
Lazy Reconfiguration Forest (LRF) - An Approach for Motion Planning
with Multiple Tasks in Dynamic Environments

Russell Gayle∗
Department of Computer Science

University of North Carolina
Chapel Hill, North Carolina, USA

rgayle@cs.unc.edu

Kristopher R. Klingler† and Patrick G. Xavier†
Robotics and Intelligent Systems

Sandia National Laboratories
Albuquerque, New Mexico, USA
{krkling, pgxavie}@sandia.gov

Abstract— We present a novel algorithm for robot motion
planning in dynamic environments. Our approach extends
Rapidly-exploring Random Trees (RRTs) in several ways. We
assume the need to simultaneously plan and maintain paths
for multiple tasks with respect to the current state of a moving
robot in a dynamic environment. Our algorithm dynamically
maintains a forest of trees by splitting, growing and merging
them on the fly to adapt to moving obstacles and robot motion.
In order to minimize tree maintenance, we only validate the task
paths, rather than the entire forest. The root of the inhabited
tree moves with the robot. Dynamic re-planning is integrated
with tree and forest maintenance. Coupling the robot motion
with the planner enables us to support multiple tasks, for
example providing an “escape” path while moving to a goal.
The robot is free to move along whichever task path it chooses.

We highlight the work by showing fast results in simulated
environments with moving obstacles.

I. INTRODUCTION

In many real world situations, a robot attempting to plan
must cope with incomplete information about the current
and future state of its environment. The lack of information
can include how objects move, which objects move, or even
the environment itself. Additionally, robots are susceptible
to errors in sensing or localization which may cause them to
deviate from a given path or discover that they are no longer
on it. We desire a framework for robot path planning and
execution designed to address these issues. Such a framework
would broaden system capability and add a layer of fault
tolerance to complex robot motion. Unfortunately, traditional
motion planning algorithms for complex robots are often
unsuitable for dynamic environments.

Standard probabilistic approaches such as Probabilistic
Roadmaps (PRMs) or Rapidly-exploring Random Trees
(RRTs) have been extremely successful for planning in high
dimensional and complex configuration spaces. However,
large portions of the explored space representation can be-
come invalidated when obstacles move or information about
the environment is updated [1, 2]. This results in expensive

∗ This work was supported by a High Performance Computational
Science Graduate Fellowship funded by the United States Department of
Energy and administered by the Krell Foundation.

† This work was supported by the United States Department of Energy
under Contract DE-ACO4-94AL85000. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy.

Fig. 1. A three degree of freedom robot planning in a dynamic environment.
The circles are moving obstacles, while the rectangles are stationary.
Segments represent forest edges, and are projected to the (x,y) plane. Thicker
segments represent different robot behavioral choices or goals, and thinner
segments are portions of the forest. We interactively maintain these task
paths at run-time.

updates to rebuild the graph or tree. Several extensions to
these algorithms have been made which help considerably,
but often at the cost of additional assumptions such as having
complete knowledge of obstacle motions.

In the traditional paradigm for using motion planning in
robotics, the planner is given a problem and tries to plan
a solution. The planner then hands over any found solution
path to the robot to execute, and the planner discards its
computations. In the emerging paradigm, as exemplified by
[3, 4], the motion planner stays active and has persistent
internal representations. Such a planner can interact with
the robot and update internal representations continuously
to enable it to revise the current plan or plan for a new task
quickly. We suggest that the motion planner should be capa-
ble of planning and updating multiple paths simultaneously
to enable the robot to have task options it can switch to
quickly.

We introduce a novel framework for motion planning in
dynamic environments that follows this emerging paradigm.
Our framework supports the coordination of robot motion
and sensing with path planning. At the core of our approach

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeD11.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1316

is a forest of RRTs. The tree that contains a node representing
the robot’s current state is called the inhabited tree. To
support a robot capable of choosing among multiple tasks,
our planner attempts to create and update a task path for
achieving each task it has been given. When the robot
chooses a task, the planner directs it along the corresponding
task path, which we call the active path. As the robot
moves and/or a change in the environment is noticed, the
planner reconfigures the task paths, inhabited tree, and forest
as necessary. Incremental growth and pruning occur as an
online procedure while the robot is moving. As the planner
is informed of robot motion, it shifts the inhabited tree’s root
to keep it associated with the robot’s current state.

