
A UPF-UKF Framework For SLAM

Xiang Wang
Department of Electrical and Computer Engineering,

University of Alberta,
Edmonton, AB, T6G 2V4, Canada

xiang@cs.ualberta.ca

Hong Zhang
Department of Computing Science,

University of Alberta,
Edmonton, AB, T6G 2E8, Canada

zhang@cs.ualberta.ca

Abstract— In this paper we propose a SLAM framework
which is based on an algorithm that combines an Unscented
Particle Filter (UPF) and Unscented Kalman Filters (UKFs).
A UPF is used to estimate robot’s poses and the UKFs are
used to represent landmark positions. UPF can estimate robot
poses more consistently and accurately than generic Particle
Filters (PFs), especially when models are highly non-linear or
noises are not Gaussian. UKF can update landmarks more
accurately compared to popular EKF’s when highly non-linear
observation models are used. In addition, our algorithm avoids
the calculation of the Jacobian for both motion model and the
observation model, which could be extremely difficult for high
order systems. The calculation cost of a UPF is on the same
order of magnitude as a Particle Filter (PF), which uses Kalman
filters to generate proposal distributions, and the calculation
cost of a UKF is equivalent to an EKF. As a result, our
SLAM framework is more accurate than other popular SLAM
frameworks while its efficiency is maintained. Simulation results
are shown to validate the performance goals.

I. INTRODUCTION

SLAM solves the problem of building a map and then
recovering the robot pose from observations obtained from
sensors mounted on the robot. The robot senses its own
motion and at the same time identifies nearby landmarks.
Because these two types of measurements are both subject
to noise, they are essentially a probabilistic estimate of the
map along with the robot’s momentary pose.

The map can be denoted by Θ, which consists of a
collection of landmarks, each of which is denoted θn. The
total number of landmarks is denoted N . The robot pose is
st, where t is a discrete time index. In a 2D environment,
robot poses are typically expressed by its two-dimensional
Cartesian coordinates and its orientation. The sequence st =
s1, s2, . . . , st denotes the path of the robot until time t.
The measurement at time t is denoted yt. Without loss of
generality , the assumption of observing only one feature at
any time is adopted for convenience and the data association
is assumed to be known. For each measurement yt, mt

specifies the identity of the observed feature, where mt

belongs to the set 1, . . . , N .
The observation model is then written in the following

form:
yt = h(θmt

, st) + εt

The measurement model is governed by a function h and
disturbed by a random noise. The noise at time t is the
random variable εt, which is usually approximated by a
Gaussian distribution.

Control commands of a robot are the other information
used to solve SLAM problems. Control commands are de-
noted ut, which are the collective motor commands carried
out in the time interval [t− 1, t). The motion model is then
written in the following form:

st = f(ut, st−1) + δt

The goal of SLAM is to recover the map from measure-
ments yt and controls ut. The Bayes filter is the core of many
popular SLAM algorithms. If both f and h are linear and all
random variables are Gaussian, the Bayes filter is equivalent
to the well-known Kalman filter.

II. RELATED WORK

The SLAM problem was introduced in a seminal paper
[6] and was first developed into an implemented system
using an Extended Kalman Filter (EKF) [5]. In the EKF
framework, a high-dimensional Gaussian is used to represent
the robot pose and landmark position estimates. Because the
correlations between errors in the robot pose and landmarks
are stored in the covariance matrix of the Gaussian , EKF
can accommodate the correlated nature of errors in the map.
Based on the EKF framework, many recent achievements
have been developed ([3], [4]).

There are two limitations of the EKF approach. The
first one is the high computational cost. It is clear that
maintaining a multivariate Gaussian requires time quadratic
in the dimension of the map. Therefore, it is more efficient
to build a set of smaller maps than build a large one.
Based on this idea, several approaches have been proposed
([7],[8]) to overcome this limitation. The second limitation
is related to the data association problem. It is critical to
choose the correct data association hypotheses because dif-
ferent data association hypotheses lead to different maps. As
shown empirically, maintaining posteriors over multiple data
associations make the SLAM algorithms robust. However,
Gaussians cannot represent multi-modal distributions so only
the most likely data association can be incorporated. As a
result, the approach tends to fail catastrophically when the
incorporated data association is incorrect.

