
Global Robust and Adaptive Output Feedback Dynamic Positioning of
Surface Ships

K. D. Do

Abstract— A constructive method is presented to design a
global robust and adaptive output feedback controller for
dynamic positioning of surface ships under environmental
disturbances. Measurements of the ship’s velocities are not
required for feedback. The ship’s parameters are not required
to be known. An adaptive observer is first designed to estimate
the ship’s velocities and parameters. The control is then
designed based on Lyapunov’s direct method to force the ship’s
position and orientation to globally asymptotically converge to
the desired values.

I. INTRODUCTION

Offshore oilfield development has moved to a deeper,
and more severe environment for new oil sources. Moreover
the offshore oil-rigs have become small and light weight.
In deep-water applications, floating production, storage and
offloading units are very cost effective. However, the length
of lines becomes excessive in a conventional chain and
anchor mooring system, and maintaining the position of an
offshore platform becomes difficult both technically and
economically. Therefore, dynamic positioning systems using
thrusters are often used in those applications. Dynamic
positioning systems have been commercially available for
marine vessels since the 1960s. Conventional dynamic
positioning systems are designed based on linearization of
the kinematic equations of motions about a set of predefined
constant yaw angles so that linear control theory can be
applied. The kinematic equations of motion are usually
linearized about 36 different yaw angles. For each of these
linearized models, optimal Kalman filters and feedback
control gains are computed. These filters are used to provide
estimates of the vessel velocities since only positions are
usually measured in a dynamic positioning system, see for
example [1], [2], [3].

Because of limitations of linear control techniques such
as complexity in tuning control gains and no global stabil-
ity results due to linearization, recently several researchers
applied nonlinear control theory to design various control
systems for dynamic positioning of surface vessels. In [4] and
[5], Lyapunov methods [6] and backstepping technique [7]
were used to design a passive nonlinear observer to estimate
the vessel velocities. This observer is then incorporated into
the control design, which is based on Lyapunov’s direct
method. The constant bias disturbances are also included in
the dynamics for the observer design and control design. In
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addition, some interesting practical implementation results
on a full-scale vessel were reported in these papers. In [8],
the problem of weather optimal dynamic positioning was
addressed based on the basic principle of pendulum. In this
weather optimal dynamic positioning system, the control
system automatically turns the vessel such that it heads to
the direction of the constant environmental disturbances to
minimize the load on the vessel. In [9], universal controllers
were proposed for both trajectory tracking and stabilization
for underactuated vessels. These types of controllers and
observers designed in [10] and [11] can be used for dynamic
positioning of underactuated ships as well. In [12] and [13],
several control systems were proposed for a riser system
where the goal is to maintain the top and bottom angles of the
riser at desired values. In existing output feedback dynamic
positioning systems, see for example [4] and [5], the system
parameters such as mass of the vessel and hydrodynamic
coefficients are required to be known for observer design.
Any inaccuracy in these parameters directly affects the
performance of the controlled systems. Furthermore, when
there are uncertainties in the system parameters, no stability
analysis results can be found in the existing output feedback
dynamic positioning systems. These problems motivate the
new output feedback dynamic positioning system proposed
in this paper.
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Fig. 1. Definition of the earth-fixed frame OEXEYE and the body-fixed
frame OXY .

In this paper, we propose a constructive method to design
a global robust and adaptive output feedback controller for
dynamic positioning of surface ships under environmental
disturbances. The ship’s parameters are not required to be
known. A new adaptive observer is first designed to estimate
the ship’s velocities and parameters. The measurement noise
of the ship positions is also filtered out through the adaptive
observer. The output feedback controller is then proposed
to force the ship’s position and orientation to globally
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asymptotically converge to its desired values.

