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Abstract— When using an extended Kalman filter (EKF) in
simultaneous localization and mapping (SLAM) for a mobile
robot with bearing-only measurements, it is crucial to correctly
assign correspondences between measurements and registered
features in the map, otherwise the filter diverges or becomes
inconsistent. Conventional methods based on the Mahalanobis
distance metric may produce data association ambiguities. Its
reliability may further be degraded in bearing-only SLAM due
to the limited amount of information delivered from the sensor.
The data association process is cast here as that of making
a decision based on the sensor measurement as whether to
update the EKF or not. For this, cost functions are applied
taking into account the interferences from other features. The
proposed approach enhances robustness of the data association
and consequently assures the performance of bearing-only
SLAM. Results from simulations and experiments are included
to demonstrate the effectiveness of the method in a typical
indoor scenario.

I. INTRODUCTION

The simultaneous localization and map building (SLAM)

problem is concerned with deploying a mobile robot in an

unknown workplace and the robot is required to estimate its

location as well as the feature locations within its operating

environment [1] such that the assigned task can be accom-

plished, e.g., navigation, surveillance. The SLAM problem

has been conventionally treated as a state estimation process

where the Bayesian estimation approach is widely adopted.

The extended Kalman filter (EKF), in particular, is the most

popular candidate employed because of its efficiency and

effectiveness. However, an implementation hurdle arises in

practice where it is important to correctly obtain correspon-

dences between sensor measurements and features. If the

correspondence fails, the EKF can result in divergence or

inconsistent updates. This difficulty then gives rise to the

data association problem addressed in this paper.

The problem of data association was considered as deci-

sions with uncertain observations in [2]. It was also named

as probabilistic data association (PDA) [3], where estimator

updates were conducted by an aggregation of all possible

associations. The idea of multiple hypothesis for decision

making, was adopted in [4] for signal detection and estima-

tion. Other problems concerning multi-target tracking were

reported in [5] and tackled with the multiple hypotheses
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tracking method. In the approach proposed therein, hypothe-

ses are generated for each potential measurement-feature

pairing, however, management strategies are needed to re-

move the inherent computation complexity due to employing

multiple hypotheses. On the basis of PDA, data associations

were considered by the use of the joint probability [6] and

the joint compatibility [7] techniques. These methods employ

screening and searching to obtain proper matches between

measurements and features. Other attempts to solve the data

association problem included simultaneous measurements [8]

and adaptive time filter updates [9]. In the context of target

tracking, a comparison of approaches was conducted in [10].

A tutorial on sensor managements in close connection with

data association was presented in [11] and a review can also

be found in [12].

The connections between data association and mobile

robot localization and map building were established in

[13] where the Mahalanobis distance (MD) gating method

was used. In addition, the PDA approach was adopted in

[14]. These works used the EKF as the state estimator, and

the incorporation of MD gating have ever since become a

convention. An alternative filtering approach, the particle

filter, was used in [15] where data association was performed

on a sample based domain with increased computation com-

plexity. Other variations include the integer-programming

optimization method adopted in [16] to search for matches

between measurements and features after screened by a

MD based validation gate. Moreover, a forgetting-factor was

applied to remove features in the map in order to reduce the

occurrence of possible mismatches [17].

The approaches reported in the literature often include

a preliminary gating operation upon which sophisticated

techniques are then built. Furthermore, the gating is mostly

conducted with the MD or a χ2-test against a pre-determined

and fixed confidence threshold where there is no common

guidelines to select its value. In addition, these tests do

not consider the interferences from other features in the

association process. That is, the MD gating concerns only

the power [18] of a statistical test but the significance is not

considered by the design of this association method.

In this paper, the data association problem in SLAM using

bearing-only measurements is addressed with the application

of cost function-based decisions. The contributions of the pa-

per include i) the analysis on the difficulties of conventional

MD gating to distinguish among association ambiguities, and

ii) the proposal for a cost function-based data association

approach which explicitly takes into account the effect of

interference from other features.
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The rest of the paper is organized as follows. In Section

II, the bearing-only SLAM problem is briefly reviewed.

Difficulties encountered with data association are discussed

in Section III. In Section IV, the developments in applying

cost functions in the data association problem are presented.