Another family of SLAM algorithms is called FastSLAM
[9]. In [10], the author pointed out that the errors of the
feature estimates would be independent if a robot path was
given. FastSLAM algorithms were developed based on this
property of the SLAM problems. Particle Filters (PFs) are

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThA1.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1664

used to estimate robot path. Condition on these particles
the mapping problem is factored into separate problems.
Therefore, one EKF for each feature is used to update the
feature estimate. The basic algorithm can be implemented
in time logarithmic in the number of landmarks. Hence,
FastSLAM offers computational advantages over plain EKF
implementations and many of its descendants.

FastSLAM has two advantages over EKF-style ap-
proaches. The key one is that filter can maintain posteriors
over multiple data associations and not just the most likely
one. As a result, FastSLAM is significantly more robust to
data association problems than EKF which is based on maxi-
mum likelihood data association. The other advantage is that
FastSLAM can handle non-linear robot motion models while
EKF-style algorithms can only approximate such models by
linearization.

Since FastSLAM approximates non-linear observation
models by linearizing functions, it can not handle severe
non-linear camera models. Comparing with FastSLAM 1.0,
FastSLAM 2.0 generates much less samples of robot poses
with low likelihood. The idea is that robot poses are sampled
using an improved proposal distribution which considers both
the motion and the measurements. However, this method
again can not handle highly non-linear observation models
because EKF-style approximation is used to calculate the
proposed distribution.

III. BACKGROUND KNOWLEDGE

The Unscented Transform (UT) is a method to calculate
the statistics of a random variable, which undergoes a
nonlinear transformation ([1], [2]). UT is built on the idea
that it is easier to approximate a probability distribution
than an arbitrary nonlinear function. The Unscented Kalman
Filter (UKF) is a straightforward application of the UT.
UKF recursively minimizes mean-square-error estimations,
where the state random variable (RV) is redefined as the
concatenation of the original state and noise variables. Work
in [2] has shown that the UKF leads to more accurate results
than the EKF and that in particular it generates much better
estimates of the covariance of the states where the EKF often
seems to underestimate this quantity. The complete UKF
algorithm that updates the mean x̄ and covariance P of the
states is as follows:

• Set the augmented state vector xa
t and augmented

covariance matrix P a
t by incorporating the noise as

follows:
xa

t = [xT
t , δ

T
t , ε

T
t]T (1)

P a
t =

 Pt 0 0

0 Qt 0
0 0 Rt

 (2)

where xT
t is the original state vector, δT

t , is the motion
noise, εT

t is the observation noise, Pt is the original
covariance, Qt is the motion noise covariance and Rt

is the observation noise covariance.
• Initialize the mean and covariance of the states with:

x̄0 = E[x0] (3)

P0 = E[(x0 − x̄0)(x0 − x̄0)T] (4)

x̄a
0 = E[xa] = [x̄T

0 0 0]T (5)

P a
0 =

 P0 0 0

0 Q0 0
0 0 R0

 (6)

• For time t ∈ 1...∞:
(a) Computing Sigma Points and Weights:

λ = α2(nx + κ) − na (7)

χa
t−1 = [x̄a

t−1 x̄a
t−1 ± (

√
(na + λ)P a

t−1)i] (8)

W0(m) =
λ

na + λ
(9)

W0(c) =
λ

na + λ
+ (1 − α2 + β) (10)

Wi(m) = Wi(c) =
1

2(na + λ)
i = 1, · · · , 2na (11)

where κ is a scaling parameter, α is a positive scal-
ing parameter which could be made as small as pos-
sible to minimize higher order effects, β is a pa-
rameter which minimizes the effects from high order
terms, na is the dimension of the xa

t and χa =
[(χx)T , (χv)T , (χn)T]T , W0,i(m) are weights to cal-
culate the mean, W0,i(c) are weights to calculate the
covariance and (

√
(na + λ)P a

t−1)i is the ith row or
column of the matrix square root of (na + λ)P a

t−1.
(b) States Prediction:

χx
t|t−1 = f(χx

t−1, χ
v
t−1) (12)

x̄t|t−1 =
2na∑
i=0

Wi(m)χ
x
i,t|t−1 (13)

Pt|t−1 =
2na∑
i=0

Wi(c)[χx
i,t|t−1− x̄t|t−1][χx

i,t|t−1− x̄t|t−1]T

(14)
Yt|t−1 = h(χx

t|t−1, χ
n
t−1) (15)