We call our planning approach a Lazy Reconfiguration
Forest (LRF) because it lazily maintains the forest by grow-
ing and pruning it. The growing only occurs incrementally
when task paths need to be (re-)discovered. The pruning
only removes the invalidated nodes and edges rather than
entire subtrees. Our preliminary results in combining lazy
pruning and incremental growth have been promising in both
performance and functionality. The work reported here builds
on both [3] and [4].

The remainder of the paper is organized as follows.
Section II describes some related work in the areas of
motion planning with an emphasis on dynamic environments.
Section III gives an overview of our LRF approach and the
key ideas behind it. Sections IV and V provide details about
the framework and planning algorithm. Sections VI and VII
present our preliminary results and conclude by suggesting
future work.

II. RELATED WORK

The generic motion planning problem requires a robot to
move within some environment from a start state to a goal
state. This problem has been heavily researched and has a
rich history of results. For a review of the field and coverage
of many theoretical and practical methods, see [5–7].

Deterministic motion planning methods are considered
practical only for low-degree-of-freedom systems and sim-
ple environments. Randomized methods offer probabilistic
completeness while allowing practical performance for a
wider range of applications. The most popular of these
are Probabilistic Roadmaps (PRMs) and Rapidly-exploring
Random Trees (RRTs) [1, 2]. The former places random
samples throughout the robot configuration space C and
searches for nearby neighbors to create a graph or roadmap.
After connecting the start and goal configurations to this
roadmap, a path can be found using any shortest path graph
algorithm. The RRT method grows a tree in configuration
space and is described in more detail in Section III-B.

In many real-world situations a robot must operate in an
environment with moving or otherwise changing obstacles.
Such dynamic elements greatly increase the difficulty of
motion planning. In fact, motion planning for a single disc
with bounded velocity among rotating obstacles is PSPACE-
hard [8]. However, there have been many attempts to provide
practical methods to cope with changing environments. For

example, the D* deterministic planning algorithm repairs
previous solutions instead of re-planning from scratch [9,
10].

There have been two types of approaches for adapting
randomized planners to dynamic environments. The first type
includes both PRMs and RRTs that reuse previously com-
puted information to aid in finding a new path [3, 4, 11–13].
The most relevant to our work are [3] and [4]. The Dynamic
Rapidly-exploring Random Tree (DRRT) proposed by [4]
trims away subtrees of nodes found to be invalidated by an
obstacle and causes regrowth using the trimmed tree if the
solution path is invalidated. Discussion of the Reconfigurable
Random Forest of [3] is integrated into Section III-C.

The second type of approach integrates obstacle motion
directly into the planning process. Some variations plan
directly in the C × time space. For example, the method
of [14] generates a roadmap in this space. Other approaches
additionally model differential constraints placed on the
robot [15]. From the dynamics information, motion bounds
can be computed from trajectory information to remove the
chance of being in a state where a collision is definitely going
to occur [16]. By storing the state of the entire environment at
each configuration, planning can allow for deforming robots
in deforming environments [17]. Other approaches attempt
to leverage ideas from both deterministic and randomized
algorithms to create a hybrid planner [18, 19].

III. OVERVIEW OF APPROACH

We now provide an overview of the Lazy Reconfigurable
Forest approach with its underlying ideas, beginning with an
introduction of additional definitions and notation.

A. Notation and Definitions

For each motion planning task, we consider the robot, R,
to be either a rigid body or a set of rigid bodies connected
in some fashion by joints. We call the set of all possible
configurations the configuration space, C, where each con-
figuration q ∈ C describes the position and orientation of the
robot or its components. We consider the robot as a time-
varying body, whose configuration at time t is R(t). We
assume that a metric ρ is defined on C.