Results from simulations and experiments are given in Sec-

tion V and a conclusion is drawn in Section VI.

II. BEARING-ONLY SLAM

In the EKF stochastic mapping framework [1], bearing-

only SLAM is considered as an estimation process on the

system states under the constraint of noise corrupted bearing

measurements. The estimation process, which contains the

system and measurement models, is briefly described below.

A. System Model

The system state is consisted of the robot pose and feature

or landmark locations

x̂k = [x̂T
v,k, x̂T

fi,k
]T , (1)

where x̂v,k = [xv, yv, φv]T is an estimate of the robot pose

(location xv, yv and orientation φv) with reference to a world

coordinate, x̂fi,k = [xfi
, yfi

]T is the estimated static feature

location. k is the time index, subscript i is the feature index

and superscript T denotes vector or matrix transpose.

B. Bearing-only Measurement Model

The bearing-only SLAM is characterized by the fact that

the measurement only contains the bearing from the robot to

the ith feature. The measurement model is

zi = θi = arctan

(

yfi
− yv

xfi
− xv

)

− φv + nθ, (2)

where the noise nθ is assumed as a zero mean Gaussian given

by nθ ∼ N(0,R) with R = σ2
θ as the noise variance. Note

here that, features may have similar bearing measurements

aligning along a line from the robot to the features but they

are spatially separated.

C. Estimation Process

Assume that features have been observed and incorporated

into the filter through an initialization procedure, see the

procedures described in [1], the EKF proceeds through the

following steps recursively.

Prediction: The state is predicted using a process model

f(·) with motion control uk, giving the state estimate x̂ and

error covariance P at time k + 1 as

x̂k+1|k = f(x̂k,uk)

Pk+1|k = ∇fxPk|k∇f
T
x + ∇fuΣf

T
u ,

(3)

where ∇fx and ∇fu are the Jacobians evaluated at the state

estimates and control, Σ is the covariance matrix for control

uncertainty which also includes the model uncertainty.

Measure: The sensor provides a measurement zk (in

bearing) from observing features and an innovation ν is

calculated together with its covariance S and the Kalman

gain K, that is

ν = zk − h(x̂k)

S = ∇hPk+1|k∇h
T + R

K = Pk+1|k∇h
T
S
−1,

(4)

where h(·) is the measurement model and ∇h is the Jaco-

bian, the sensor noise covariance is R.

Update: The predicted state and the error covariance are

updated by

x̂k+1|k+1 = x̂k+1|k + Kν

Pk+1|k+1 = Pk+1|k − KSK
T .

(5)

The EKF procedure then repeats from the prediction stage

until the termination of the estimation process. However,

it is observed that in order to proceed with the recursive

estimation, one needs to calculate the innovation in (4) which

requires a proper data association between the measurement

and the feature. On the other hand, an erroneous association

will cause the EKF to diverge or become inconsistent. Before

presenting the proposed method, the difficulties encountered

in the conventional data association approach are discussed

in the next section.

III. CONVENTIONAL DATA ASSOCIATION

The basic idea of the conventional data association in

SLAM is to define a metric, the squared innovation, as a test

statistic to decide on an association between a measurement

and a feature. In the following, the MD gating approach is

presented, its limitations in the bearing-only SLAM context

revealed and then the motivation for this work is stated.

A. Mahalanobis Distance Gating

Notice that the innovation is a realization of a random

variable, assuming the sensor and estimation uncertainties are

characterized by Gaussian distributions, the squared innova-

tion metric then follows a χ2-distribution. In the conventional

data association, one usually uses the MD with the innovation

calculated from the physical (real) measurement and an

expected measurement derived from the estimated locations

of the robot and feature. A pre-determined confidence gating

threshold γ is defined. A match between a measurement and

a feature is declared if the measurement falls within the

gate. The normalized-squared innovation and the threshold

are related by

d2 = νT
S
−1ν < γ, (6)

where the threshold can be determined from statistical tables

with the corresponding confidence and a degree-of-freedom

(dof) equal to the dimension of the measurement (dof=1 for

bearing-only measurement, hence the threshold is obtained

from χ2
0.05,1 for a α = 0.95 confidence level).

