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Abstract— This report presents a survey of computer
based simulators for unmanned vehicles. The simulators
examined cover a wide spectrum of vehicles including
unmanned aerial vehicles, both full scale and micro size;
unmanned surface and subsurface vehicles; and unmanned
ground vehicles. The majority of simulators use simple
numerical simulation and simplistic visualization using
custom OpenGL code. An emerging trend is to used
modified commercial game engines for physical simulation
and visualization. The game engines that are commercially
available today are capable of physical simulations pro-
viding basic physical properties and interactions between
objects. Newer and/or specialized engines such as the flight
simulator X-Plane or Ageia PhysX and Havok physics
engines, are capable of simulating more complex physical
interactions between objects. Researchers in need of a
simulator have a choice of using game engines or avail-
able open source and commercially available simulators,
allowing resources to be focused on research instead of
building a new simulator. We conclude that it is no longer
necessary to build a new simulator from scratch.

I INTRODUCTION

Computer simulations, and their extension into video
games, of unmanned systems are an emerging topic.
There are at least three motivations for robot simu-
lators. One is the role of simulators in adoption of
new technology, another is their potential for low cost
training, and finally their utility in research. The range
of robot computer simulations is economically and tech-
nically diverse. This report surveys 14 widely available,
computer based robot simulators and ranks the options
available to a researcher or training expert.

Computer simulations and video games may support
the transfer of robotics to new application domains.
Robots such as those used for urban search & rescue,

Jeff Craighead, Robin Murphy, and Jenny Burke are with the
Institute for Safety, Security and Rescue Technology at the Univer-
sity of South Florida. 4202 E. Fowler Avenue, Tampa, FL, USA.
craighea@cse.usf.edu, murphy@cse.usf.edu, jlburke4@cse.usf.edu.
Brian Goldiez is the Deputy Director of the Institute for Simulation
& Training at the University of Central Florida. bgoldiez@ist.ucf.edu.
This work was sponsored, in part, by the US Army Research Labo-
ratory under Cooperative Agreement W911NF-06-2-0041. The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the ARL or the US Government. The
US Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

bomb disposal, surveillance, and military purposes can
be important tools in responding to critical incidents.
However, many law enforcement and rescue agencies are
unwilling to spend a large portion of their limited budget
on a tool without direct experience. Physical simulations,
such as emergency response exercises, are expensive,
rare, and not conducive to insertion and evaluation of
new technology. Computer, or virtual, simulation and
games are mechanisms to provide the community of
robot operators and potential robot operators with in-
expensive, enjoyable robot and sensor training environ-
ment. Thus these are attractive mechanisms for allowing
a community to experiment with new technology.

In addition to allowing the user community to eval-
uate new technologies, computer simulation and video
games are pedagogically proven techniques for training.
Recent studies have shown that game-based learning
have the potential to improve the transfer of skills
over classroom-based activities.[1], [2], [3], [4], [5] In
addition, gaming technology is increasingly being used
for non-entertainment purposes. For instance, UTSAF 1

uses the Unreal game engine to provide a relatively high
fidelity visualization for the US Army’s OneSAF battle-
field simulator with a very small monetary investment
when compared to the cost of a custom simulator of
equivalent capability.[6], [7], [8]

The remainder of this report is organized as fol-
lows. Section II defines the evaluation criteria used in
our survey. Section III identifies simulators that are
commercially available or are based on commercially
available products and Section IV examines open source
simulators. Section V gives some concluding remarks.
Note that Section IIand Section III provide only cursory
descriptions of each simulator due to space considera-
tions.

II EVALUATION CRITERIA

In order to evaluate simulators from the perspective of
a robotics researcher, criteria for utility must be estab-
lished. This report builds on prior work by Alexander[1]
and identifies four criteria that can be used to judge the

1UTSAF - UnrealTournament Semi-Automated Forces
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quality of any virtual robot simulator. A simulator that
has high marks for each criterion will have broad appeal
because of its robust capabilities for both testing control
algorithms in an environment with high physical fidelity
and studying human robot interaction in an environ-
ment with high functional fidelity. Each simulator was
reviewed based on published specifications for each of
the four criteria. Simulators that did not indicate support
for specific features were assumed to not include them.
The simulators were rated high, medium, or low for a
particular criterion based on the definitions below.

