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Abstract— Robots that use cycloidal gears, belts, or long
shafts for transmitting motion from the motors to the driven
rigid links display visco-elastic phenomena that can be assumed
to be concentrated at the joints. For the design of advanced,
possibly nonlinear, trajectory tracking control laws that are able
to fully counteract the vibrations due to joint elasticity, full state
feedback is needed. However, no robot with elastic joints has
sensors available for its whole state, i.e., for measuring positions
and velocities of both motors and links. Several nonlinear
observers have been proposed in the past, assuming different
reduced sets of measurements. We introduce here a new
observer which uses only motor position sensing, together with
accelerometers suitably mounted on the links of the robot arm.
Its main advantage is that the error dynamics on the estimated
state is independent from the dynamic parameters of the robot
links, and can be tuned with standard decentralized linear
techniques (locally to each joint). We present an experimental
validation of this observer for the three base joints of a KUKA
KR15/2 industrial robot and illustrate the control use of the
obtained results.

I. INTRODUCTION

Flexibility of the motion transmission and reduction el-
ements in a robot manipulator induce a vibratory behavior
that degrades its dynamic accuracy. For industrial robots, this
happens when adopting belts or long shafts to drive the links
with remotely located actuators, or when harmonic drives
or cycloidal gears are used so as to obtain large reduction
ratios with compact, in-line, and power efficient devices.
Time-varying dynamic displacements will be present on the
robot axes, between the position of the motors and that of
the driven links. This situation is typically modeled by the
introduction of elasticity or visco-elasticity at the joints [1],
[2]. The number of independent variables needed to describe
the robot dynamics is then doubled with respect to the case
of rigid joints. In order to recover performance during fast
motion or in quasi-static contact tasks, suitable feedback
control laws have to be designed that deal also with joint
elasticity, beside facing the nonlinear and highly-coupled
dynamics of the robot arm.

Dynamic models of different accuracy have been proposed
for robots with elastic joints. In the case of electrical
actuation, the most common model [3] assumes that the
angular kinetic energy of the rotors of the motors is due only
to their relative spinning around the driving axes –the so-
called reduced model. A more complete dynamic model [4]

includes also the inertial couplings existing between the
motors and the links. In certain cases, depending on the
kinematic architecture of the arm and on the localization
of the motors, these couplings may turn to be configuration-
independent [5]. These models possess different structural
properties from the point of view of control. In particular,
the reduced model of robots with elastic joints can be fully
decoupled and exactly linearized by means of a nonlinear
static state feedback [3], similarly to the well-known com-
puted torque method for fully rigid robots. On the other hand,
when considering the more complete dynamics, the same
result can be achieved only by resorting to a more complex
dynamic state feedback [5]. These control results, which
are particularly relevant for trajectory tracking tasks, assume
the availability of full state measurement of the elastic joint
robot, namely of motor as well as link position and velocity.

However, a sensory set to directly measure this full state
(or an equivalent set of variables) is hardly available. Any
robot is equipped with position sensors and these, in the
presence of joint elasticity, will typically measure the motor
positions. Sometimes, but always more seldom, a tachometer
may be present for the motor velocity. Recently, more
sensory capabilities have been introduced in prototype arms,
e.g., a magnetometer and a joint torque sensor in the DLR
lightweight arm [6], [7]. Both allow to measure (directly or
indirectly) the link position, but the former is rather noisy
while the latter needs the knowledge of the joint stiffness to
compute the position from the measured torque. No sensor
measuring directly the link velocity is currently in use. This
picture motivated the design of state observers to replace
missing sensors.

There is a variety of existing state observers of elastic
joint robots in the literature, assuming different combina-
tions of sensed variables: motor position and elastic joint
displacement, or link position and motor velocity [8], or link
position and velocity and assuming that the latter is bounded
by virtue of the control law [9], [10]. Unfortunately, the most
successful ones (at least, those with theoretically proved con-
vergence) use unrealistic combinations of measured outputs
from the robot and typically assume perfect knowledge of
the whole robot dynamics.

Indeed, the main use of state estimation is for control.
Note, however, that regulation tasks can be successfully
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performed with PD+ control laws where only the motor
position and an estimate of its velocity are needed [4],
[7], [11]. For the more difficult task of trajectory tracking,
there are two classes of results: those assuming directly that
the state is given for control purposes [12], [13] and those
designing an integrated observer-controller [14], [15].