The robot R exists in a 2D or 3D workspace along with a
set of n obstacles O = {o1, o2, . . . , on}. Each obstacle can
vary over time, and its configuration at time t is described
by oi(t). The motion of each obstacle need not be known
a priori. We define the space Cfree(t) to be the set of all
non-colliding configurations at time t. It should be noted
that an explicit representation of Cfree is not practical, but
by using collision detection algorithms we can determine if
a configuration q is in Cfree .

Problem Formulation: Given an initial configura-
tion qstart and a final configuration qgoal , we wish
to find a sequence of robot configurations Q =
{R(t0), R(t1), . . . , R(tn)} such that the robot R(ti) ∈
Cfree(ti) for all ti where R(t0) is qstart and R(tn) is qgoal .

WeD11.3

1317

Single RRT Forest of RRTs

Root Root

Root Root

Root
Root

Root Root

Root

Goal Goal

Root Root

Goal Goal

Goal Goal

Goal Goal

(a)

(b)

(c)

(d)

qrand
qrand

qrand qrand

qnear

qnear

qnew qnew

qnear

qnewqnew

qnear
qnear

qnear

qnew
qnew

qnew

Fig. 2. Single RRT (left) vs. Forest of RRTs (right) in dynamic envi-
ronments. (a) An obstacle moves left toward the initial tree. (b) Portions
of the (inhabited) tree become invalid due to the obstacle. These portions
are removed. In the single-RRT case (left), this results in over-pruning, but
in the forest-of-RRTs case (right) sub-trees not invalidated by the obstacle
become new trees in the forest. (c) The structures are incrementally grown
toward a sample configuration. In the forest of RRTs (right), two trees are
merged, eliminating one root. (d) The forest structure (right) reaches the
goal node in fewer growth steps than the single tree approach (left).

T .root(qstart);
repeat

qrand = RandomSample();
qnear = NearestNeighbor(qrand , T);
qnew = Extend(qnear , qrand);
if Connect(T , qnear , qnew) then

T .addNode(qnew);
T .addLink(qnear , qnew);

end
until qnew ∈ T ∧ Connect(T , qnew , qgoal) ;

Algorithm 1: Psuedo-code for a Rapidly-exploring Random
Tree (RRT) construction algorithm.

B. Rapidly-exploring Random Trees

Generally, RRTs work by growing a search tree in the
configuration space until the goal configuration is reached.
Algorithm 1 is an outline for RRT construction. Each step
in the algorithm begins by selecting a random configuration,
qrand . Next, the nearest neighbor to qrand in the tree, qnear ,
is found. The algorithm then attempts to grow the tree from
qnear toward qrand growing up to a fixed distance and creates
a node qnew . If the link between qnear and qnew is valid, then
both the link and the node are added to the tree.

There are several motivating factors for using RRTs in
planning. One factor is that rapid exploration of C-space
occurs naturally. The greater the fraction of Cfree that is
unexplored, the greater that uniform random sampling biases
the tree exploration toward its unexplored portions. Addition-
ally, standard RRTs are less susceptible to narrow passage
problems than probabilistic roadmap (PRM) planners, since
the likelihood of generating a sample that will cause growth
through a passage is higher for RRTs than PRMs.

The bi-directional RRT variation grows RRTs rooted at the
start and goal toward each other until they can be connected
[2]. The basic RRT algorithm has been extended in other
ways to improve performance. See, for example [20, 21].

C. Reconfigurable Forests

Forest-based planners maintain multiple trees instead of
just a single tree [3, 22]. These planners plant several tree
roots throughout Cfree and grow an RRT from each one, thus
generalizing bi-directional RRT. When trees are sufficiently
close, they can be merged to create a larger tree.

Li and Shie proposed the Reconfigurable Random Forest
(RRF), which supports dynamic environments and is more
suitable for multiple-query motion planning. When an ob-
stacle moves, invalid edges are removed and the forest is
regrown to fill empty portions [3]. The RRF also includes
a forest pruning algorithm designed to reduce the number
of nodes in the trees and results in a forest that concisely
represents Cfree .