1.) Physical Fidelity - According to Alexander “Fi-
delity in this context can be described as the extent to
which the virtual environment emulates the real world.”
and that “Physical fidelity is defined as the degree to
which the physical simulation looks, sounds, and feels
like the operational environment”. While a computer
game cannot simulate the feel of the operational envi-
ronment, it can simulate the visual and audible portions
of that environment. Alexander argues that learning
can be enhanced by a higher fidelity simulation. In
the context of robot operation, where the operator is
typically removed from the operating environment, a
high fidelity visual and audio simulation will be similar
to what is encountered when operating a real robot. We
look at the rendering and audio capabilities of each
simulator to identify its physical fidelity ranking. A
simulator with high physical fidelity is able to render
the environment with high resolution textures, shaders,
lighting, reflection, and bump mapping. Models with a
large polygon count (>2000) with major parts modeled
in with geometry, not textures should be used. Animation
of vehicles should be visually correct. A high physical
fidelity simulator should also include vehicle and envi-
ronmental sounds with intensities based on proximity. A
medium physical fidelity simulator can render the envi-
ronment in 3D, however no requirements are placed on
object detail. Additionally some vehicle sounds should
be present. A low physical fidelity simulator uses 2D
rendering and no sound is required.

2.) Functional Fidelity - Alexander defines functional
fidelity as “the degree to which the simulation acts
like the operational equipment in reacting to the tasks
executed by the trainee”. Functional fidelity should be
the primary goal of the game or simulation since the
trainee will come to expect the real equipment to behave
in a similar manner. We interpret this to mean physical
behavior of the equipment and look at the physics
simulation capabilities of a simulator to identify func-
tional fidelity. High functional fidelity is defined as the
simulation of most of the forces acting on a vehicle and

its actuators including gravity, drag, and accelerations
from motors and collisions on specific elements of the
vehicle. An example is a simulator that simulates the
torque applied to each motor connected wheel, then
calculates the appropriate vehicle acceleration based on
the rotation of each wheel. These calculations should
take surface properties into account to simulate wheel
slippage. Medium functional fidelity simulators include
simulations of forces on the vehicle as a whole instead
of on individual elements. A low functional fidelity
simulator does not simulate forces applied to the vehicle
but only velocities or absolute position.

3.) Ease of Development - Ease of development is
defined by several questions, those questions are: How
easily can an environment be created to conduct a
training exercise within the simulator? How easily can
the simulator be modified to simulate new equipment? Is
documentation available with support from the author?
What languages can be used to modify the simulator?
A simulator that provides developer documentation,
supports the importing of objects from 3D modeling
packages, and can be programmed in several languages
will receive a high rating. Simulators that only provide
some of these will be rated medium and those that
provide none are rated low.

4.) Cost - For a simulator to be useful it must not be
time consuming to install or run and accessible in terms
of initial monetary cost for both the developer and end
user. Simulators that are free and include an installer
are rated low, simulators that are free but are difficult to
install or simulators that are cheap and easy to install
receive a medium rating. Simulators that are expensive
(>$200) receive a high regardless of ease of installation.

III GAMES & COMMERCIALLY AVAILABLE
SIMULATORS

There are a wide variety of robot and aircraft simu-
lators that are commercially available as well as games
that can be modified to simulate a robot in an envi-
ronment. The available robot simulators have a very
limited scope in terms of the operating environment.
While some allow small custom environments to be
created, others provide no environment except for a
holodeck like grid. The positive side of the commercial
robot simulators is that they usually allow the creation
of any shape and size robot. The aircraft simulators
such as X-Plane[9] and Microsoft’s FlightSimulator[10]
provide expansive environments with real terrain data.
X-Plane even allows simulation of orbital and Mars
environments. Games such as Unreal and FarCry, the
two most popular for academic modification, allow the
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creation of any type of environment but are slightly
limited in terms of vehicle creation.