In this paper, we propose a new state observer for elastic
joint robots based on the use of accelerometers mounted on
the links together with motor position measurements. The
main advantages of this observer are its independence from
the dynamic parameters of the arm (mass and its position,
and inertia of the links), the easy tuning of the observer gain,
and its predictable (linear) behavior. Our final motivation is
the use of the reconstructed state for control purposes.

In the past, accelerometers have been already used for
control [16]. However, direct acceleration feedback is critical
from a theoretical point of view (there is no strict causality
between applied torque and sensed accelerations) and may
lead to instability if the control scheme is not carefully
implemented. Instead, when acceleration measurements are
filtered by the observer dynamics and feedback is performed
using the recovered full state, degradation of the expected
performance is only related to the missing “separation”
property in nonlinear systems.

The paper is organized as follows. After reviewing the
modeling of elastic joint robots in Sec. II, the basic observer
design is presented assuming first that the link acceler-
ation (i.e., at the joint level, beyond elasticity) is mea-
sured (Sec. III). Section IV presents an extension of the
scheme that is implementable with standard accelerometers
distributed along the arm. The approach has been validated
through extensive experimentation on the KUKA KR15/2
industrial robot. In Sec. V, representative observation re-
sults are reported, together with their use within a tracking
controller [17] based on inverse dynamics feedforward plus
linear feedback from the reconstructed state. More details
can be found in [18].

II. DYNAMIC MODELING

We consider robot manipulators as open kinematic chains
of bodies, having N moving rigid links driven by electrical
motors through N (rotational) elastic joints/transmissions.
For the dynamic modeling of elastic joint robots, a dou-
bling of generalized coordinates is needed in a Lagrangian
formulation. Let q ∈ R

N be the generalized coordinates
associated to the link positions and θ ∈ RN be the motor
positions (as reflected through the gearboxes). Elasticity
of the motion transmission elements is modeled by linear
springs introduced at each joint. We consider also viscous
damping of the springs at the joints as in [19].

With the standard assumptions in [3], the dynamic model
is given by

M(q)q̈ + C(q, q̇)q̇ + g(q)+

D(q̇ − θ̇) + K(q − θ) + d(q, q̇) = 0

Bθ̈ + D(θ̇ − q̇) + K(θ − q) = τ ,

(1)

where M(q) is the symmetric, positive definite link inertia
matrix, the Coriolis and centrifugal terms are factorized
using the matrix C(q, q̇) of Christoffel symbols, g(q) is
the gravity vector, and d(q, q̇) contains friction effects on
the link side. The motor inertia matrix B = diag{Bi} and
the joint stiffness matrix K = diag{Ki} are both positive
definite, while D = diag{Di} ≥ 0 is the viscosity matrix of
the springs at the joints (all these matrices are diagonal). In
the right-hand side of the second equation in (1), τ contains
the motor torques performing work on θ. We suppose that
friction on the motor side has been already compensated by
means of a nonlinear feedback of the motor velocity in order
to achieve the given formulation (see [18] for further details).
The two N -dimensional vector equations in (1) are referred
to as the link and motor dynamics, respectively.

In the dynamic model (1), it is assumed that the angular
components of the kinetic energy of the motors are due
only to their own spinning. This results in no inertial cross-
coupling among the link and motor dynamics. However,
the analysis presented in this paper applies, with minor
modifications, also to the more complete model of robots
with elastic joints considered, e.g., in [5]:

M(q)q̈ + Sθ̈ + C(q, q̇)q̇ + g(q)+

D(q̇ − θ̇) + K(q − θ) + d(q, q̇) = 0

ST q̈ + Bθ̈ + D(θ̇ − q̇) + K(θ − q) = τ ,

(2)

where the (N×N) S block in the overall robot inertia matrix
is strictly upper triangular [4]. Depending on the arrangement
of the motors along the serial kinematic chain, this matrix
may be constant as in (2). This is the case of all planar
manipulators with motors mounted on the joint axes and also
for the KUKA KR15/2 robot considered in our experiments.
For more general kinematic structures, this matrix becomes
configuration dependent, i.e., S(q), leading to the appearance
of further quadratic velocity terms in both the link and motor
dynamics. This situation is not considered in this paper.

III. OBSERVER DESIGN

We present first an ideal design assuming that θ and q̈ are
directly measured. The actual case of linear accelerometers
mounted on the robot links is treated in Sect. IV. We shall see
that it is possble to follow a classical Luenberger observer
design.

