
Building a Software Architecture for a Human-Robot Team Using the
Orca Framework

Tobias Kaupp, Alex Brooks, Ben Upcroft and Alexei Makarenko

Abstract— This paper considers the problem of building a
software architecture for a human-robot team. The objective
of the team is to build a multi-attribute map of the world by
performing information fusion. A decentralized approach to
information fusion is adopted to achieve the system properties
of scalability and survivability. Decentralization imposes con-
straints on the design of the architecture and its implementa-
tion. We show how a Component-Based Software Engineering
approach can address these constraints. The architecture is
implemented using Orca – a component-based software frame-
work for robotic systems. Experimental results from a deployed
system comprised of an unmanned air vehicle, a ground vehicle,
and two human operators are presented. A section on the
lessons learned is included which may be applicable to other
distributed systems with complex algorithms. We also compare
Orca to the Player software framework in the context of
distributed systems.

I. INTRODUCTION

This paper presents the design and implementation of a
software architecture for a human-robot team engaged in an
information-gathering task. Multiple robots cooperate with
multiple human operators to fulfill the following tasks:

• collecting information using on-board robotic sensors
and human perception respectively, and

• probabilistic information fusion to build a multi-
attribute map of the environment.

All aspects of the system including human-robot interactions
are restricted by the requirement of decentralization [7].
A fully decentralized approach has consequences for the
design of the architecture and its implementation. In this
paper, we address the problem of designing a robot software
architecture which can incorporate human operators and cope
with the consequences of a decentralized solution.

Information gathering refers to the problem of measur-
ing, locating or mapping a spatially-distributed phenomenon
which can change over time. Using human-robot teams is
a promising approach to address the problem. Observations
made by robots and humans are likely to be complementary
in terms of sensor modality, uncertainty and robustness.
Robotic sensors perform well in low-level descriptions such
as geometric properties. In contrast, human operators can be
valuable for higher-level tasks such as object recognition.
Presence of such complementary information sources offers
an opportunity for effective information fusion.

Application areas where human operators are likely to
remain at the center of operations include search and rescue,

All authors are with the ARC Centre of Excellence for Autonomous
Systems (CAS), The University of Sydney, Australia. Corresponding author:
t.kaupp@cas.edu.au

bush fire fighting, and defence. Human involvement makes it
possible to access human perceptual information to building
rich environment models beyond simple geometric descrip-
tions.

A Component-Based Software Engineering approach is
adopted to address the problem of implementing a fully de-
centralized architecture including human and robotic entities.
Orca is an open-source software project that implements a
component model1. We will explain why we consider it well-
suited to build a decentralized human-robot architecture.

The architecture is implemented as part of an outdoor
information gathering mission involving four platforms: an
unmanned air vehicle (UAV), a ground vehicle, and two
human operators. All platforms observe the environment
and fuse their observations probabilistically into a common
belief [20]. Features in the environment are trees, sheds and
stationary cars. Two types of information about the features
are fused into a multi-attribute map: their 3-dimensional
geometric position and their class (e.g.“tree”).

II. RELATED WORK: HUMAN-ROBOT ARCHITECTURES

There are many roles humans and robots can play when
cooperating in teams. For instance, humans can interact
with robots on a supervisory, peer-to-peer or mechanic
level [18]. Peer-to-peer interaction is often applied to human-
robot teams which are formed to achieve a task collabora-
tively [5][3]. For systems involving many robots and many
human operators such as ours, only peer-to-peer interaction
guarantees scalability [19][15].

A number of architectures for human-robot cooperation
have been suggested recently [5][19][3]. Fong et al. introduce
the Human-Robot Interaction Operating System (HRI/OS) as
an interaction infrastructure [5]. The HRI/OS includes a set
of interaction services and support for dialogue. The focus
is on operational tasks such as collaborative seam welding
and inspection. No support for data fusion is included and
the dialogue mechanism does not scale to many-to-many
interactions.

Scalability issues are explicitly addressed in Tews’
work [19]. Here, scalability refers to the communication
bandwidth between humans and robots which needs to be
kept low for larger numbers of entities in the system. They
propose that the amount of communication increases with
decreasing robot autonomy, tighter human-robot coupling,
and the number of robots. They suggest that a large-scale

1http://orca-robotics.sourceforge.net

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrB7.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3736

interaction mechanism must allow for many-to-many, one-
to-many, and one-to-one interactions. Additionally, it must
allow heterogeneous robot teams and different levels of
human-robot coupling. The architecture is server-client based
which is comparable to our component-based approach but
it relies on a centralized server. Data fusion is not addressed
in their work.