Alexander, et al. in “From Gaming to Training: A
Review of Studies on Fidelity, Immersion, Presence, and
Buy-in and Their Effects on Transfer in PC-Based Sim-
ulations and Games”[1] argue that commercial games
and game engine based simulations have the potential to
provide an environment that is as high-fidelity as is tech-
nically possible. Nielsen and Goodrich in “Comparing
the Usefulness of Video and Map Information in Naviga-
tion Tasks”[11] used the Unreal2 game engine with the
USARSim modification to examine how video and maps
affect human interaction with a robot while navigating
the robot through an environment. Stephen Hughes and
Michael Lewis in “Robitic Camera Control for Remote
Exploration”[12] use the Unreal2 game engine with
USARSim to study the effects of camera placement on
the human control of robot mounted cameras.

Table I presents a listing of the available simulators
and provides a subjective rating of capabilities in terms
of physical fidelity, functional fidelity, ease of use, and
cost.

USARSim - The open source urban search & rescue
robot simulator USARSim, based on the Unreal2 engine,
is primarily aimed at ground vehicles. The engine best
supports bipedal and wheeled robots, however it is
possible to add support for other robot types. It should
be noted that the Karma physics engine used in the
Unreal2 engine provides only basic simulation of forces
on specific objects within the environment. Robots and
environment objects are created in 3rd party modeling
applications. Worlds can be created using an included
utility. Robots can be programmed using UnrealScript
or controlled over a network connection using USAR-
Sim’s UDP control protocol. USARSim is used for the
RoboCup Rescue competition’s simulation league. The
Unreal2 game engine is one of the dominant commercial
simulator platform for robotics simulation for unmanned
ground vehicles. It has been used to simulate robots,
train army recruits and fire fighters, as well as conduct
studies on search and rescue tasks.[13], [14], [11], [15],
[7]

X-Plane - X-Plane[9] is a commercially available
flight simulator developed by Laminar Research. X-
Plane has received FAA certification as a training sim-
ulator when used with certain hardware configurations
because of its high fidelity simulation of flight model
and visualization. X-Plane uses blade element analysis
to drive it’s flight model. Included with the package
are the simulator, global scenery generated using data
from NASA’s terrain mapping radar missions, an airfoil

designer, and a plane maker application. X-Plane has
been used for testing and pilot training for the Carter
Copter and Space Ship One experimental vehicles. We
have successfully used X-Plane to test a micro UAV
controller developed in MATLAB.

Microsoft Flight Simulator - The Microsoft Flight
Simulator[10] provides detailed visuals for the aircraft
and environment. It uses a less accurate lookup table
driven flight model for aircraft simulation, however it has
been used by the US Navy as a training aide for pilots.
Microsoft provides an SDK as a download for Flight
Simulator which provides access to simulator data via a
network, weather, terrain, scenery, instrumentation, and
aircraft creation. Aircraft must be created in a 3rd party
3D modeling application such as GMax or Lightwave.

Webots - Webots PRO[16], [17], [18] is a ground robot
simulator that uses the open source Open Dynamics
Engine[19] for it’s physics simulations and an extended
VRML97 based environment. Webots provides several
small built in robots such as the Khepera, Pioneer2, and
Aibo as well as the means to import custom robots from
3rd party modeling applications using the VRML97
format. World size is defined by the user and can be as
large as needed. Webots PRO supports various sensor
types such as camera, range finder, GPS, light sensors,
etc; as well as effectors like grippers, limbs, and wheels.
WebotsPRO can compile controllers created within the
simulator to work on real robots given that the hardware
is supported by the compiler. Hohl in demonstrates the
remote control of and controller transfer to an Aibo robot
through Webots.