Our framework combines ideas from RRF and DRRT. We
propose a Lazy Reconfiguration Forest (LRF) with the goal
of improving efficiency of forests in dynamic environments
while maintaining beneficial properties of RRF. By taking a
lazy evaluation approach to updating tree-validity, we seek

WeD11.3

1318

to minimize unnecessary computation. The LRF only checks
links along the task paths, similarly to how DRRT focuses on
links in the path to the goal, but unlike RRF, which checks
moving obstacles against all tree edges. However, removing
links in the LRF spawns new trees, as RRF does, instead of
destroying entire subtrees as DRRT does.

As we illustrate in Figure 2, DRRT performance can
suffer due to over-pruning (Fig. 2b, left) and lengthy path
rediscovery (Fig. 2d, left). Over-pruning occurs when large
portions of the tree, or equivalently explored regions of Cfree ,
are removed due to obstacle motion. This results in more
construction steps for path rediscovery since more growth is
necessary. LRF seeks to overcome these problems (Fig. 2,
right) while maintaining efficiency.

Algorithms that are particularly important in the LRF
framework are described in Section IV.

D. Robot Motion and Multiple Tasks

For future applications, we need a general framework for
planning that is compatible with a robot that can reason
about its state and the environment, request path planning and
plan maintenance for multiple tasks, select among multiple
tasks, and choose to switch tasks on the fly. Such a robot
will require task paths corresponding to alternative tasks
that can be switched to, enabling it to detour immediately
from the originally-planned or active path as needed. This
could include moving toward the goal when no explicit
path exists, moving away from an obstacle that moves too
close, or moving to a known safe configuration. The LRF
framework supports this need by continuously updating the
inhabited tree. This update includes setting the current robot
state (configuration) followed by growing and merging trees.
Updating obtains and re-acquires task path planning solutions
as necessary. If the robot discovers its state is disconnected
from the inhabited tree, it has the option to create a new tree
and grow to reconnect.

Allowing the robot to move somewhat freely along the
forest forces a more coupled relationship between robot mo-
tion and the planner. The LRF framework proposes several
interface conditions:

• The robot must provide the planner with regular, fre-
quent updates about what it knows about the environ-
ment and what tasks it wishes to accomplish.

• The planner must provide the robot the next task path
segment to execute, with sufficient lookahead agreed
upon with the robot.

• When the robot is moving, the root must shift to the
next anticipated node that the robot will arrive at on the
current active task path. Note that the anticipated state
is what we really mean by current state used elsewhere
in the paper to simplify the discussion.

• Aside from the start state, obstacles, and environment,
a path planning task for a given robot may be specified
by a goal state predicate or by a weight function. These
weights can be directly evaluated or accumulated along
a path to decide which path best satisfies a given task.

for Each path pi do
for Each link ej along pi do

if Not Connect(ej .Tree, ej .Begin, ej .End) then
RemoveLink(ej);

end
end
for Each node nj along pi do

if nj is invalid then
RemoveNode(nj);

end
end

end

Algorithm 2: The PrunePaths algorithm.

The tree structure of the LRF is exploited in order to maintain
efficient evaluation of the task metrics. We emphasize that
since RRT is good for exploration in general, it is an ideal
candidate for planning multiple paths from a single start point
for state-predicates or state-cost task metrics.

We further describe how the LRF framework is designed
to support a robot architecture that integrates task planning
and task selection with sensing and motion in more detail in
Section V.

IV. LAZY RECONFIGURATION FORESTS

We now describe a reconfiguration forest that is able to
adapt at run-time through maintenance of the existing trees
and by adding new growth.

A. Reconfiguration Forest Basics

We call our planning structure a reconfiguration forest
since its forest structure can frequently change at runtime.
We assume that each node in a tree knows its parent and
its children. Two basic operations to reconfigure trees in the
forest are tree-split and tree-merge. The tree-split is used
when pruning the forest, and the tree-merge is used when
growing it.

Our tree-split implementation takes either a single link or
a single node and breaks the tree at this point. In the case
of a single link, the result is two trees, whereas a split at a
node will result in all of the links incident to that node being
removed along with the node. Thus, the resulting number of
new trees will be equal to the number of children of the node
before its removal.