Bruemmer et al. developed a control architecture for a
mixed team of air/ground vehicles and human operators
similar in scope to our system [3]. Like us, they argue that
a common substrate or collaborative workspace is required
to maintain awareness of the environment and the mission
objectives. Even though demonstrating a simple scenario of
collaborative perception, the focus of their architecture is on
control and adjustable autonomy.

Some of the architectures discussed above are specifically
designed for a particular task or a set of tasks. Inherent
coupling between parts of the architecture can cause prob-
lems when generalizing to other systems one might want to
build. This is the lesson learned after our experiences with
implementing previous architectures [2] and a motivating
factor for our component-based approach. Rather than build-
ing specific inflexible architectures, they should be pieced
together from basic and reusable software components [1].
Restricting component interaction to a set of well-defined
interfaces allows this.

III. HUMAN-ROBOT TEAMS FOR DATA FUSION

This section explains what is meant by a decentralized
fusion architecture and why human operators are considered
to be an integral part of it.

A. Decentralized Data Fusion

The objective of the human-robot team is to build a
common environment representation. Physically, robots and
operators can be seen as forming a heterogeneous Sensor
Network (SN). The components of the SN can be organized
using different topologies, e.g. hierarchical or centralized
distributed. The usage of a decentralized architecture has
several advantages over other solutions:

• Scalability: the network can grow to an arbitrary number
of components. This includes software components as
well as embodied components (humans and robots).

• Survivability: no component of the system is mission-
critical, so the system is survivable in the event of run-
time loss of components.

• Modularity: all components can be implemented and
deployed independently.

These advantages require that (1) no central services, facil-
ities or components exist, and (2) no global knowledge of the
network topology is needed. Our Decentralized Data Fusion
(DDF) algorithms fulfill those requirements [7]. Scalability
of the DDF algorithms has been addressed before [7][15]
and is not the focus of this work.

An example of a decentralized system represented as a
Unified Modeling Language (UML) component diagram is
shown in Figure 1(a). Each software component (capitalized

throughout the rest of the paper) has a set of provided
and/or required interfaces visualized as filled circles and
open semicircles respectively. Interfaces can be thought of as
a contract between components to achieve inter-operability.
Data is communicated between components through these
interfaces.

The example shows how SENSORs and USER INTERFACEs
send preprocessed observations in the form of likelihoods to
NODEs via the Fusing interface. The NODEs run the DDF
algorithm whose task is to maintain a consistent probabilistic
estimate of the environment state. To ensure that the estimate
is common to all NODEs they have to communicate with
each other via the Linkable interface. This involves keep-
ing track of previously communicated information to avoid
rumor propagation [7]. The network of NODEs builds the
backbone of the system, the DDF network.

B. Roles of Human Operators

In a decentralized system, the numeric relationship of
humans and robots is potentially many-to-many [15]. To-
gether with the other requirements of decentralization, this
imposes constraints on the interaction of human operators
with the SN. In general, there are two types of information
which can be queried or submitted by operators: information
related to the environment and information related to the SN’s
components. An example of environment information is the
location of a feature. An example of component information
is the health status of a robot.

Only environment information is scalable with respect to
the size of the network, i.e. querying or submitting environ-
ment information is independent of how many components
are deployed [15]. To ensure scalability, the main objectives
of human interaction with the SN have to be related to
environment information, namely: (1) to present the user
with the global world state (operator as information sink);
and (2) to allow human operators to contribute environment
information to the network (operator as information source).

Other human-robot interactions which refer to component
information are non-scalable but can be useful in a practical
system. A summary of all objectives is given in [11]. The
objectives are realized as a USER INTERFACE component
exposing relevant interfaces as shown in Fig. 1(b).

IV. APPROACH

This section first presents the requirements of the system
to be built. Then, Orca is introduced as a software framework
which is considered well-suited to address those require-
ments.