For the dynamic model (1), define as input u ∈ R
N , state

x ∈ R4N , and measured output y ∈ R2N the following
vector quantities:

u=τ , x=




x1

x2

x3

x4


=




θ
q

θ̇
q̇


 , y=

[
y1

y2

]
=

[
θ
q̈

]
. (3)
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The associated nonlinear state equations are

ẋ =




x3

x4

B−1 [K(x2 − x1) + D(x4 − x3)]
f4(x)


+




0
0

B−1

0


 u

= f(x) + Gu,
(4)

with the output given by

y =
[

x1

f4(x)

]
= h(x). (5)

Note that all nonlinear dynamic components are collected in
the term

f4(x) = M−1(x2) [K(x1 − x2) + D(x3 − x4)

−C(x2, x4)x4 − g(x2)] .

Therefore, the drift vector field f(x) and the output vector
function h(x) in eqs. (4–5) have the internal structures

f (x) =
[

Ax
f4(x)

]
, h(x) =

[
Cx

f4(x)

]
,

where the linear terms are characterized by the (3N × 4N)
matrix A and the (N × 4N) matrix C given by

A =


 0 0 I 0

0 0 0 I

−B−1K B−1K −B−1D B−1D




C =
[

I 0 0 0
]
.

The following result holds.

Theorem 1: For the robot model (1), define the linear
dynamic observer

ξ̇ =
[

A
0

]
ξ + Gu + L(y1 − Cξ) +




0
0
0
I


 y2, (6)

where ξ ∈ R4N is the observer state and the (4N ×
N) gain matrix L =

[
L1 L2 L3 L4

]T
has blocks

Lj = diag{Lj1, . . . , LjN} (j = 1, . . . , 4). Then, the state
estimation error e = x − ξ ∈ R4N can be made globally
exponentially stable with an arbitrary decay rate.

Proof: The proof is straightforward. The error dynamics
of the state observation process can be written as

ė = f (x)+Gu−
[

A
0

]
ξ−Gu−LC(x−ξ)−




0
0
0

f4(x)




=
([

A
0

]
− LC

)
e = Aobse,

with the pair {[
A
0

]
, C

}

being always observable. Therefore, any set of desired eigen-
values for Aobs can be imposed by a suitable choice of the

observer gain matrix L. Noting that all blocks in the matrices
A and C are diagonal, the associated matrix L can be taken
with the given block-diagonal structure. �

Some remarks are in order.
Remark 1: The most relevant feature of the observer (6) is

that no knowledge of the link dynamics is required. Only the
dynamic parameters relative to motor inertia, transmission
stiffness and damping at each joint are needed.

Remark 2: The proposed observer has a decentralized
(and linear) structure. This implies that only quantities local
to joint i are needed for observing the state of this joint. In
particular, only the measures of θi and q̈i are used.

Remark 3: The eigenvalue assignment problem can be
solved in closed form, as the parallel of N independent
fourth-order assignment problems. In particular, for the
generic visco-elastic joint i, assume that a set of four
eigenvalues λji ∈ C−, j = 1, . . . , 4, is specified (if complex,
in conjugate pairs). The associated characteristic polynomial
is

p∗i (λ) = λ4 + a3iλ
3 + a2iλ

2 + a1iλ + a0i,

with the coefficients aji’s uniquely determined by the desired
λji’s. Simple calculations lead to the following expressions
of the gains that impose the desired observation error dy-
namics:

L1i = a3i − Di

Bi
, L2i =

Bi

Ki
a1i − BiDi

K2
i

a0i,

L3i = a2i − Di

Bi
a3i +

D2
i − KiBi

B2
i

, L4i =
Bi

Ki
a0i.

These explicit expressions are helpful for the fine tuning of
the observer gains.

Consider next the case of the dynamic model (2). One
can repeat all the above developments, by taking now into
account the presence of the inertial coupling matrix S. One
notable difference is that, in this case, the instantaneous
acceleration q̈ of the links becomes also a function of the
applied torque τ . Due to lack of space, we report here only
the final result.

Theorem 2: For the robot model (2), define the linear
dynamic observer

ξ̇ =
[

A
0

]
ξ+Gu+L(y1−Cξ)+




0
0

−B−1ST

I


y2, (7)

with the (4N ×N) gain matrix L defined as in Theorem 1.
Then, the state estimation error e = x − ξ ∈ R4N can be
made globally exponentially stable with an arbitrary decay
rate.

Remark 4: The observer (7) is still linear, but it is not
anymore decentralized because of the presence of the motor-
link inertial couplings. However, matrix S contains just data
about the motor inertial components (possibly, including
those along directions different from the joint axes of the
robot) and this is the only additional information needed
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with respect to (6). Otherwise, the properties of the state
observation error remain the same as before.