Our tree-merge implementation takes two nodes in two
different trees and adds a link between them. One of these
nodes will be the child of the other in the resulting tree. If
the node that will be the child is not the root of its current
tree, root shifts are repeated down the path to that node until
it becomes the root. (Shifting the root to one of its children
simply reverses their parent-child relationship.) That node is
then made a child of the other linked-to node, which is made
its parent. The root of the tree of the node made the parent
is the root of the resulting tree. If the two nodes linked are
sufficiently close, then they are merged to become one node.

WeD11.3

1319

qrand = RandomSample();
for Each Tree Ti do

qnear = NearestNeighbor(qrand , Ti);
qnew = Extend(qnear , qrand);
if Connect(Ti, qnear , qnew) then

Ti.addNode(qnew);
Ti.addLink(qnear , qnew);

end
for Each Tree Tj , such that i �= j do

qnear ,j = NearestNeighbor(qnew , Tj);
if Connect(Tj , qnear ,j , qnew) then

MergeTrees(Ti, Tj);
end

end
end

Algorithm 3: The general LRFGrow algorithm.

B. Forest Maintenance

The maintenance steps allow our forest to automatically
adjust to moving obstacles. This involves a sequence of
pruning and growing steps. Pseudo-code for these algorithms
is given in Algorithm 2 and Algorithm 3, respectively. The
pruning steps are necessary to remove portions of the forest
discovered to be invalid. The growth steps are necessary to
repair task paths and explore the configuration space.

C. Forest Pruning

LRF takes advantage of a convenient property of a tree for
pruning. The convenient property is that a path to the root
from a node can be found by following the chain of parent
pointers in reverse. The pruning algorithm simply walks the
current task paths from leaf to root and checks whether each
link and node are valid. Invalid links and nodes are removed
by using the tree-split operation (see Algorithm 2). Pruning
in this manner localizes the work to the subset of the forest
that is most important to the task solutions.

Note that this method is dependent upon a path being
defined from the root of the inhabited tree to some other
node. Therefore, we periodically move the root when the
robot is moving. This is further discussed in section IV-E.

D. Forest Growth

Forest growth generalizes bi-directional RRT by attempt-
ing to grow multiple pairs of trees into each other. First, a
random sample qrand is generated. For each tree Ti in the
forest we try to extend Ti to qrand via some node qnew ,i . We
check trees Tj where i �= j to see whether any node in Tj

is within the merging threshold distance of qnew ,i . If some
node is close enough, then trees Ti and Tj are merged (see
Algorithm 3).

Although the runtime of the growth algorithm is theo-
retically quadratic in the number of trees, in practice the
number of trees has remained relatively small once the initial
forest is built. We note that there are other growth techniques
that the robot can choose to use. These options include
extending a single random tree toward qrand , extending some

Goal

Safety Task Path

Toward Goal

Task Path

Fig. 3. Multiple Task Paths - Our planner maintains several task paths.
Each path allows the robot to have a plan for a different task. The thick
line represents a safety task path which is overall farthest away from the
obstacle. The dotted line is a task path which would move the robot to the
node nearest to the goal, even though no path to the goal exists. The two
task paths overlap on the thick dotted line.

specified tree toward qrand , or growing trees directly toward
each other. Other techniques can be created by combining
some of these growth methods with a biased random sample
generator.

We have experimented with several of these behaviors,
but found that it was often sufficient to perform the growth
strategy in which each tree grows toward a single random
configuration.

E. Moving the Root

One feature in the LRF approach is that the node in
the inhabited tree corresponding to the robot’s current state
is made the root of the inhabited tree. Currently, this is
done for conceptual reasons and to simplify implementation.
Conceptually, moving the root of the inhabited tree with
the current robot state ensures that the state is associated
with a node having a unique property within the tree.
In implementation, it enables us to reduce various sub-
algorithms largely to following parent pointers to the root
of a tree, as in Section IV-C. If the planner’s knowledge
of robot state is updated continuously, then the root can be
moved incrementally, requiring no more than a single shift
per update.

V. ROBOT MOTION AND TASKS

While standard methods for obtaining robot motion from
a planned path should apply, the LRF framework was aimed
at solving an additional set of tasks. The robot is allowed
to adjust its active task path based upon what it believes
it should be doing next. To accommodate this behavior, a
coupled approach between planning and motion is used in
conjunction with multiple definable robot tasks. While these
concepts could be used independently of LRFs, the integrated
LRF framework provides a relatively simple and effective
solution.