ȳt|t−1 =
2na∑
i=0

Wi(m)Yi,t|t−1 (16)

where f(.) is the motion model and the h(.) is the
observation model.
(c) States Update

Pỹt,ỹt
=

2na∑
i=0

Wi(c)[Yi,t|t−1 − ȳt|t−1][Yi,t|t−1 − ȳt|t−1]T

(17)

Pxt,yt
=

2na∑
i=0

Wi(c)[χi,t|t−1 − x̄t|t−1][Yi,t|t−1 − ȳt|t−1]T

(18)

ThA1.2

1665

Kt = Pxt,yt
P−1

ỹt,ỹ
(19)

x̄t = x̄t|t−1 +Kt(yt − ȳt|t−1) (20)

Pt = Pt|t−1 −KtPỹt,ỹK
T
t (21)

where na = nx + nv + nn and K is gain.
PFs require the design of proposal distributions approxi-

mate the posterior distribution reasonably well. In general,
it is hard to design such a proposal. The most common
strategy is to sample from the probabilistic model of the state
evolution. This strategy can fail if the new measurements
appear in the tail of the prior or if the likelihood is too peaked
in comparison to the prior. To overcome this problem, several
techniques based on linearization have been proposed. For
example, FastSLAM 2.0 used linearization to include new
measurements for a better proposal distribution as well.

As mentioned above, the UKF is capable of more accu-
rately propagating the mean and covariance than the EKF.
Distributions generated by the UKF have a larger support
overlap with the true posterior distribution than the overlap
achieved by the EKF estimates. For these reasons, UKF is
a better candidate for more accurate proposal distribution
generation for particle filters. The generated proposal distri-
bution will have larger higher order moments and with means
that are close to the true mean of the target distribution.
Therefore, it has been proven theoretically and empirically
that replacing EKF proposal by UKF proposal results in
an Unscented Particle Filter (UPF) which performs better
than other PFs, especially when the system is highly non-
linear [11]. Work in [11] also showed that under very loose
assumptions, convergence of the UPF is ensured and that
the convergence rate of the method is independent of the
dimension of the state-space. The only crucial assumption is
to ensure that the weights, Wt, are upper-bounded.

An UPF and UKF combined framework will be proposed
in the next section. This framework updates robot poses using
UPF and updates landmark locations using UKF. UPF can
estimate the state more consistently and accurately. UKF
can update feature positions accurately to the third order
for Gaussians and higher order errors scaled by choice of
transform parameters. In addition, the calculation of the
Jacobian for both the motion model and the observation
model is avoided. The calculation cost of the proposed
framework is on the same order of magnitude as FastSLAM
2.0, so improved performance can be obtained from using
this new framework.

IV. A UPF-UKF SLAM FRAMEWORK

Similar to the family of FastSLAM algorithms, the pro-
posed SLAM framework exploits the factored posterior state
estimates by maintaining N + 1 filters. One filter is over
robot path, p(st|mt, yt, ut), and N separate filters are over
feature locations, p(θ|st,mt, yt). All N + 1 filters are low
dimensional. This factored representation is exact, rather than
just an approximation. The UPF that is used to calculate
the posterior over the robot path has the pleasing property

that the amount of computation needed for each incremen-
tal update stays constant, regardless of the path length t.
Additionally, it can cope well with non-linear robot motion
models. The remaining N posteriors over feature locations
p(θ|st,mt, yt) are calculated by UKF. Each UKF estimates
a single landmark pose. The individual UKFs are conditioned
on robot paths. As such, each particle possesses its own set
of UKFs.

A. Sampling the Robot Pose

A new robot pose st for each particle in St−1 is sampled
using both control ut and measurement yt according to UPF
as follows:

• For the ith particle, set the augmented state x(i)a
t and

the augmented covariance matrix P (i)a
t using equations

(1) and (2).
• Initialize the mean and covariance of the robot pose for
ith particle using equations (3) to (6).

• Sampling a new robot pose for the ith particle with
UKF:
(a) Calculate sigma points χ(i)a

t and weights W using
equations (7) to (11).
(b) Propagate sigma points into the future (pose predict)
using equations (12) to (16).
(c) Incorporate the new observation (pose update) using
equations (17) to (21).