A. System Requirements

The choice of employing a decentralized architecture in-
cluding human operators results in requirements for the sys-
tem design. Here, we present the non-functional requirements
which include qualities and constraints of the system [16].
The requirements are organized into three categories: archi-
tecture, algorithms and implementation:

1) Architecture

FrB7.5

3737

NODE

Linkable

Fusing Linkable
USER

INTERFACE Fusing

NODE

Linkable

Fusing
NODE

Linkable

Fusing

USER
INTERFACE Fusing

SENSOR
Fusing

SENSOR
Fusing

NODE
Linkable

USER INTERFACE

Detailed

Informed

Controllable

Fusing

Output to Operator:
State including uncertainty

Input/Output:
Network component states

Operator Input:
Observations

Operator Input:
Teleoperation

likelihood belief

commands configure/debug

Environment information

Component information

(a) (b)

Fig. 1. (a) A decentralized data fusion architecture: SENSORs and USER INTERFACEs submit likelihoods to NODEs which form a DDF network (highlighted).
Arrows indicate the direction of data flow. (b) A USER INTERFACE with four interfaces and corresponding data types is used to fulfill the requirements of
human interaction with a SN.

• ability to incorporate both robotic and human
entities

• support of fully distributed system scalable to
many software components

• flexibility in host/platform deployment options

2) Algorithms

• ability to handle both synchronous high-frequency
observations from robots and asynchronous infre-
quent observations from human operators

• capability to let independently developed, complex
algorithms interact with each other

• incorporation of real-time processing

3) Implementation

• no central communication mechanism allowed but
standard communication infrastructure must be
used

• robustness to failure of software components and
communication infrastructure

B. Component-Based Software Engineering

Orca is an open-source software project which applies
Component-Based Software Engineering (CBSE) principles
to robotics [1]. A CBSE approach has the following benefits:

1) Modularity: the software engineering benefits of hav-
ing a modular system with controlled, explicit depen-
dencies only.

2) Replaceability: the ability to build flexible systems
in which individual components can be developed
independently and replaced.

3) Reusability: the ability to build more reliable systems
by incorporating components which have been tested
across multiple projects.

Orca supports modularity and replaceability by providing
(1) the means for defining and implementing interfaces, such
that components developed independently can inter-operate
and (2) the infrastructure to let components communicate
with each other. Orca’s basic philosophy is to impose as few
constraints as possible, referred to as design minimalism [1].
Orca also supports reusability by maintaining a component
repository.

C. Orca’s Elements

The Orca project has evolved over several years and the
current version is Orca2. The architecture under considera-
tion was implemented in the previous version, Orca1. The
CBSE principles are valid for both while implementation
details vary.

Orca fundamentally consists of two parts: (1) the infras-
tructure to define interfaces and support the communication
of components, and (2) a component repository of reusable
components.

1) Infrastructure:
a) Middleware: Software acting as intermediary be-

tween application components is referred to as middleware.
Orca1 was designed not to prescribe a specific middleware
implementation but to let the user choose at compile-time.
This has the disadvantage that no standard Interface Defi-
nition Language (IDL) can be used. To simplify interface
implementation, Orca1 defined a set of communication pat-
terns as methods for transferring data, and objects as the
messages to be transferred [1].

b) Utilities: Orca provides a number of utilities to
facilitate the configuration, deployment and monitoring of
software components. They are especially useful for larger,
more complex systems. Table I lists the utilities implemented
as part of Orca1 and the problems they address.

2) Component Repository: Orca provides an online se-
lection of open-source, inter-operable, re-useable and well-
documented robotic components.

D. Why is Orca Suitable for our Problem?

We consider Orca sufficiently flexible to address the
system requirements listed in Sec. IV-A:

a) Architecture level: Orca’s design minimalism allows
architectures ranging from single vehicles to distributed
sensor networks. Especially useful is the flexibility of de-
ploying components in any host/platform configuration (see
also Sec. VI). Data fusion algorithms are computationally
expensive and several host computers may be required to
distribute the load. This can be achieved by deploying
individual components on different hosts.

b) Algorithm level: no prescriptions are made for struc-
turing the internals of a component. This implies that any
type of algorithm can be implemented as long as it exposes

FrB7.5

3738

TABLE I

UTILITIES PROVIDED BY ORCA1 AND THE PROBLEMS THEY ADDRESS

Problem Service/utility Description
Component composition and configuration Gorca Graphical tool to define an architecture (similar to Matlab’s Simulink)
Component deployment orcad Daemon automatically deploys, starts and stops components on hosts
Remote monitoring of components orcad Daemon can be queried for component status information

the relevant interfaces. Orca’s communication patterns can
accommodate both synchronous high-frequency and asyn-
chronous infrequent data. Real-time processing can be incor-
porated if the high-frequency loop is internal to a component.

c) Implementation level: many commercial middleware
options can not be used out of the box because they often
rely on central services (e.g. CORBA’s naming service).
Orca1 provides the decentralized middleware implementation
CRUD2 which uses standard ethernet as a physical layer. To
address some of the robustness issues of a larger system,
Orca offers several services and utilities (see Table I).

