality of calibration. There are two ways 
to find raw data area: using Surveyor’s formula and inte-
gration. If the integration is based on approximate tech-
niques as a trapezoidal rule, in the most cases they give 
similar results.  

In next, it is necessary to remove offset from the data and 
store resulting data separately for further processing. After 
offset removal we can find moments of inertia by (2)–(4) and 
calculate MIθ by (1). 

Before applying fitting routines, there is a check of the 
number of points. For the fitting procedure itself at least 6 
points are required, however there is higher-level require-
ment above that superimposes on this one.  

In beginning, a selection of fitting method is required, 
then populating the design (D) and constraint (C) matrices to 
find the scatter matrix S. The solution uses algebraic ap-
proach to constrained least-squares fit of an ellipse to data. 

The result of the fitting is the parameter vector a with the 
coefficients of (5). Having the parameters, we can do 
analysis of the data. We can calculate the QC using (12). 
Finally, we can find the distortion factor by (13). 

Most of calculations in this paper were made using custom 
software (Fig. 6, b) written in Microsoft® Visual C# .NET 
2005. The software has the following system requirements: 
MS Windows 98, .NET Framework v.2.0 redistributable 
package, 600 MHz Pentium® processor or higher, RAM - 
192 MB, disk space - 3.5 MB (without Framework), display 
- 800 × 600 256 colors. The software uses multi-threading, 
generics and inheritance to take full advantage of built-in 
technologies of object-oriented programming. Processing 
about 300 compass points takes about 1 s using Pentium 4 3 
GHz processor. The algorithm can be implemented on 
mobile hardware. 

IV. EXPERIMENTS 
The compass used in the experiments described through-

out this paper is the GMCS GCS002IA fluxgate compass 
made by Samsung Electro-Mechanics [11]. The compass 
was installed on robot front side about 10 cm above floor 
(Fig. 7). Data from compass were verified by gyro meas-
urements. 

In first series of experiments, we tested a feasibility of our 
approach. All experiments were carried out in random sites 
of typical office environment. With fixed start compass 
orientation about 142° SE (South-East), the compass has 
been rotated through 360 degrees by mobile robot with speed  

of 80 deg/s and data sampling rate 33 Hz. Also we did 
measurements with different start orientations helped to 
identify ‘start point’ issue mentioned in comments to (1) in 
Section III.A. Results of the experiments with the fixed ori-
entation are presented in Fig. 9, a. Another goal was to 
check different combinations of weight factors for DF in 
(13). For data analysis we used the following combination: 
w1 = 1, w2 = 0.7, w3 = 0.3, C = 15; Cmd excluded. That com-
bination is not optimal; it gives more priority to MIθ known 
by high sensitivity to data. In spite of that we can observe 
that more externally distorted measurements give higher 
number of distortion factor. 

For final experiments, a typical living room in apartment 
was modeled with some consumer electronics to evaluate 
their influence on compass data – those are sources of mag-
netic disturbances such as refrigerator, TV, speakers of audio 
system (Fig. 8). A distance between fridge, TV, speaker and 
test points was about 40 cm. At each point compass data 
measurements were made two times for fixed start compass 
orientation that is about 142° SE. Alternative measurements 
were carried out at some height (to avoid an influence of 
magnetic disturbances from floor and others) with needle 
compass to validate the data from electronic compass. The 
compass has been rotated in the same way as in first ex-
periments. At post-processing, the data were filtered and 
processed according to the algorithm in Section III.C to 
obtain calibration parameters, QC and DF. The DF calcu-
lated with the empirical coefficients as w1 = 0.05, w2 = 0.1, 
w3 = 0.1, C = –9 and Abs( Fθ ) (Fig. 9, b). 

Errors during the measurements are induced by initial 
orientation misalignment error, robot command execution 
errors. There is some influence of data filtering on final 
results too. 

Based on the data one can make some conclusions that 
approximately 88% points of 17 (15 points of 17), where 
heading angle is 142±10°, are within 3.3 3.5DF− ≤ ≤  - the 
area is shown as dashed rectangle in Fig. 9, b. In spite of 
some points are out of the limits, the experiments are clear 
proof of practical value of the distortion factor parameter. 

V. CONCLUSIONS 
Problems of compass application for mobile robot in an 

indoor environment have been investigated. The variation in 
heading angle in our experiments due to external magnetic 
interference was about ±30° and may be higher. Finding a 
solution to this problem is one of the challenges faced by 
developers today. 

This paper discussed technique to improve a robustness of 
compass measurements for mobile robot. Our proposed 
technique uses a calibration, evaluation of quality of the 
calibration, and evaluation of magnetic environment by the 
distortion factor. We have built a prototype of robot with 
electronic compass module and have verified the validity of 
this approach. 
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Fig. 7.  Mobile robot (prototype of robotic vacuum cleaner) 
with compass and gyro. 

 
Fig. 8.  Experiment scheme (lab’s modeled room, top view, 
test points with identificators). 

a b 
Fig. 9.  Distortion factor versus heading angle: 22 data points collected as (a) experiments in office (w1 = 1, w2 = 0.7, w3 = 0.3, 
C = 15; Cmd excluded) and (b) experiments in the lab’s modeled room (w1 = 0.05, w2 = 0.1, w3 = 1, C = –9 and Abs( Fθ )). 

 

The distortion factor is a good indicator of magnetic 
anomalies, which can be used to determine the quality of the 
compass heading information. Advantage of the approach is 
that not only we can detect magnetic distortions but also 
evaluate approximately how heavy they are. With help of 
such technique at least we can exclude badly distorted data 
from our measurements. However we have to use it with care 
because magnetic disturbances are non-linear and may be a 
result of multiple magnetic sources.  

Compass used in the experiments is low cost model and 
for future work we believe that more precise compass may 
improve accuracy of the algorithm and prediction capabili-
ties of the distortion factor parameter. In addition, a more 
sophisticated filtering of input data or providing a constant 
calibration speed can be a great help as well. 
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