By referring to the decision making theory [18], the

declaration for an association by the MD gating would incur

a missed-detection error, 1− α, about the decision provided

that the association is true. On the other hand, a decision will

be subjected to a false-alarm error of β if the association is
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false but declared as true. Evidently, the false-alarm could

be caused by other measurements and features and the MD

gating is not capable of considering this source of error.

Furthermore, there are other problems found in bearing-only

data associations discussed next.

B. Feature Uncertainties in Bearing-only SLAM

Let there be two features registered and suppose the

measurement is originated from feature 1, see Fig. 1(a), then

the Jacobian and predicted error covariance are given by

∇h = [hv,hf1
,0]

P̄ =





Pvv Pvf1
Pvf2

P
T
vf1

Pf1f1
Pf1f2

P
T
vf2

P
T
f1f2

Pf2f2



 .
(7)

The innovation covariance in (4) becomes

S = hvPvvh
T
v + 2hf1

P
T
vf1

h
T
v + hf1

Pf1f1
h

T
f1

+ R, (8)

which becomes a scalar in the case of a single bearing

measurement. The first term hvPvvh
T
v is a function of

the robot uncertainty only, the second term 2hf1
P

T
vf1

h
T
v

is related to the robot-feature correlation. The third term

hf1
Pf1f1

h
T
f1

is determined by the feature uncertainty and

critically affects the innovation variance S. The last term

is the sensor uncertainty R which is independent of the

features.

The third term can be further expanded as

hf1
Pf1f1

h
T
f1

∝ sin2 ϕ1Px1x1
+ cos2 ϕ1Py1y1

, (9)

where Px1x1
and Py1y1

are the diagonal elements of the

Pf1f1
matrix and ϕ1 is the angle from the robot to the

feature. This angle determines the magnitude of the feature

uncertainty when it is projected towards the robot.

Consider a measurement returns from the sensor such that

it gives equivalent innovations for two features, ν2
1 ≃ ν2

2

but S2 > S1 gives d2
2 < d2

1. According to the MD gating,

feature 2 will be associated to the measurement although

the estimated feature may be spatially separated from its

true location. From another point of view, since S2 > S1,

then large innovations may lead to associations of equal

confidences with features of higher uncertainties. However,

this kind of association is not desirable due to the uncertain

a priori caused by the relative orientation of the feature

uncertainty to the robot.

C. Motivation

A drawback of the above conventional MD based data

association approach is that the test is a one-to-one matching

process without taking the effect of other features into

consideration. It should be emphasized here that the squared

error metric used in the MD test is one of the rationales

in quantifying the magnitude of the innovation, any other

metric may also serve the purpose of validating the match of

a measurement to an estimated feature, e.g., cost functions. In

this research, it is attempted to derive an enhanced validation

process such that the association ambiguities can be reduced.

In the next section, a procedure based on a cost function

approach will be proposed.

IV. COST FUNCTION-BASED ASSOCIATION

Without loss of generality in the following development,

assume again that there are two features already registered in

the estimator. Based on the proposed cost function, example

association cases are considered. They include measurements

falling on the two sides of the features and cases for equal

innovations and MDs.

A. Proposed Approach

Recall that in the stochastic mapping framework, the EKF

maintains a state estimate x̂ and the corresponding error

covariance P (the time index k is dropped here). Each feature

in the Cartesian coordinate is projected onto the bearing

measurement space, giving

θ̂fi
= arctan

(

ŷfi
− ŷv

x̂fi
− x̂v

)

− φ̂v. (10)

The ith feature maintains an uncertainty attributed from the

robot and its own, the variance is given by

Si = ∇hfi
P̄∇h

T
fi

+ σ2
θ , (11)

where ∇hfi
is the Jacobian for feature i, P̄ is the prediction

uncertainty. Note that for a bearing-only measurement z = θ,

the uncertainty in the measurement domain is given by

pi(θ) =
1√

2πSi

exp(
−(θ − θ̂fi

)2

2S2
i

). (12)

Furthermore, the cost in associating feature i to a measure-

ment can be defined as

C̄ =

2
∑

i=1

Ci =

2
∑

i=1

∫ θ̂fi

θ

pi(ζ)dζ, (13)

where ζ is an integration variable. A table of size I × J ,

where i ∈ [1, I] and j ∈ [1,J ] (I is the number of

features, J is the number of measurements), is then setup

with the cost functions as its entries of all possible matches

between features and measurements. Finally, an association

is declared for the minimal among costs Cij .