B. Updating the Observed Landmark Position Estimate

For the ith particle, every landmark estimate is updated
using the following update equations:

• For the ith particle, set the augmented state x
(i)a
t =

[(xi
t)

T (εi
t)

T] and the augmented covariance matrix
P

(i)a
t by incorporating the observation noises as fol-

lows:

P
(i)a
t =

[
P i

t 0
0 Ri

t

]

where (xi
t)

T is one landmark position estimate, (εi
t)

T

is the observation noise, P i
t is the original covariance

and Ri
t is the observation noise covariance.

• Initialize the mean and covariance of the robot pose for
ith particle using equations (3) to (5) and (22).

P
(i)a
0 =

[
P i

0 0
0 R0

]
(22)

• Landmark position estimate prediction:
(a) Calculate sigma points χ(i)a

t and weights W using
equations (7) to (11).
(b) Calculate prediction using equations (15), (16), (23)
and (24).

x̄i
t|t−1 = xi

t−1 (23)

P i
t|t−1 = P i

t−1 (24)

(c) Estimate update using equations (17) to (21).

ThA1.2

1666

C. The Pseudo Code of UPF-UKF SLAM Framework

The UPF-UKF SLAM frame work can be summarized
using the pseudo-code as follows:

for i = 1 to M do
Get observations at time t
Do data association
// processing Nt observed landmarks
for j = 1 to Nt do

if it is a new feature then
Add the new feature into the map

else
1. Sampling a new pose for the ith particle and
calculating the sample weight
2. Updating the landmark position estimate

end if
end for
Handle unobserved landmarks

end for
Resample to obtain a new set of M particles.

where M is the number of particles and Nt is the number of
landmarks.

V. EXPERIMENTS

In order to verify the performance of the proposed frame-
work, experiments were conducted using simulation data
with 47 visual landmarks and known data association. The
simulator was developed based on the work in [13]. The
exploration area of the robot is 100 meters wide and 120
meters long, and the visual landmarks are randomly located
in the area. The robot moves at a speed of 3 m/s and with
a maximum steering angle of 30◦. The motion noises are
0.3 m/s for the velocity and 3◦ for the steering angle. The
observation noise is set at 0.5 pixels. The robot will travel
once along the planned loop.

As an improvement on PF based algorithms, a proposal
distribution can be moved towards the real pose distribution
by using EKF to incorporate measurements. However, it is
assumed that the posterior pose distribution is Gaussian and
consequently linearization inaccuracies will be introduced.
In the real world, many robot systems are disturbed by non-
Gaussian noise and many nonlinear systems can not be ap-
proximated well by linearization. Then if EKF is used to ob-
tain the proposal distribution of the robot pose, sampled robot
poses will fall into areas of low measurement likelihood. In
this situation, the algorithms, which use EKF to calculate the
proposal distribution, will be unable to converge when the set
of particles is small. Although these algorithms can possibly
converge with a large set of particles, the obtained results
are usually poor. To prove the above statement, two sets of
experiments were conducted. First, both FastSLAM 2.0 and
UPF-UKF Framework were implemented on a highly non-
linear system disturbed by Gaussian noise and the experiment
was repeated with the number of particles varying from
one to 100. Second, both methods were implemented on a
system that can be approximated properly by linearization

and was disturbed by heavy-tailed noise. In order to verify
the efficiency of the proposed framework, the runtime of both
methods were compared. There are two reasons for exclu-
sively comparing the proposed framework with FastSLAM
2.0. First, as discussed in [12], the FastSLAM family of
algorithms outperformed other popular SLAM algorithms.
Second, FastSLAM 2.0 significantly improved the results
obtained from FastSLAM 1.0 as shown in [12].

A. Motion Model and Observation Model

The motion model and the observation model have a
critical impact on the performance of SLAM algorithms. In
our experiments, the assumption of the motion model is that
the velocity at time t + 1 is equal to the velocity at time
t plus an arbitrary random noise. The motion model of the
robot can be described as follows:

 xr1(t)

xr2(t)

xr3(t)

 =

 xr1(t−1) + l · cos(g + xr3(t−1))
xr2(t−1) + l · sin(g + xr3(t−1))
xr3(t−1) + l · sin(g)/WB

 (25)

where xr is the robot pose, l = v̄ ·dt is the translation during
one time step (v̄ is the mean of the velocity and dt is the
time duration), g is the steer angle during one time step and
WB is the wheel base.