V. EXPERIMENTS

A. Software Architecture

Fig. 2 shows the software architecture of the SN deployed
for our experiments as a UML deployment diagram. All com-
ponents expose provided and/or required interfaces to inter-
operate with other components. Some components connect
to hardware shown as artifacts. Components are run on a
number of host computers visualized by 3d-boxes. Hosts are
part of a physical platform which can be a robot, a human
operator, or a fixed station. Platform boundaries are indicated
with dashed lines. The backbone of the system, the DDF
network, is highlighted. For clarity, deployed components
and interfaces related to monitoring and logging are not
shown. In total, up to 20 components were running at any
given time.

The figure shows the flexibility of a CBSE approach in
terms of deployment options. Computationally demanding
components are run on separate hosts. In contrast, com-
ponents connected to hardware typically produce data at a
high rate which uses up bandwidth and can cause delays if
communicated. Instead, they are colocated to the component
which processes their output data. On the other hand, for
platforms with limited computational capabilities onboard
such as the UAV, it is possible to run the components on
a ground station and just communicate raw data.

B. Implementation of Robotic Components

Preexisting components from the repository which were
reused for this project included IMAGESERVER, USER IN-
TERFACE and logging/replaying facilities. The other robotic
components, the LOCALISER, SENSOR and NODE needed to
be implemented from the ground up. LOCALISER connects
to GPS/INS hardware and provides an estimated pose of the
platform. The pose estimate is sent to the SENSOR which
extracts features from captured images [13]. Together with
the platform pose information, it can compute a likelihood
of the feature position in a global coordinate system. The

2http://crud.sourceforge.net

SENSOR also encodes the visual properties of the features
which are related to their class (e.g. “tree”). SENSORs
communicate their likelihoods to NODEs which fuse them
with prior beliefs. They communicate the resulting posterior
to other NODEs to maintain a common belief.

C. Implementation of Operator Roles

All operator roles visualized in Fig. 1(b) were imple-
mented within the project. To communicate with the SN, op-
erators carried tablet PCs with attached handheld GPS units.
Platforms were either teleoperated (UAV) or manually driven
(ground vehicle). Debugging and monitoring of the software
components played an important role when preparing for the
final demonstration.

To submit and receive environment and component infor-
mation, the USER INTERFACE was implemented graphically.
Human operators were able to contribute observations of
feature properties by drawing and clicking mechanisms.
Observed feature properties included geometric and feature
class information. Several information exchange patterns can
be identified which show how robots and human operators
cooperate effectively in the information fusion context. An
evaluation of these results is presented in [10].

D. What Worked

The ability of the CBSE approach to build flexible systems
in which individual components can be developed inde-
pendently was crucial in this multi-developer project. The
breakup of the system into functional components and clear
interface definitions allowed the independent development of
the algorithmic internals of each component. Once they had
been tested individually and considered to be mature, the
system was composed and tested as a whole. This modular
development strategy proved to be successful in practice.

E. What Didn’t Work

An important lesson learned from this project was the dif-
ficulty to scale up to many components. System composition,
configuration and deployment with up to 20 components on
seven hosts and five platforms soon became a tedious task.
Even though Gorca and orcad were designed to address
this problem, they were not sufficiently mature.

A number of problems were related to unreliable wireless
ethernet connections. Communication failures are not unex-
pected when dealing with platforms deployed over several
hundred square meters and regularly losing line of sight to
each other. While DDF algorithms are designed to cope with
failing communication links, it made it difficult to assess the
overall state of the system.

Other faults were related to the algorithms themselves and
the interaction between components. Detecting and localizing

FrB7.5

3739

Base station

PC

Operator BGround station

UAV

Operator A

Ground vehicle

PC

PC

Tablet PC
Tablet PC

PCPC

NODE

Linkable

Fusing Informed

USER
INTERFACE

Fusing

Localise

Informed

NODE

Linkable

Fusing

Informed

NODE

Linkable

Fusing

USER
INTERFACE

Fusing

Localise

Informed

SENSOR
Fusing

Image
Localise

SENSOR
Fusing

Image

Localise

IMAGESERVER Image

NODE

Linkable

Fusing

Informed

IMAGESERVER

Image

LOCALISER

Localise

LOCALISER

Localise

LOCALISER

Localise

LOCALISER

Localise

«artifact»
GPS handheld

«artifact»
GPS handheld

«artifact»
Camera

«artifact»
Camera

«artifact»
GPS/INS

«artifact»
GPS/INS

USER
INTERFACE

Detailed

Informed

wireless ethernet wireless ethernet

RS232
RS232

RS232

firewire

Fig. 2. The system architecture as a UML deployment diagram: components run on hosts which are part of a physical platform (robot, human operator, or
fixed station). Some components are connected to pieces of hardware shown as artifacts. The DDF network is highlighted. Note the flexibility in component
deployment options.