II. PROBLEM STATEMENT

Assume that the ship has an xz-plane of symmetry; surge
is decoupled from sway and yaw; heave, pitch and roll
modes are neglected; the body-fixed frame coordinate origin
is on the center-line of the ship (see Fig. 1). In this figure,
OEXEYE is the earth-fixed frame, OXY is the body-fixed
frame, and Oc is the center of gravity of the vessel. The
mathematical model of the ship used for dynamic positioning
in a horizontal plane is described as [14]:

η̇ = J(ψ)v
Mv̇ = −Dv + τ + τdis (1)

where η = [x y ψ]T denotes the position (x, y) and heading
ψ of the ship coordinated in the earth-fixed frame, v =
[u v r]T denote the ship’s surge, sway and yaw velocities
coordinated in the body-fixed frame. The other terms in (1)
are defined below:

The rotation matrix J(ψ), mass including added mass
matrix M , and damping matrix D are given by

J(ψ) =

⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ ,

M =

⎡
⎣ m−Xu̇ 0 0

0 m− Yv̇ mxg − Yṙ
0 mxg −Nv̇ Iz −Nṙ

⎤
⎦ ,

D = −
⎡
⎣ Xu 0 0

0 Yv Yr
0 Nv Nr

⎤
⎦ (2)

where m is the vessel mass, Iz is the moment of inertia about
the body-fixed z-axis, xg is the distance from the origin O of
the body-fixed frame to the center of gravity of the vessel.
The other symbols in (2) are referred to as hydrodynamic
derivatives, see [15].

The control input vector τ ∈ R
3 of forces and moment

provided by the actuator system, and the disturbance vector
τdis of forces and moment induced by waves, wind and
ocean currents are given by

τ = Gu

τdis = JT (ψ)b (3)

where the control inputs are denoted by u ∈ R
n with

n ≥ 3 denoting the number of independent actuators, and
G ∈ R

3×n is a constant matrix describing the actuator
configuration. Unmodeled external forces and moment due to
waves, wind, and ocean currents are lumped together into an
earth-fixed constant vector b ∈ R

3. In this paper we impose
the following assumption:

Assumption 2.1: a)The ship velocity vector v = [u v r]T

is not available for feedback.

b)The matrices M and D are positive definite.

c) Elements of the vector b and matrices M,D,G are
unknown but constant and bounded, i.e. there exist positive
constants b1, b2,M1,M2,D1,D2, G1, G2 such that

b1 ≤ ‖b‖ ≤ b2, M1 ≤ ‖M‖ ≤M2,

D1 ≤ ‖D‖ ≤ D2, G1 ≤ ‖GTG‖ ≤ G2. (4)

d) The matrix (M−1G)T (M−1G) is invertible for all
M and G that satisfy (4).

Remark 2.1: In most dynamic positioning systems, mea-
surements of the ship velocities are not available. Moreover,
if the ship velocities are measured by using sensors or are
obtained by differentiating the ship position and orientation,
they are significantly corrupted with noise. This in turn
degrades performance of a control system. Therefore Item
a) of Assumption 2.1 is particularly practical. Item b) of
Assumption 2.1 is standard for low speed applications, see
[14]. The upper and lower bounds of the ship parameters
(those elements of the matrices M,D,G) can be computed
by some commercially available softwares such as VERES
from Marintek. Moreover, the high frequency disturbances
should not be compensated by a dynamic positioning system
because they cause the propulsion system to quickly wear
and extensively consume power. Hence, only earth-fixed low
frequency or constant disturbances should be counteracted by
the propulsion system. These observations imply that Item
c) of Assumption 2.1 is reasonable. Item d) of Assumption
2.1 results from Item b) of Assumption 2.1 and the fact that
G ∈ R

n, n ≥ 3.
In this paper, we consider the following control objective.

Control objective. Under Assumption 2.1, design the
control input vector u to force the ship position (x, y) and
orientation ψ to globally asymptotically converge to their
desired constant values (xd, yd, ψd).

III. OBSERVER DESIGN

In this section, we will design an adaptive observer to
estimate all the ship velocities, ship parameters and the
disturbances. We first convert (1) into a convenient pa-
rameterization form for the purpose of observer design.
Substituting (3) into (1) results in

η̇ = J(ψ)v
Mv̇ = −Dv +Gu+ JT (ψ)b (5)

which can be written in the following parameterization form

η̇ = J(ψ)v
v̇ = Φv(v)Θv + Φu(u)Θu + Φψ(ψ)Θψ (6)

where Φv(v), Φu(u), Φψ(ψ) are matrices containing el-
ements of v, u and ψ, respectively, and Θv, Θu, Θψ are
vectors of elements of the matricesM, D, G and the vector
b. These matrices and vectors are such that