A. Coupling Planning and Motion

When the robot’s motion and planning are coupled, the
robot and planner must work together to complete a task.

WeD11.3

1320

Fig. 4. Snapshots showing a robot moving in a dynamic environment and the LRF it is using. Among the task paths shown, the robot is mostly focusing
on the task to move to the goal at upper right. The third frame shows a state where that path has just been invalidated by a moving obstacle and is being
re-planned.

for Each i = 0 to k do
qrand = RandomSample();
Forest.addRoot(qrand);

end
while Robot has not reached qgoal do

Query robot about environment and tasks;
PrunePaths(); //see Algorithm 2
if Paths to solve tasks do not exist then

LRFGrow(); //see Algorithm 3
end
Update task paths;
Send robot next waypoint for the active task;

end

Algorithm 4: Top-level algorithm followed by the planner in
the LRF framework: initialize the LRF structure and incremen-
tally grow, prune and maintain it according to the robot motion,
task path plan requests, and updated obstacle information.

This requires an interface much like a feedback loop between
the planner and the robot. The robot specifies its current
or lookahead location, what it senses in the environment,
and its current task to the planner. Through growth and
pruning steps, the planner attempts to adjust to changes in
the environment or task, and reports an updated command to
the robot. By construction, the robot is associated with the
tree it is traversing in the forest, the inhabited tree.

B. Multiple Robot Tasks

The overall performance and behavior of the planning is
closely related to the tasks being planned for the robot. We
generalize a task path to be a path on the robot’s tree which
optimizes or satisfies a task metric function. A task metric
function is a scalar function, B : C(t) → R that is used to
assign weights to a node at time t. The task path associated
with a given task is determined by either finding the required
value among the nodes, the lowest value among the nodes,
or the lowest cost accumulated on each path.

In our current, preliminary implementation, we have de-
fined three tasks: going to the goal, going toward the goal,
and moving into a safe configuration. The first two utilize the

same task metric function, our configuration space metric,
ρ. For each node q, we set the task weight to be B(q) =
ρ(q, qgoal). The going to the goal task path is set only when
the metric value reaches 0, signifying that the goal has been
found. If no path to the goal exists, the going-toward-the-goal
task path is set to find to the lowest value for that metric.

For determining the safe configuration task path, we
associate each node with a base cost B(q) = 1

dk (for
example, k = 1 or 2) where d is the minimum distance
from the obstacles to the robot in the node’s configuration.
A safe configuration task metric function should penalize
paths which travel near obstacles and reward paths to nodes
far from all obstacles. Our method periodically traverses the
tree while computing accumulated costs from the root to
each node. We then select the path from the root to a node
that has the minimal accumulated cost. The accumulating
function is not limited to simple sums, but could include
any function that can be calculated in a very small number
of tree traversals.

C. Robot Integration with Planning

We use the proposed framework with robot motion to solve
a planning problem with dynamic obstacles. Pseudo-code is
given in Algorithm 4. As a preprocessing step, we plant
a fixed number of tree roots throughout the environment.
Optionally, these roots can be grown during preprocessing so
that the forest is mature at start. Once we allow the robot to
move, it evaluates the task path metrics and queries the next
node(s) from the planner. At each step, the robot determines
whether or not any additional growing is necessary. The
planner grows and prunes the forest based on information
from the robot. This occurs until the robot accomplishes its
chosen task.

The robot is responsible for the overall performance be-
cause it determines when updates to the planner should occur.
We therefore have the robot grow the forest only when no
path to the goal exists or when the robot senses danger (with
respect to obstacles) above a threshold. Similarly, the task
paths are only updated when the forest has been changed
or when the obstacles have moved too close to the safe
configuration task path.

WeD11.3

1321

Fig. 5. Path traced by the robot in the example in Figure 4. Obstacles are
shown at time of task path completion.