B. Examples

Example scenarios and illustrations of the association

process are depicted in Fig. 1 through Fig. 4 for the following

cases with the costs shown in shaded areas. In these exam-

ples, the robot is estimated to locate at xv = 0, yv = 0, φv =
0.2rad as shown in Fig. 1(a). The features are estimated at

xf1
= 3m, yf1

= 2m and xf2
= 3m, yf2

= 3m. The

expected bearings are θ1 = 0.3880rad, θ2 = 0.5854rad

while the innovation variances are S1 = 0.03492, S2 =
0.16532, respectively, depending on the orientations towards

the robot. Note that χ2
0.05,1 = 3.8415 is the threshold used

in the conventional MD test.

1) Measurement on Left of Features: Figure 1(a) shows

the example setting. When it is attempted to associate the

measurement to f1, the cost is 0.0094 (Fig. 1(b)) while

the cost for associating f2 is 0.0012 (Fig. 1(c)). Hence, the

measurement is associated to feature 2 and is confirmed by

the MD of 0.1263 < χ2
0.05,1.
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Fig. 1. Measurement on left hand side of features; (a) robot-feature
locations; (b) association to feature f1; (c) association to f2.

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Robot

x(m)

y
(m

)

θf1

f2

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

p
1

p
2

θ

Bearing (rad)

p
d

f

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

p
1

p
2

θ

Bearing (rad)

p
d

f

(c)

Fig. 2. Measurement on right hand side of features; (a) robot-feature
locations; (b) association to feature f1; (c) association to f2.

2) Measurement on Right of Features: The scenario is

shown in Fig. 2. The costs are 0.0053 and 0.0134 for

associations to f1 and f2 respectively. However, in this case,

the MDs are 12.6915 and 3.7871 < χ2
0.051 with f2 associated

by the conventional approach. However, this contradicts with

the cost functions and institutively the measurement is away

from f2. Therefore, the measurement is associated to f1,

instead of f2, by the cost function approach and alleviates

the error caused by the MD test.

3) Measurement giving Equal Innovations: The results

are depicted in Fig. 3. The innovations are equal, i.e.,

v1 = v2 = 0.0987 where the costs are 0.0058 and 0.0024
suggesting an association to f2. Observe that the cost con-

tributed from f2 when attempting to associate f1 is higher
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Fig. 3. Measurement giving equal innovations; (a) robot-feature locations;
(b) association to feature f1; (c) association to f2.
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Fig. 4. Measurement giving equal Mahalanobis distance; (a) robot-feature
locations; (b) association to feature f1; (c) association to f2.

than associating f2. Therefore, f2 is associated with a lower

cost. This is confirmed by the MDs of 0.3561 < χ2
0.05,1.

4) Measurement giving Equal Mahalanobis Distances:

In this case, Fig. 4, the MDs are equal to 0.0718. Due to

the equality, conventional MD test is not able to make any

decision and the measurement will be discarded in practice.

Here, the cost functions are 0.0034 and 0.0047 for features

1 and 2 respectively. According to the proposed approach,

f1 is associated and is endorsed by the small innovation

(closeness) of the measurement to f1.

C. Discussion

It has been illustrated that the cost function-based data

association is able to mitigate ambiguities caused by the MD
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gating in case 2 where the measurement is located away from

the un-associated feature. In addition, the proposed method is

also capable of distinguishing association ambiguities among

equal MDs, as illustrated in case 4, instead of discarding the

measurement which is commonly found in practices using

the conventional MD gating. With the enhanced robustness

in data association, the quality of bearing-only SLAM is

anticipated to be ensured. Results are included in the next

section to verify this method.

V. RESULTS

Simulations and experiments are conducted to verify the

effectiveness of the proposed approach. For the bearing-only

SLAM problem considered, a Gaussian sum filter consists

of a bank of EKFs is employed here as the estimator [19].

In the experiment, a black-and-white camera is used as the

bearing-only sensor. A laser scanner is also used in a range-

bearing SLAM as a performance reference.