Φv(v)Θv = −M−1Dv,

Φu(u)Θu = M−1Gu,

Φψ(ψ)Θψ = M−1JT (ψ)b. (7)
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It is noted that the above parametrization is completely pos-
sible since −M−1Dv and M−1Gu are linear in v and u,
and M−1JT (ψ)b is linear in cos(ψ) and sin(ψ). A simple
calculation shows that

Φv(v) =

⎡
⎣ vT 0T 0T

0T vT 0T

0T 0T vT

⎤
⎦ ∈ R

3×9,

Θv =
[

Θv1 Θv2 Θv3

] ∈ R
9×1

Φu(u) =

⎡
⎣ uT 0Tu 0Tu

0Tu uT 0Tu
0Tu 0Tu uT

⎤
⎦ ∈ R

3×3n,

Θu =
[

Θu1 Θu2 Θu3

] ∈ R
3n×1

Φψ(ψ) =

⎡
⎣ pT 0T 0T

0T pT 0T

0T 0T pT

⎤
⎦ ∈ R

3×9,

Θψ =
[

Θψ1 Θψ2 Θψ3

] ∈ R
9×1 (8)

where 0 = [0 0 0]T ; 0u = [0 ... 0︸ ︷︷ ︸
n

]T ; p =

[cos(ψ) sin(ψ) 1]; Θvi, Θui, Θψi with i = 1, 2 and 3
are the ith row of −M−1D, M−1G, andM−1B,

respectlively, where B =

⎡
⎣ b1 b2 0
b2 −b1 0
0 0 b3

⎤
⎦, with

b = [b1 b2 b3]. We now observe that (7) is of the form
that the unknown parameter vectors Θv, Θu, Θψ appear
linearly. It is also of interest to point out that the second
equation of (7) contains the product of the matrix Φv(v),
whose several elements are the unmeasured vector v, and
the unknown parameter vector Θv , whose elements are the
unknown elements of −M−1D. Due to this feature, the
design of an observer is challenging. In the literature (see
for example, [16], [7], [6]), it requires that the unknown
parameters couple with functions of measured states to
design an adaptive observer. As such, we propose the
following adaptive observer

˙̂η = J(ψ)v̂ +Ko(η − η̂)
˙̂v = Φv(v̂)Θ̂v + Φu(u)Θ̂u + Φψ(ψ)Θ̂ψ+ (9)

JT (ψ)(η − η̂)

where Ko is a symmetric positive definite matrix; η̂=
[x̂ ŷ ψ̂]T , v̂= [u v r]T , Θ̂u, Θ̂v, Θ̂ψ are estimates of
η, v,Θu,Θv,Θψ , respectively; the matrix Φv(v̂) is the
matrices Φv(v) with v replaced by v̂. Subtracting (9) from
(7) results in the following observer error dynamics

˙̃η = J(ψ)v̂ +K0η̃

˙̃v = Φv(v)Θv − Φv(v̂)Θ̂v + Φu(u)Θ̃u+

Φψ(ψ)Θ̃ψ + JT (ψ)η̃ (10)

where η̃ = η − η̂, ṽ = v − v̂, Θ̃u = Θu − Θ̂u,
Θ̃ψ = Θψ − Θ̂ψ . At this point, it is noted by construction

that

Φv(v)Θv − Φv(v̂)Θ̂v

= Φv(v)Θv − Φv(v̂)Θv + Φv(v̂)Θv − Φv(v̂)Θ̂v

= Φv(ṽ)Θv + Φv(v̂)Θ̃v

= −M−1Dṽ + Φv(v̂)Θ̃v. (11)

To determine update laws for Θ̂u, Θ̂v, Θ̂ψ , we consider
the following Lyapunov function candidate

Vo =
1
2
(‖η̃‖2 + ‖ṽ‖2 +

Θ̃T
v Γ−1

v Θ̃v + Θ̃T
uΓ−1

u Θ̃u + Θ̃T
ψΓ−1

ψ Θ̃ψ

)
(12)

where Γv,Γu,Γψ are symmetric positive definite matrices.
Differentiating both sides of (12) along the solutions of (10)
results in