Cameras are used as observation sensors in our experi-
ments. Instead of using a simple pinhole model, we chose
to build a complete and accurate camera model to handle
different types of cameras, especially cheap cameras which
contain large image distortion. Our observation model can
be described as follows:

u = f1 · (xd1 + α · xd2) + c1 (26)

v = f2 · xd2 + c2 (27)

where (u, v) are the image coordinates, f1 and f2 are focal
lengths, c1 and c2 are the principal points, α is the skew
coefficient, and xd1 and xd2 can be calculated as follows:

xd1 = (1 + k1 · r2 + k2 · r4) · Xc

Zc
(28)

xd2 = (1 + k1 · r2 + k2 · r4) · Yc

Zc
(29)

where k1 and k2 are image radial distortion coefficients, r
and (Xc, Yc, Zc) are defined as:

r2 =
X2

c + Y 2
c

Z2
c

(30)

Xc

Yc

Zc

1

 =

r11 r12 r13 xr1

r21 r22 r23 xr2

r31 r32 r33 xr3

0 0 0 1

−1

·

xf1

xf2

xf3

1

 (31)

where
r11 = cφcψ, r12 = sθsφcψ− cθsψ, r13 = cθsφcψ+sθsψ,
r21 = cφsψ, r22 = sθsφsψ+ cθcψ, r23 = cθsφsψ−sθcψ,
r31 = −sφ, r32 = sθcφ, r33 = cθcφ.

ThA1.2

1667

where c = cos, s = sin, and θ, φ and ψ are rotation angles
with respect to x, y and z axes. (xf1, xf2, xf3) is a landmark
position and [xr1, xr2, xr3] is a robot pose. If a robot moves
on a plane, we have xr2 = 0, θ = 0 and ψ = 0.

The model described above is a highly non-linear system
and was used in the first set of experiments. In the second set
of experiments, a regular system was represented by a simple
pinhole camera model by setting α, k1 and k2 in equations
(26), (28) and (29) to zeros.

B. Experimental Results

Fig. 1 to Fig. 4 show the estimated robot path and the
landmark positions obtained respectively from FastSLAM
2.0 and UPF-UKF Framework in two sets of experiments.
It is clear that in both sets of experiments, UPF-UKF
Framework generated more accurate results than FastSLAM
2.0 did. When using 100 particles, both algorithms could
converge. However, the results, obtained by using small
number of particles, showed that FastSLAM 2.0 diverged.

The accuracy of the framework was verified by comparing
the RMS errors obtained from FastSLAM 2.0 and UPF-UKF
Framework. The experiment was repeated while the number
of particles was varied. A comparison of the results is shown
in Fig. 5. It is clear that the errors associated with each
method drops sharply when the number of particles is greater
than 10. It can be seen that the proposed framework con-
stantly outperforms the FastSLAM 2.0. In [12], the authors
claimed that FastSLAM performs equally well for varying
number of particles. However, the conclusion does not hold
in our experiment. The reason for this is that the linearized
pose sampling and feature updating methods are not capable
of handling highly non-linear observation models.

Fig. 6 shows the execution time for FastSLAM 2.0 and
UPF-UKF Framework running with the number of particles
varying from one to 100. We can see that though the runtime
of UPF-UKF Framework is longer, they are still on the same
order of magnitude. Therefore, it is clear that the proposed
UPF-UKF Framework outperforms FastSLAM 2.0 when the
observation system is highly non-linear and/or the noise is
non-Gaussian while the runtime stays at the same order of
magnitude.

VI. CONCLUSIONS

In this paper, a UPF-UKF SLAM Framework was pro-
posed. A UPF is used to estimate the robot’s poses and
the UKFs are used to update the landmark positions. When
the observation model is highly non-linear or the noises
are non-Gaussian, UPFs can more accurately estimate the
robot poses than generic PFs or PFs, which use a linearized
method to calculate a proposal distribution. Because of
the advantages discussed previously, when the observation
model is highly non-linear, the UKF can more accurately
update landmarks than the widely used EKF. In addition, the
calculation of the Jacobian for both the motion model and
the observation model is avoided in the proposed framework.
From the discussion of the experimental results, it is clear
that the UPF-UKF Framework outperforms other popular

Fig. 1. Estimated robot path and landmark positions using FastSLAM 2.0
with the highly nonlinear system disturbed by Gaussian noise. The green,
blue and red paths are the planned, the real and the estimated robot paths.
The green and red dots are real and estimated landmark positions.