IV. IMPLEMENTABLE OBSERVER

The direct measure of the link acceleration q̈ (at the elastic
joints) is technically difficult and one must then rely on
the use of (multi-axis) accelerometers mounted on the robot
structure, which measure linear Cartesian accelerations (in-
cluding the constant gravitational acceleration g0) of selected
points of the manipulator.

The 3D-position on the robot arm of one such accelerom-
eter is a function of the link coordinates q only and is
expressed in world coordinates by the kinematic map

W pA = fA(q). (8)

Differentiating twice eq. (8) yields

W p̈A = JfA
(q)q̈ + J̇fA

(q)q̇,

where JfA
= ∂fA/∂q. Then, the acceleration measured

along the direction of a unitary vector SvA attached to the
accelerometer is expressed, in sensor coordinates, as

S p̈A,v = Sv T
A

SRW (q)
(
W p̈A + W g0

)
, (9)

where SRW is a rotation matrix. By stacking equations of
the form (9) for M ≥ N different directions/accelerometers,
we obtain an expression for the measured acceleration output
in terms of the link variables q, q̇, and q̈. Thus, the actual
robot measurement available for the observer design will be

y =
[

y1

y′
2

]
=

[
θ

ST A(q)q̈ + SW A(q, q̇)

]
. (10)

Assuming that the accelerometers are correctly located on the
robot arm, we note that the link acceleration q̈ can be recov-
ered in principle from eq. (10) by using the (pseudo-)inverse
of the (M × N) full row-rank matrix ST A as

q̈ = ST †
A(q)

(
y′

2 − SW A(q, q̇)
)
. (11)

Consider again, for simplicity, the robot dynamic
model (1), together with its state-space description (3) and
the new output (10), and define the robot state observer as

ξ̇ =
[

A
0

]
ξ + Gu + L(y1 − Cξ)

+




0
0
0

ST †
A(ξ2)


(

y′
2 − SW A(ξ2, ξ4)

)
.

(12)

It can be shown that the dynamics of the state estimation
error becomes

ė = Aobse +




0
0
0

f res(x, ξ)


 ,

Fig. 1. Test bed for experimental evaluation

being Aobs defined as in the proof of Theorem 1 and with
the N -dimensional residual vector

f res(x, ξ) =
[
I − ST †

A(ξ2)ST A(x2)
]
f4(x)

+ST †
A(ξ2)

[
SW A(ξ2, ξ4)−SW A(x2, x4)

]
.

The convergence of the observation error to a small ul-
timately bounded region around zero can be shown us-
ing ‘high-gain’ considerations and a Lyapunov analysis, as
detailed in [18]. Essentially, the proof relies on bounding
the quantities in f res(x, ξ) (which may be enforced by
the presence of a feedback controller generating the input
torque τ ) and choosing the observer gain matrix L large
enough. Note also that, when the robot starts from rest, the
initial error e(0) can be made arbitrarily small (possibly,
zero) using the motor position measurement and only the
additional knowledge of the gravity vector g in eq. (1). In
particular, using the iterative algorithm proposed in [7], also
the initial estimate of the link position can be determined so
that ξ2(0) = q2(0).

V. EXPERIMENTAL RESULTS

The proposed observer has been evaluated on a KUKA
KR15/2 industrial robot. This robot has an articulated kine-
matics with N = 6 joints and can handle payloads up to
15 kg within a work envelope volume of roughly 15 m3.
Kinematic data are given in [20], while a multi-body iden-
tification of dynamic parameters can be found, e.g., in [21].
The robot test bed used for experimental evaluation is
shown in Fig. 1. Because of the stiff aluminum links and
the cycloidal gearboxes known for their torsional elasticity,
this robot is suitably modeled as a manipulator with rigid
links but visco-elastic joints. Like most industrial robots, the
KUKA KR15/2 is equipped with motor position sensors. For
the implementation of the observer in Sec. IV, additional
acceleration sensors were needed. However, due to hardware
limitations, only three additional signals could be read into
the CPU of the robot controller. Based on eq. (11), this
allows the calculation of at most three link accelerations
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Sensor

(a) Sensor above
joint axis 1

Sensor

(b) Sensor in line with axes 2 and 3

Fig. 2. Robot configurations with singular transformation matrix STA

q̈i. The application of the observer was therefore limited
to the motion of three robot joints, chosen to be the main
ones (proximal to the base). A 3-axial MEMS accelerometer
has been mounted on the fourth link, as shown in Figs. 1–
2. In particular, Figure 2 depicts the robot configurations
where the transformation matrix ST A in eq. (10) is singular.
This happens when the sensor is either above joint axis 1
or is aligned with the normal to joint axes 2 and 3. In
order to avoid these singularities, during the experiments the
workspace was limited to appropriate regions.