V̇o =−η̃TKoη̃ − ṽM−1Dṽ + ṽTΦv(v̂)Θ̃v+

ṽTΦu(u)Θ̃u + ṽTΦψ(ψ)Θ̃ψ −
Θ̃T
v Γ−1

v
˙̂Θv − Θ̃T

uΓ−1
u

˙̂Θu − Θ̃T
ψΓ−1

ψ
˙̂Θψ (13)

where we have used (11), which suggests that we choose
the update laws for Θ̂u, Θ̂v, Θ̂ψ as follows

˙̂Θv = Γvproj
(
ΦTv (v̂)ṽ, Θ̂v

)
,

˙̂Θu = Γuproj
(
ΦTu(u)ṽ, Θ̂u

)
,

˙̂Θψ = Γψproj
(
ΦTψ(ψ)ṽ, Θ̂ψ

)
(14)

where the operator proj represents the Lipschitz projection
algorithm [17] as

proj(�, ω̂) = � if Ξ(ω̂) ≤ 0,
proj(�, ω̂) = � if Ξ(ω̂) > 0 and Ξ(ω̂)ω̂� ≤ 0, (15)

proj(�, ω̂) = (1 − Ξ(ω̂)� if Ξ(ω̂) > 0 and Ξ(ω̂)ω̂� > 0

where Ξ(ω̂) = ω̂2−ω2
M

(ξ2+2ξωM ) , Ξ(ω̂)ω̂ = ∂Ξ(ω̂)
∂ω̂ , ξ is an

arbitrarily small positive constant, and ‖ω‖ ≤ ωM . The
projection algorithm is such that if ˙̂ω = Γ proj(�, ω̂) with
Γ a symmetric positive definite matrix, and ‖ω̂(t0)‖ ≤ ωM
then

a) ω̂(t) ≤ ωM + ξ,∀ 0 ≤ t ≤ ∞,

b) proj(�, ω̂) is Lipschitz continuous,

c) ‖proj(�, ω̂)‖ ≤ ‖�‖, (16)

d) ω̃T proj(�, ω̂) ≥ ω̃T�, with ω̃ = ω − ω̂.

Now substituting (14) into (13) and use Property d) of the
proj algorithm in (16) results in

V̇o ≤ −η̃TKoη̃ − ṽM−1Dṽ. (17)

We now state our first main result in the following theorem.

Theorem 3.1: Assume that the control vector u
is designed in such a way that it only depends on
η̂, ψ, v̂, Θ̂v, Θ̂u, Θ̂ψ and ηd=[xd yd ψd]T , and that it
guarantees η(t) and v(t) bounded for all 0 ≤ t < ∞.
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Then the adaptive observer (9) with the update laws (14)
ensures that the observer errors η̃(t) and ṽ(t) globally
asymptotically converge to zero. The updates Θ̂v(t), Θ̂u(t)
and Θ̂ψ(t) are bounded for all 0 ≤ t < ∞. Moreover the
update laws (14) can be calculated based on only measured
and known signals.

Remark 3.1: The assumption on boundedness of η(t)
and v(t), and dependence of the control vector u on known
signals in Theorem 3.1 will be completely relaxed in the
next section where the control u is designed.

Proof of Theorem 3.1. Since the matrices Ko,M,D are
positive definite, from (17) and definition of Vo, see (12), by
integrating both sides of (17) then using Barbalat’s lemma
found in [6] it is not hard to show that limt→∞(‖η̃(t)‖ = 0)
and limt→∞(‖ṽ(t)‖ = 0). This means that the observer
errors η̃(t) and ṽ(t) globally asymptotically converge to
zero. At the first glance, the update laws for Θ̂v, Θ̂u, Θ̂ψ

given in (14) depend on the unmeasured signal v since
ṽ = v − v̂. We will however show that these update laws
can be calculated without using the unmeasured signal v. To
do so, integrating both sides of (14) from t0 to t results in