faults was problematic because, as individual component
reliability increased, components would try to detect and
recover from faults internally. While this behavior is desir-
able, the result was that overall system performance would
mysteriously degrade. Even when faults were detected, it
could be difficult to determine which component was at fault
or even on which host the problem was occurring.

Another difficult-to-debug problem was the coupling be-
tween publishers and subscribers. Two problems can occur
when communication is unreliable or clients are slow. Firstly,
slow clients can delay the publishing component’s thread,
causing problems that appear to be related to the publisher’s
algorithm. Secondly, a slow client can starve faster clients,
causing problems that appear to be related to the faster
clients.

VI. COMPARISON TO THE PLAYER FRAMEWORK

The two most popular frameworks for implementing
robotic architectures are CARMEN [17] and
Player/Stage [6]. While CARMEN was designed specifically
for single-robot systems, Player has been applied to
distributed systems as well [9][12]. Since Player has
become the de-facto standard for mobile robotics systems,
we use it as a benchmark for comparison.

Player was not designed with CBSE principles in mind
but is component-based in the following sense: a monolithic

server houses a set of modular devices. Client components
can be developed using libraries which exist in many lan-
guages. These components communicate with the server via
Player’s custom middleware. The most important difference
to Orca is the delineation of client and server space which
results in different communication mechanisms: (1) client-
server which is the standard mechanism, (2) inter-client
which is not defined by Player and must be implemented
by the user, and (3) inter-server which has been introduced
as part of Player 2.0 [4]. Player servers can subscribe to each
other, but there cannot be any circular dependencies.

The Player model works well if there are modules exclu-
sively exposing either provided or required interfaces and
option (1) can be used naturally. For distributed systems, it
is likely that mixed components exist with both provided and
required interfaces. Consider the system shown in Fig. 3: a
HARDWARE component provides RawData to a FEATURE-
EXTRACTOR which sends Features to a NODE which
produces a Representation. For bandwidth and com-
putation reasons, HARDWARE and FEATUREEXTRACTOR are
colocated on the same host whereas NODE runs on a separate
host.

Both FEATUREEXTRACTOR and NODE are mixed compo-
nents. If implemented in client space, Player’s middleware
cannot be used as shown in Fig. 3(a). If implemented in

FrB7.5

3740

PLAYER SERVER

FEATURE
EXTRACTOR

RawData

Features

HARDWARE

RawData

PLAYER SERVER A

FEATURE
EXTRACTOR

Features

RawData

HARDWARE

RawData

HARDWARE

RawData

FEATURE
EXTRACTOR

Features

RawData

(a) (b) (c)

NODE

Features

Representation

PLAYER SERVER B

NODE

Features

Representation

NODE

Representation

Features

inter-client
inter-server

client-server

Fig. 3. A three-component system with Player (a)-(b) and Orca (c): (a) inter-client communication is custom, (b) inter-server communication works but
dependencies have to be resolved on server initialization, (c) Orca has only one type of communication mechanism.

server space as shown in Fig. 3(b), Player server B needs
to subscribe to a previously started Player server A on ini-
tialization. This results in a fixed startup sequence of Player
servers which quickly becomes impractical when deploying
a larger distributed system. Compare this to Orca’s more
natural approach where only one type of communication
mechanism exists as shown in Fig. 3(c). Components can
be developed without consideration of a distinction between
client and server space, and deployed arbitrarily at run-time.

Kranz et. al present a recent effort of making Player a stan-
dard in the ubiquitous computing domain [12]. Their server-
side implementation of a FEATUREEXTRACTOR inspired the
example presented in this section. They do not address the
aforementioned problem of distributing mixed components.

VII. CONCLUSION

The Orca framework proved to be successful to build
a human-robot architecture constrained by the system re-
quirement of decentralization. Many lessons were learned
from this project which are incorporated into the design
of Orca2 [14]. The major change is the adoption of the
commercial middleware package Ice [8]. Besides a robust
middleware implementation, Ice provides services and util-
ities addressing most of the problems listed in Sec. V-E.
Orca2 is currently at a development stage where it can be
used to implement architectures such as the one presented in
this paper.