VI. RESULTS AND DISCUSSION

A. Results

We have implemented the approach on a Dell M60 Mobile
Workstation with a 1.7 GHz Pentium M processor and 2
GB of RAM. The targets of our research include high-
degree of freedom (DOF) robots with complex configuration
spaces operating in environments with numerous moving
entities. However, we have been testing the preliminary im-
plementation on 2DOF and 3DOF robots in simple simulated
environments to get a feel for the algorithms and how the
tree and forest structures behave.

Figures 4 and 5 show a 2DOF point robot, and Figures
1 and 6 show an arrow-shaped 3DOF robot with two trans-
lational and one rotational degree of freedom. The circles
and rectangles in the figures represent obstacles. Rectangular
obstacles are fixed, and the circular obstacles are allowed to
move. Figure 4 shows snapshots of the 2DOF LRF as the
robot moves from a start to a goal. Figure 1 is a single
snapshot of the 3DOF LRF simply projected into the plane.
Figures 5 and 6 show the paths executed, with obstacles after
task completion.

In the example in Figure 4 the robot (blue dot) is attempt-
ing to to build and maintain paths for three tasks. The first
task is to get to a goal location (blue square at upper right).
The second task is to move toward the goal location. The
third task is to flee from the two moving obstacles (yellow
circles). Four snapshot frames are presented to give a feel for
the very actively changing forest. In the example the robot
and obstacles are moving quickly while the LRF is regularly
reconfiguring to adapt to these changes.

Notice that in the first frame there are several trees, each
with its own root (red dots). Here, the robot has found a task
path to move toward the goal (green line) and a task path
to flee from obstacles (purple line), but has not found a task
path to go to the goal.

In the second frame, the trees have connected to each

Fig. 6. Path traced by the robot in the example in Figure 1. Obstacles are
shown at time of task path completion.

other while the robot has been traversing the forest. The
connectivity has allowed for a “go to the goal” task path (red
line) to be discovered. Note that the “flee from obstacle” task
path (purple line) has been updated.

In the third frame we see that the obstacle has caused
pruning of the task path to the goal (red line). The ‘move
toward the goal” (green line) and “flee from obstacle” (purple
line) task paths have also been updated.

In the final frame, growth has lazily reconfigured the tree
to allow a new “move to the goal” task path (red line) to be
discovered. Additionally, the “flee from obstacle” task path
(purple line) has been updated.

The implementation used here had few optimizations. It
used a naive nearest neighbor search as well as a simple
bounding-box based collision detection scheme. Link queries
were performed in a similar manner. Despite this, our algo-
rithm ran at interactive rates. Average step times were 0.75
ms for the 2DOF case, and about 8.5 ms for the 3DOF case.
The dominant difference in times between the 2 DOF and 3
DOF examples is associated with the differences in collision
detection costs.

B. Discussion

There are several advantages to the proposed LRF ap-
proach. It is less likely to have over-pruning problems in
dynamic environments than previous work. As a result, it
has quick path rediscovery. In fact, the added cost of forest
growth can be spread out over many robot steps and is made
up for by quicker rediscovery time and fewer necessary re-
growth steps. The multiple task paths idea allows the robot
to make decisions about what to do in its environment while
also being able to represent multiple tasks. While not as
simple to implement as a single tree approach, the general
forest structure is not difficult to implement.

There are weaknesses to the current LRF implemention
as well. As with other RRT-based approaches, there is no
guarantee goal configurations will be reached. Generally,

WeD11.3

1322

such probabilistic algorithms cannot easily detect when no
solution exists. The dynamicity of the environment can also
inhibit finding a solution even if one exists. It would not
be difficult to create a case, such as crossing a road with
cars coming in each direction, where either a collision would
occur or the robot would never attempt to cross, depending
on its behavior choices. Also, the generated paths may be
far from optimal. Some online path smoothing may help the
task paths, but more fundamental problems can occur that
cause inappropriately twisty, “vine-like” trees.