Θ̂v(t) = Θ̂v(t0) +

Γv

∫ t

t0

proj
(
ΦTv (v̂(τ ))(v(τ ) − v̂(τ )), Θ̂v

)
dτ ,

Θ̂u(t) = Θ̂u(t0) +

Γu

∫ t

t0

proj
(
ΦTu(u(τ ))(v(τ ) − v̂(τ )), Θ̂u

)
dτ ,

Θ̂ψ(t) = Θ̂ψ(t0) +

Γψ

∫ t

t0

proj
(
ΦTψ(ψ(τ ))(v(τ ) − v̂(τ )), Θ̂ψ

)
dτ

(18)

where we have used ṽ = v − v̂.
On the other hand, from the first equation of (7), we have
v = J−1(ψ)dη

dt
, which is substituted into (18) to yield

Θ̂v(t) = Θ̂v(t0) − Γv

∫ t

t0

proj
(
ΦT
v (v̂(τ ))v̂(τ )dτ, Θ̂v

)
+

Γv

∫ η(t)

η(t0)

proj
(
ΦT
v (v̂(σ))J−1(ψ(σ))dσ, Θ̂v

)
,

Θ̂u(t) = Θ̂u(t0) − Γu

∫ t

t0

proj
(
ΦT
u (u(τ ))v̂(τ )dτ, Θ̂u

)
+

Γu

∫ η(t)

η(t0)

proj
(
ΦT
u (u(σ))J−1(ψ(σ))dσ, Θ̂u

)
,

Θ̂ψ (t) = Θ̂ψ (t0) − Γψ

∫ t

t0

proj
(
ΦT
ψ(ψ(τ ))v̂(τ )dτ, Θ̂ψ

)
+

Γψ

∫ η(t)

η(t0)

proj
(
ΦT
ψ(ψ(σ))J−1(ψ(σ))dσ, Θ̂ψ

)
. (19)

It is now seen that the right hand side of (19) contains only
the known terms. This means that the estimates Θ̂v, Θ̂u, Θ̂ψ
should be updated based on (19) instead of (14). In general,
the integrals in the right hand side of (19) do not have
an analytical solution. A simple way to get around this

problem is to use a discrete-time approximation of the update
laws (19). We here present this approximation for Ωv . An
approximation for Ωu and Ωψ can be carried out similarly.
Assuming that the sampling interval Δ is sufficiently small,
then the first equation of (19) (together with proj operator)
can be approximated as follows:

If Ξ(i − 1) ≤ 0

Θ̂v(i) = Θ̂v(i − 1) − ΓvΦ
T
v (i − 1) ×(

Δv̂(i − 1) − J−1(i − 1)(η(i) − η(i − 1))
)
,

If Ξ(i − 1) > 0 and ΞΘ̂v
(i − 1)ΦT

v (i − 1) ×(
Δv̂(i − 1) − J−1(i − 1)(η(i) − η(i − 1))

)
≤ 0

Θ̂v(i) = Θ̂v(i − 1) − ΓvΦ
T
v (i − 1) ×(

Δv̂(i − 1) − J−1(i − 1)(η(i) − η(i − 1))
)
,

If Ξ(i − 1) > 0 and ΞΘ̂v
(i − 1)ΦT

v (i − 1) ×(
Δv̂(i − 1) − J−1(i − 1)(η(i) − η(i − 1))

)
> 0,

Θ̂v(i) = Θ̂v(i − 1) − ΓvΦ
T
v (i − 1)(1 − Ξ(i − 1)) ×(

Δv̂(i − 1) − J−1(i − 1)(η(i) − η(i − 1))
)

(20)

where i = 1, 2, ..., Ξ(i− 1) = Ξ(Θ̂(i− 1)),
ΞΘ̂v

(i− 1) = ΞΘ̂v
(Θ̂(i− 1)),ΦTv (i− 1) =

ΦTv (Θ̂(i− 1)) and J−1(i− 1) = J−1(ψ(i− 1)).
Finally, Property a) of the projection algorithm shows that
Θ̂v(t), Θ̂u(t) and Θ̂ψ(t) are bounded for all t0 ≤ t < ∞.
This completes the proof of Theorem 3.1.
To prepare for the control design presented in the next
section, we rewrite (9) as follows

˙̂η = J(ψ)v̂ +Koη̃
˙̂v = −Âv̂ + B̂u+ Φψ(ψ)Θ̂ψ + JT (ψ)η̃ (21)

where Â and B̂ are estimates of M−1D and M−1G,
which are constructed from Θ̂v and Θ̂u, respectively.