Simbad - Simbad[20] is an open source Java based
3D robot visualization environment. It does not support
any physics calculations, only simple collision detection
with objects placed in a flat world. The goal of this
simulator is to provide a simple environment to test robot
controllers and AI algorithms, as such the support for
high fidelity visualization is not present. The standard
sensors are sonar, camera, light, and bump sensors.
Robots are represented as simple geometric primitives.
As an open source project the ability to add new sensors
is present in this simulator. Simbad will run on any
operating system with a Java client with the Java3D
library.

eyeWyre - eyeWyre Studio[21] is a development en-
vironment and simulator for BASIC Stamp 2 micro-
controller based robots. The eyeWyre provides physics
simulation in small environments. The environments and
robots are limited to those provided with the package,
making it nearly useless for a research environment.

Microsoft Robotics Studio - Microsoft’s Robotics
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Studio[22] provides a networkable, service-based-
architecture framework for developing real robots. The
package includes a simulation runtime that is similar
to a game engine in terms of physics and visualization
capabilities. Robotics Studio uses the Ageia PhysX
physics engine, which is one of the highest fidelity
engines available to date. At this point Robotics Studio
is a beta release and is incomplete in terms of features.
Currently users are limited to constructing robots with
the built in sensors and effectors. The system require-
ments are relatively narrow; Robotics Studio will only
run on Windows XP or Vista and requires Visual Studio
2005 to run. Robots must be programmed in C# or
VisualBasic.NET.

MATLAB - MATLAB[23] is a numerical simulation
environment that supports visualization via a Virtual
Reality toolkit. Toolboxes are available that provide
quick access for building various robot controllers based
on fuzzy logic, neural networks, and genetic algorithms.
MATLAB can communicate via network with other
simulation environments that may provide better physics
simulation and visualization for rapid controller proto-
typing. The MATLAB, Simulink, and the VR Toolbox
set runs on Windows, Mac, and Linux and is available
from Mathworks for $1200. Additional toolboxes are
$200 each. MATLAB has been primarily used to simu-
late unmanned systems using first order dynamics for
evaluation of coordination and control algorithms for
multi-robot teams. MATLAB has been successfully used
for UGV[24], [25]; UAV[25], [26], [27]; USV[28], [29];
and UUV[30], [31], [32], [33] simulations.

Unity - The Unity[34] engine is a Macintosh based
commercial game engine and development environment.
While Unity is a blank slate as far as included content,
it uses the Ageia PhysX engine for physics simulation.
Unity provides both Javascript and C# APIs as the
primary means of controlling simulation objects. The pro
version includes the ability to directly access OpenGL,
create C++ plugins to add features to the engine, and
the ability to compile for Windows.

IV OPEN SOURCE SIMULATORS

MissionLab - “Behavior-Based Formation Control for
Multirobot Teams”[35], Balch and Arkin, presents the
use of reactive behaviors for formation control in simu-
lation and on real robots using two architectures, AuRA
and the UGV Demo II architecture. The current version
of MissionLab uses a distributed architecture, allowing
various pieces of the simulation to run on different
machines. This also allows the same interface to be used
to control real robots. Visualization is provided by both
2D and low fidelity 3D OpenGL displays. The current

version of MissionLab supports all examined vehicle
types: UGV, UAV, UUV, and USV. The 3D display can
render terrain generated from a height map with along
with a low poly model of robotic vehicles. The 2D
displays can render maps and image overlays as well as
custom graphs. MissionLab does not appear to support
any physics simulation which would be necessary for ve-
hicle simulation. Extensive documentation is provided,
but C/C++ is the only language supported.

Player/Stage/Gazebo - The Player/Stage/Gazebo
project[36] is an open source project that provides
a 2D and 3D environment for robot testing. Stage
and Gazebo are networkable simulation environments,
Player defines an interface for robots and sensors
to communicate with Stage and Gazebo. Stage is a
simple 2D environment that provides basic collision
detection and range sensor modeling. Gazebo is a 3D
environment that brings the basic simulations of Stage
into the 3rd dimension. Gazebo provides a camera
sensor as well as the ability to use complex objects in
the environment. Gazebo presents a simple low fidelity
OpenGL based visualization of the environment. While
Stage does not support physics simulation, Gazebo can
make use of the ODE physics engine.