VII. CONCLUSION

We have proposed a framework for motion planning in
a dynamic environment. The approach efficiently uses a
forest of RRTs in order to effectively maintain the explored
portions of the free configuration space. The LRF structure
itself has a wide range of potential applications that require
efficient planning and replanning. It can serve as a tree-
based multiple-query planner for high-dimensional problems
from crowd simulation to control of robotic arms. Coupled
behavior between the robot and the planner along with
defined task metrics allow it to make decisions about where
it needs to go in the environment. It should be noted that it is
not necessary to use the multiple task path ideas along with
the LRF structure. Rather, LRF makes implementing multiple
tasks easy and accommodates them efficiently. Similar ideas
could be applied to other planning structures like PRMs,
but the time to find and update task paths is likely to be
greater. We have highlighted the potential of our approach
with results from a preliminary implementation for robots
with two and three degrees of freedom.

There are numerous directions for future work. For the
LRF framework itself, an pruning algorithm that accounts
for expected obstacle trajectories could potentially improve
the quality of generated paths by determining areas of a
path which may result in a collision in the future. Trajectory
information could also be used as part of a task path metric
in order to help the robot move when it needs to avoid an
obstacle. Heuristics could help to generate nodes for a more
balanced tree such as that described by Urmson, et al [23].
Careful re-rooting, pruning, or (re-)growing could further
help to improve tree quality, including conciseness [3]. In
order to generate smoother paths, a runtime look-ahead could
be used to skip nodes which are close to each other. As
long as obstacle motion is continuous, it is likely that certain
task paths will change in a somewhat coherent manner. This
could be exploited to improve the performance of task metric
function and task path updates. This framework could work
well within a hierarchical framework in a task that requires
some global and local planning and re-planning. We are
looking into adapting these ideas for kinodynamic planning
solutions. Finally, we plan to deploy the algorithm on a multi-
processor mobile robot.

REFERENCES

[1] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Automat., pp. 12(4):566–580, 1996.

[2] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), San Francisco, CA,
April 2000.

[3] T.-Y. Li and Y.-C. Shie, “An incremental approach to motion planning
with roadmap management,” Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2002.

[4] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,”
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), May 2006.

[5] J. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1991.

[6] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[7] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[8] J. Reif and M. Sharir, “Motion planning in the presence of moving
obstacles,” IEEE Symposium on Foundations of Compuer Science,
October 1985.

[9] A. Stentz, “The focussed D* algorithm for real-time replanning,”
Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI), 1995.

[10] S. Koenig and M. Likhachev, “Improved fast replanning for robot
navigation in unknown terrain,” Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2002.

[11] P. Leven and S. Hutchinson, “Toward real-time path planning in chang-
ing environments,” Proceedings of the fourth International Workshop
on the Algorithmic Foundations of Robotics (WAFR), 2000.

[12] M. Kallmann and M. Mataric, “Motion planning using dynamic
roadmaps,” Proceedings of the IEEE Conference on Robotics and
Automation (ICRA), April 2004.

[13] L. Jaillet and T. Simeon, “A PRM-based motion planning for dynami-
cally changing environments,” Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2004.

[14] T. Fraichard, “Dynamic trajectory planning with dynamic constraints:
A ”state-timespace” approach,” Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), July
1993.

[15] D. Hsu, R. Kindel, J.-C.Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,” International Journal
of Robotics Research, 2002.

[16] S. Petti and T. Fraichard, “Safe motion planning in dynamic en-
vironments,” Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2005.

[17] S. Rodriguez, J.-M. Lien, and N. M. Amato, “Planning motion
in completely deformable environments,” Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), May
2006.

[18] J. van den Berg and M. H. Overmars, “Roadmap-based motion
planning in dynamic environments,” IEEE Transactions on Robotics,
2005.

[19] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), May
2006.

[20] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” in Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2002.

[21] A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle, “Dynamic-
domain RRTs: Efficient exploration by controlling the sampling do-
main,” in Proceedings IEEE International Conference on Robotics and
Automation, 2005.

[22] E. Plaku, K. Bekris, B. Chen, A. Ladd, and L. Kavraki, “Sampling-
based roadmap of trees for parallel motion planning,” IEEE Transac-
tions on Robotics, vol. 21, no. 6, pp. 597–608, 2005.

[23] C. Urmson and R. Simmons, “Approaches for heuristically biasing
RRT growth,” Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), October 2003.

WeD11.3

1323