Remark 3.2: We will use η̂ and v̂ generated by (21) for
control design instead of η and v̂ since (21) acts as a filter
to filter out high frequency noise of position measurements.
Moreover, thanks to Property a) of the projection algorithm
given in (16) and assumption on the ship parameters given
in (4), we have B̂T B̂ is invertible.

IV. CONTROL DESIGN

In this section, we will design the control u as a func-
tion of η̂, ψ, v̂, Θ̂v, Θ̂u, Θ̂ψ and ηd to guarantee that η(t)
and v(t) are bounded for all 0 ≤ t < ∞, and that
limt→∞ ‖η(t) − ηd‖ = 0. Since (21) is of a strict feedback
form [7], we will use the backstepping technique found in
[7] to design the control u. The control design consists of
two steps. At the first step, we consider the first equation of
(21) with v̂ being treated as a control. At the second step,
the second equation of (21) is considered where the actual
control u is designed.
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A. Step 1

Define

ηe = η̂ − ηd, ve = v̂ − αv̂ (22)

where αv̂ is a virtual control of v̂. Substituting (22) into the
first equation of (21) results in

η̇e = J(ψ)(αv̂ + ve) +Koη̃. (23)

To design the virtual control αv̂ , we consider the following
Lyapunov function

V1 = 0.5‖ηe‖2 (24)

whose derivative along the solutions of (23) satisfies

V̇1 = ηTe J(ψ)(αv̂ + ve) + ηTeKoη̃ (25)

which suggests that we choose the virtual control αv̂ as

αv̂ = −J−1(ψ)K1ηe (26)

where K1 is a symmetric positive definite matrix. It is of
interest to note from (26) that the virtual control αv̂ is a
smooth function of η̂, ηd and ψ. Substituting (26) into (25)
results in

V̇1 = −ηTeK1ηe + ηTe J(ψ)ve + ηTeKoη̃. (27)

B. Step 2

Differentiating both sides of the second equation of (22)
along the solutions of (26) and the second equation of (21)
gives

v̇e = −Âv̂ + B̂u+ Φψ(ψ)Θ̂ψ + JT (ψ)η̃−
∂αv̂
∂η̂

(J(ψ)v̂ +Koη̃) − ∂αv̂
∂ψ

(r̂ + r̃ +Ko3η̃) (28)

where r̃ is the third element of ṽ, and Ko3 is the third
row of Ko. To design the actual control u, we consider the
following Lyapunov function

V2 = V1 +
1
2
‖ve‖2. (29)

Differentiating both sides of (29) along the solutions of (28)
and (27) gives

V̇2 = −ηTeK1ηe + ηTeKoη̃ +

vTe

(
JT (ψ)ηe−Âv̂ + B̂u+ Φψ(ψ)Θ̂ψ + JT (ψ)η̃ −

∂αv̂
∂η̂

(J(ψ)v̂ +Koη̃) − ∂αv̂
∂ψ

(r̂ + r̃ +Ko3η̃)
)

(30)

which suggests that we choose the actual control u as
follows

u =(B̂T B̂)−1B̂T
[

−K2ve − JT (ψ)ηe + (31)

Âv̂ − Φψ(ψ)Θ̂ψ + ∂αv̂
∂η̂
J(ψ)v̂ + ∂αv̂

∂ψ
r̂ −

ε
(∥∥∥∂αv̂∂η̂ Ko

∥∥∥2

+
∥∥∥∂αψ∂η̂ Ko

∥∥∥2

+
∥∥∥∂αψ∂η̂ Ko3

∥∥∥2)
ve

]
where K2 is a symmetric positive definite matrix, ε is a

positive constant. The terms inside the bracket multiplied by
ε are damping terms, which are included to overcome effects

of the observer errors. Substituting (31) into (30), after a
simple calculation, yields

V̇2 ≤ −(λmin(K1) − ε)‖ηe‖2 − (λmin(K2) − ε)‖ve‖2 +
1
4ε

(
(λ2
max(Ko) + 2)‖η̃‖2 + ‖ṽ‖2

)
(32)

where λmin(•) and λmax(•) are the minimum and
maximum eigenvalues of •. We now state the main result
of the paper in the following theorem.