Fig. 2. Estimated robot path and landmark positions using UPF-UKF
Framework with the highly nonlinear system disturbed by Gaussian noise.
The green, blue and red paths are the planned, the real and the estimated
robot paths. The green and red dots are real and estimated landmark
positions.

SLAM algorithms while maintaining the same high level of
efficiency.

REFERENCES

[1] Simon J. Julier and Jeffrey K. Uhlmann, ”Unscented filtering and
nonlinear estimation,” Proceedings of the IEEE, Vol. 92, No. 3, March
2004, pp401-422.

[2] Simon J. Julier and Jeffrey K. Uhlmann, ”A new extension of the
Kalman filter to nonlinear systems,” Proceedings of Eroses: The 11th
International Symposium on Aerospace/Defense Sensing, Simulation
and Controls, Multi Sensor Fusion, Tracking and Resource Manage-
ment II, SPIE, 1997.

[3] G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M.
Csorba, ”A solution to the simultaneous localisation and map building
(SLAM) problem,” IEEE Transactions of Robotics and Automation,
vol. 17, no. 3, pp. 229C241, 2001.

ThA1.2

1668

Fig. 3. Estimated robot path and landmark positions using FastSLAM 2.0
with the regular system disturbed by heavy-tailed noise. The green, blue
and red paths are the planned, the real and the estimated robot paths. The
green and red dots are real and estimated landmark positions.

Fig. 4. Estimated robot path and landmark positions using UPF-UKF
Framework with the regular system disturbed by heavy-tailed noise. The
green, blue and red paths are the planned, the real and the estimated robot
paths. The green and red dots are real and estimated landmark positions.

[4] J. Leonard, J.D. Tardos, S. Thrun, and H. Choset, editors, Workshop
Notes of the ICRA Workshop on Concurrent Mapping and Local-
ization for Autonomous Mobile Robots (W4). ICRA Conference,
Washington, DC, 2002.

[5] P. Moutarlier and R. Chatila, ”Stochastic multisensory data fusion
for mobile robot location and environment modeling,” in 5th Int.
Symposium on Robotics Research, Tokyo, 1989.

[6] R.C. Smith and P. Cheeseman, ”On the representation and estimation
of spatial uncertainty,” International Journal of Robotics Research,
5(4):56 68, 1986.

[7] J.J. Leonard and H.J.S. Feder, ”A computationally efficient method
for large-scale concurrent mapping and localization,” In J. Hollerbach
and D. Koditschek, editors, Proceedings of the Ninth International
Symposium on Robotics Research, Salt Lake City, Utah, 1999.

[8] S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, and A.Y.
Ng, ”Simultaneous mapping and localization with sparse extended
information filters,” In J.-D. Boissonnat, J. Burdick, K. Goldberg,
and S. Hutchinson, editors, Proceedings of the Fifth International
Workshop on Algorithmic Foundations of Robotics, Nice, France,

Fig. 5. A comparison of RMS error of robot poses and landmark positions
using UPF-UKF Framework and FastSLAM 2.0 with various number of
particles.

Fig. 6. The run time of UPF-UKF Framework and FastSLAM 2.0 with
various number of particles.

2002.
[9] M. Montemerlo and S. Thrun, ”Simultaneous localization and mapping

with unknown data association using FastSLAM,” In Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2003.

[10] K. Murphy, ”Bayesian map learning in dynamic environments,” In
Advances in Neural Information Processing Systems (NIPS). MIT
Press, 1999.

[11] Rudolph van der Merwe, Arnaud Doucet, Nando de Freitast and
Eric Wan, ”The unscented particle filter,” Technical Report CUED/F-
INFENG/TR 380, Cambridge University Engineering Department.
Available at : www.cs.ubc.ca/ nando/papers/upf.ps.gz

[12] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto and
E. Nebot, ”FastSLAM: An Efficient Solution to the Simultaneous
Localization and Mapping Problem with Unknown Data Association,”
available at: robots.stanford.edu/papers/Thrun03g.pdf

[13] Tim Bailey, ”Source code for SLAM simulations,” available at:
www.acfr.usyd.edu.au/homepages/academic/tbailey/software

ThA1.2

1669