One interesting feature of the KUKA KR15/2 robot is that
the motors for the last three (hand) joints are all mounted on
link 4. Accordingly, this implies that rows 4 to 6 of matrix
S are identically zero. Exploitation of additional kinematic
properties, like orthogonality of joint axes, further simplifies
the structure of S leading to a constant matrix with upper
left (3 × 3) block given by

S1...3 =


 0 0 0

0 0 R3IR3zz

0 0 0


 .

Finally, in order to reduce the computation time of the
implemented algorithm, it has been found useful to divide
the observer calculations into two parts: a transformation
of the sensed Cartesian accelerations into link accelerations
and an observer in the joint space. In fact, the observer of
Theorem 2 is very simple since it basically consists of a
decoupled, linear design with only one constant coupling
between joint axes 2 and 3. In our setup, the observer was
implemented using C language.

For evaluating the performance of the proposed observer,
the actual values of the robot state had to be independently
measured during motion. To this purpose, an optical co-
ordinate measurement system for the link position q and
precision gyroscopes for the link velocity q̇ were used as
additional sensors.

A. Observer

Due to the decoupled characteristics, the observer dynam-
ics could be easily tuned working individually on each axis.
This was done by matching measured and observed states

for several motions and operating points via multi-objective
optimization of the observer eigenvalues and of the system
parameters (kept within reasonable bounds from the nominal
values). Well damped eigenvalues with angular frequencies
around ω = 250 rad/s turned out to be a good choice. For
illustration, typical matching of observed and ground-truth
evolution of the states are given for joint axis 1 in Figs. 3
and 4, respectively during a short and a longer robot motion.
The distance traveled by the first joint axis is 5 deg for the
short motion and 30 deg for the longer motion.

From these, it can be seen that for the motor states θ and
θ̇ the observed evolution is very close to the measured (real)
one, which is not so surprising since a direct measurement
of the motor position is available as input to the observer.
Indeed, also for the link states q and q̇ the matching between
observed and measured values is pretty good. Since the errors
in link position estimation were barely visible when the link
angle was displayed, the joint torsion θ−q has been reported
instead. Some estimation errors can still be found, but their
peaks are fairly small.

B. Observer-based controller

The reconstructed robot states have been used also for
implementing motion controllers. Tests have been performed
using a proportional state controller, with diagonal matrix
gain KP > 0, supplemented by a feedforward torque τ d:

τ = KP (xd − ξ) + τ d. (13)

In (13), the estimated value ξ of the robot state x is the on-
line output of the implementable observer (12). The desired
state evolution xd(t) and the nominal torque τ d(t) were
obtained by an efficient inverse dynamics algorithm

(xd, τ d) = INVDYN(qd, q̇d, q̈d, q
(3)
d , . . . ),

where qd(t) is the desired smooth rest-to-rest link trajectory.
The controller was designed to place the slowest frequencies
of the closed-loop system around ω = 30 s−1, which is
close to the robot natural frequency. Details on the design of
this controller can be found in [18]. When compared with
a motion control law using only motor states, the controller
using full state information shows significant improvements
in damping and overshoot. Representative examples of per-
formance are given in Figs. 5 and 6.

VI. CONCLUSIONS

A new state observer for robots with visco-elastic joints
has been proposed, using the motor position and the accel-
eration at selected points along the robot arm as measured
quantities. The observer design has been presented in a step-
wise fashion, assuming first the availability of acceleration
of the joint variables associated to the links (i.e., the link
accelerations beyond joint elasticity), and then considering an
implementation with standard accelerometers mounted on the
links. Experimental validation of the observer itself and of a
trajectory tracking controller based on the reconstructed state
has been conducted on a KUKA KR15/2 industrial robot with
satisfactory performance.
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Fig. 3. Observer performance on a short robot motion
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The main features of this acceleration-based observer are
the following: i) knowledge of the robot link dynamics
is not needed; ii) a linear and decoupled behavior of the
state observation error is obtained when link acceleration is
available, both when neglecting or including the presence
of inertial couplings between the motors and the links; iii)
tuning of the observer gains is made easy by its (fully or
dominantly) decentralized structure; iv) the use of accelerom-
eters is handled similarly, though with the caution to avoid
kinematic singularities associated to the location of these
sensors on the arm.
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