SimRobot - SimRobot[37], described in “SimRobot -
A General Physical Robot Simulator and its Application
in RoboCup”[38], Laue, et al., is a physics based robot
simulator with a 3D OpenGL based display. SimRobot
uses the Open Dynamics Engine[19] for physics cal-
culations which gives it an edge over many custom
simulators. The use of a custom OpenGL visualization
environment however could be improved on by using a
preexisting rendering engine like OpenSceneGraph[39].
Robots and environments are specified using XML by
specifying part types and positions. Several sensor types
are supported, including cameras, range sensors, touch
sensors, and actuator state. SimRobot was used by the
German team for the 2005 RoboCup competition, how-
ever it is not limited to RoboCup robots or environments.
The paper shows an office environment simulated in the
SimRobot simulator.

FlightGear - FlightGear[40] is a open source simula-
tor that uses by default a blade element analysis, similar
to X-Plane. Global scenery is available for FlightGear.
Aircraft models must be created in an external 3D mod-
eling application and an XML file describing the various
aircraft features must be created by hand. FlightGear has
been used for various academic projects. For example,
Summers, et al. in [41] used FlightGear to simulate a
UAV carrying environmental sensors and Cervin, et al.
in [42] used FlightGear to create an interface for a real
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UAV. FlightGear is available as a free download under
a GPL license. The entire source code is available for
modification and is under constant development. The
application runs on Windows, Mac, and Linux operating
systems.

The Project MAKO Simulator - SubSim - Bräunl, et. al
present a simulator developed for an international AUV
competition, similar to RoboCup. SubSim[43] is a cus-
tom design that uses the Newton Game Dynamics[44]
physics engine along with the Physics Abstraction Layer
(PAL)[45], the wxWidgets[46] windowing framework,
OpenGL for 3D rendering, and tinyXML[47] for vehicle
dynamics definition. The plugin based architecture al-
lows users to extend and modify the simulator as needed.
The PAL allows several physics engines to be used and
higher level sensors and effectors to be modeled. For
instance PAL is used to model the DC motors that drive
the propulsion system. The simulator supports standard
sensor types such as inertial, range, touch, and camera.
Visualization is via simple textured OpenGL display. 3D
Models for visualization must be in the open source
Milkshape[48] 3D format. SubSim is one of the more
complete, readily available UUV simulators. It is very
extensible and thus can be modified for many UUV
simulation tasks.

V DISCUSSION & CONCLUSIONS

This report concludes that it is no longer necessary
to build a robotic simulator from the ground up. There
are many available simulators and game engines that
can be used to simulate a robotic vehicle with high
physical and functional fidelity. Any modifications or
enhancements made to these existing simulators should
be released to the community to drive the capabilities
of available robot simulators. We can also conclude that
while there has been some work using simulators for
human robot interaction studies, there has been no work
that addresses robot simulation for use as a training tool.

This paper presented a brief review of the significant
features of 14 commercially available or open source
simulators. Due to space considerations we were unable
to include a more thorough evaluation of each simulator
in this work, this will be addressed in forthcoming
publications. Table I lists the simulators reviewed and
identifies how each meets the requirements put forth in
Section II. MATLAB is the tool of choice for many
simulation applications, however it simply does not pro-
vide the real time high fidelity visualization or physical
simulation necessary. MATLAB can be used success-
fully in conjunction with the following three simulation
packages for robot controller rapid prototyping. Three
available simulators meet the fidelity requirements that

have been outlined: the Unity game engine, the X-Plane
flight simulator, and the Microsoft Robotics Studio. Each
of these provides top of the line physics simulation and
3D visualization in addition to being extensible. Of those
only Unity has a high cost, however this should not rule
out Unity as a potential engine as it is much easier to
use.
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