ACKNOWLEDGMENT

This work is supported by the ARC Centre of Excellence
programme, funded by the Australian Research Council
(ARC) and the New South Wales State Government.

REFERENCES

[1] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Orebaeck.
Orca: A component model and repository. In Davide Brugali, ed-
itor, Principles and Practice of Software Development in Robotics.
Springer, 2006.

[2] A. Brooks, A. Makarenko, T. Kaupp, S. Williams, and H. Durrant-
Whyte. Implementation of an indoor active sensor network. In 9th
International Symposium on Experimental Robotics 2004, Singapore,
2004.

[3] David J. Bruemmer and Miles C. Walton. Collaborative tools for
mixed teams of humans and robots. In NRL Workshop on Multi-Robot
Systems, pages 219–229, Washington, DC, USA, 2003.

[4] T.H.J. Collett, B.A. MacDonald, and B.P. Gerkey. Player 2.0: Toward
a practical robot programming framework. In Australasian Conference
on Robotics and Automation (ACRA 2005), 2005.

[5] T. Fong, C. Kunz, L Hiatt, and M. Bugajska. The human-robot in-
teraction operating system. In Int. Conf. on Human-Robot Interaction
(HRI ’06), 2006.

[6] B. Gerkey, R. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In Int. Conf. on
Advanced Robotics, pages 317–323, 2003.

[7] S. Grime and H.F. Durrant-Whyte. Data fusion in decentralized sensor
networks. Control Eng. Practice, 2(5):849–863, 1994.

[8] M. Henning. A new approach to object-oriented middleware. IEEE
Internet Computing, 8(1):66–75, 2004.

[9] A. Howard, L.E. Parker, and G.S. Sukhatme. Experiments with large
heterogeneous mobile robot team: Exploration, mapping, deployment
and detection. Int. Journal of Robotics Research, 25(5):431–447, 2006.

[10] T. Kaupp, B. Douillard, B. Upcroft, and A. Makarenko. Hierarchical
model for fusing information from human operators and robots. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS’06),
Beijing, China, 2006.

[11] T. Kaupp, A. Makarenko, S. Kumar, B. Upcroft, and S. Williams.
Humans as information sources in sensor networks. In IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS’05), Edmonton,
Canada, 2005.

[12] M. Kranz, R.B. Rusu, A. Maldonado, M. Beetz, and A. Schmidt.
A player/stage system for context-aware intelligent environments.
In Proceedings of the System Support for Ubiquitous Computing
Workshop (UbiSys 2006), 2006.

[13] S. Kumar, F. Ramos, B. Upcroft, and H. Durrant-Whyte. A statistical
framework for natural feature representation. In IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS’05), Edmonton, Canada,
2005.

[14] A. Makarenko, A. Brooks, and T. Kaupp. Orca: Components for
robotics. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS’06), Beijing, China, 2006.

[15] A. Makarenko, T. Kaupp, and H. Durrant-Whyte. Scalable human-
robot interactions in active sensor networks. IEEE Pervasive Comput-
ing, 2:63–71, 2003.

[16] R.A. Malan and D. Bredemeyer. Defining non-functional require-
ments. Technical report, Bredemeyer Consulting, 2001.

[17] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standardiza-
tion in mobile robot programming: The carnegie mellon navigation
(carmen) toolkit. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pages 2436–2441, 2003.

[18] J. C. Scholtz. Human-robot interaction: Creating synergistic cyber
forces. In NRL Workshop on Multi-Robot Systems, pages 177–184,
Washington, DC, USA, 2002.

[19] Ashley D. Tews, Maja J. Mataric, and Gaurav S. Sukhatme. A scalable
approach to human-robot interaction. In IEEE Int. Conf. on Robotics
and Automation (ICRA ’03), Taipeh, Taiwan, 2003.

[20] B. Upcroft, M. Ridley, L.L. Ong, B. Douillard, T. Kaupp, S. Kumar,
T. Bailey, F. Ramos, A. Makarenko, A. Brooks, S. Sukkarieh, and H.F.
Durrant-Whyte. Multilevel state estimation in an outdoor decentralised
sensor network. In 10th International Symposium on Experimental
Robotics 2006 (ISER ’06), 2006.

FrB7.5

3741