Theorem 4.1: Under Assumption (2.1), the robust and
adaptive output feedback control system consists of the
control law (31), the observer (9), and the update laws
(19) solves the control objective stated in Section II, i.e.
limt→∞ (‖η(t) − ηd‖) = 0. In particular, the control
vector u depends only on measured and available signals:
η̂, ψ, v̂, Θ̂v, Θ̂u, Θ̂ψ and ηd. Moreover, η(t) and v(t) are
bounded for all 0 ≤ t <∞.

Proof of Theorem 4.1. To prove this theorem, we consider
the Lyapunov function

V∑ = V2 + �Vo (33)

where � is a large positive constant to be picked later.
Differentiating both sides of (33) along the solutions of (32)
and (17) gives

V̇∑ ≤−(λmin(K1) − ε)‖ηe‖2 − (λmin(K2) − ε)‖ve‖2 +
1
4ε

(
(λ2
max(Ko) + 2)‖η̃‖2 + ‖ṽ‖2

)
−

�
(
λmin(Ko)‖η̃‖2 + λmin(M−1D)‖ṽ‖2

)
. (34)

Now we pick ε and � such that

λmin(K1) − ε ≥ κ1,

λmin(K2) − ε ≥ κ2,

�λmin(Ko) − 1
4ε

(λ2
max(Ko) + 2) ≥ κ3,

�λmin(M−1D) − 1
4ε

≥ κ4 (35)

where κi, i = 1, ..., 4 are strictly positive constants. Note that
we can always pick sufficiently small ε and sufficiently large
� such that (35) holds. Moreover, the constants ε and � are
only used in the proof of Theorem 4.1, and are not used in
the control implementation. Now using (35), we can write
(34) as

V̇∑ ≤ −κ1‖ηe‖2 − κ2‖ve‖2 − κ3‖η̃‖2 − κ4‖ṽ‖2

≤ 0 (36)

From V̇∑ ≤ 0 and definition of V∑ , see (33) with its
components given in (12), (29) and (24), we have

W∑ (t) ≤W∑ (t0), ∀ 0 ≤ t0 ≤ t <∞ (37)

where W∑ = ‖η̃‖2 + ‖ṽ‖2 + Θ̃T
v Γ−1

v Θ̃v+
Θ̃T
uΓ−1

u Θ̃u + Θ̃T
ψΓ−1

ψ Θ̃ψ + ‖ηe‖2 + ‖ve‖2. The
inequality (37) readily implies that all signals η̂(t), v̂(t),
Θ̂v(t), Θ̂u(t), Θ̂ψ(t), η(t) and v(t) are bounded. This
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means that the solutions of the controlled system consisting
of the ship dynamics (1), the observer dynamics (9), the
update laws (19) and the control (31) exist and forward
complete. Integrating both sides of the first inequality of
(36) results in∫ ∞

t0

(
κ1‖ηe(t)‖2 + κ2‖ve(t)‖2 + κ3‖η̃(t)‖2 +

κ4‖ṽ(t)‖2
)
dt ≤W∑ (t0) −W∑ (∞) ≤W∑ (t0). (38)

On the other hand it is noted that ηe(t), ve(t), η̃(t),
and ṽ(t) are continuous. Therefore, the last inequality
of (38) implies from Barbalat’s lemma found in [6] that
limt→∞ (‖ηe(t)‖) = limt→∞ (‖η(t) − ηd‖) = 0. Finally,
from (31) it is clear that the control u depends only on
measured and available signals: η̂, ψ, v̂, Θ̂v, Θ̂u, Θ̂ψ and
ηd. Proof of Theorem (4.1) is completed.

V. CONCLUSIONS

We have developed a constructive method to design a
global robust and adaptive output feedback controller for dy-
namic positioning of surface ships under environmental dis-
turbances. Many assumptions such as full state measurements
and completely known system parameters, which are often
made in the literature are relaxed. An attractive feature of the
proposed controller is that the novel adaptive observer can
act as both an estimator and a filter to estimate unavailable
states and filter out high frequency noise. Although dynamic
positioning vessels are usually fully actuated, it is of interest
to investigate a combination the proposed technique in this
paper and our techniques for trajectory tracking and path
following of underactuated surface vessels in [9], [10] and
[11] to design a robust and adaptive output feedback for
dynamic positioning of underactuated vessels.
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