A. Simulations

In the simulations, the test scenario is an emulated indoor

environment consisting of a square region scattered with

eight stationary features. Features are place intentionally at

locations such that groups of two features (located at the

north, west and south regions) will provide measurements

in close proximity and cause ambiguities in conventional

MD tests. Performances are assessed on the basis of SLAM

quality on estimation errors.
1) Test 1: Conventional Data Association: The trajectory

of the estimated robot is plotted in Fig. 5(a) with the true

trajectory superimposed (dotted line). The feature location

estimates are also illustrated with the 3σ uncertainty ellipse.

Fig. 5(b) shows the time history of the robot location and

orientation estimation error together with the 3σ error bound.

The RMS errors obtained for the robot states are 0.07m,

0.05m, 1.28◦. The box plot for the feature location estimates

are drawn in Fig. 5(c) and will be compared to the results

in the test for using the proposed data-association method.
2) Test 2: Cost Function-based Data Association: The

same robot trajectory is used in this test, Fig. 6(a). The

resulting robot RMS error in the x-coordinate, y-coordinates

and orientation are 0.06m, 0.04m and 0.91◦ respectively.

The robot orientation error shown in Fig. 6(b) also indicates

a reduction in the error from a maximum of 5◦ to less than

3◦. A reduction in 3σ error bound is also noticeable, around

50 ∼ 55sec, where the robot orientation estimation error

is reduced from 10◦ to 6◦. The box plot of the feature-

location estimation errors is given in Fig. 6(c). Reductions in

landmark location uncertainties are noticeable from the 3rd

and 6th feature.
3) Discussion: The success of the approach is mainly

attributed to the increased number of robust associations and

updates performed by the estimator. Evidently, growth of

robot pose uncertainties during the early estimation periods

have been effectively attenuated as reported in Test 2. How-

ever, with converged estimations in later stages, the reduction

in uncertainties are not so noticeable for landmarks away

from the robot.
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Fig. 5. Results from conventional data association method; (a) estimation
result; (b) robot pose error; (c) feature position error.
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Fig. 6. Results from cost function-based data association method; (a)
estimation result; (b) robot pose error; (c) feature position error.

B. Experiment

The proposed method is also tested on a real-lift experi-

ment using a camera as a sensor. In this case, a Pioneer DX2

robot mounted with the camera and a laser scanner is driven

in the laboratory environment. Moreover, the laser scan is

also imposed on the results as an aid for visual indication of

the test environment. Typical images captured by the robot

are included in Fig. 7 showing the laboratory environment

containing chairs and cabinets. Edges of the furniture are

chosen and detected by an image processing algorithm as

features where their angles relative to the robot are treated

as a bearing-only measurement.
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The trajectory traced by the robot together with the laser

scan for the laboratory environment is shown in Fig. 8(a).

It is indicated that the robot has firstly moved in a circle

with decreasing radius and finally in a near-straight line. It

could be conclude that the robot is able to keep track of

its position as the imposed laser scans, indicated as dots,

are consistent. Depicted in Fig. 8(b) is the estimation errors

of the robot states and the corresponding 3σ uncertainty

bounds. The errors have been obtained from comparing to

the results obtained from a laser scanner based range-bearing

SLAM as a reference. RMS errors are 0.11m, 0.04m and

3.28◦ for the xy-coordinate and orientation. These errors are

within practical satisfactory margins and are within the 3σ

uncertainty bounds.

(a) Captured image 1 (b) Captured image 2

Fig. 7. Typical images captured in the experiment.
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Fig. 8. Experimental results.

VI. CONCLUSION

This paper has presented a data association approach

for bearing-only SLAM. The orientation of the feature

uncertainty is found critical in associations using the

conventional Mahalanobis distance gating. The proposed

approach, invoking the decision-theoretic philosophy, using

cost functions and taking into account the interferences from

other features, is developed to resolve ambiguities arising

from measurements or features in close angular proximity.

Owing to enhanced robustness in the data association and

hence an increased number of estimator updates, the SLAM

performance is improved. The effectiveness of the proposed

method is verified with simulations and experiments. Results

obtained are satisfactory in the context of robot and feature

location estimation errors.
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