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Abstract— A constructive method is presented to design
cooperative controllers that force a group of N unicycle-type
mobile robots with limited sensing ranges to perform desired
formation tracking, and guarantee no collisions between the
robots. Robot physical dimensions and dynamics are considered
in the control design. p times differential bump functions are
introduced and incorporated into novel potential functions for
control design. Despite the robot limited sensing ranges, no
switchings are needed to solve the collision avoidance problem.

I. INTRODUCTION

Research works on formation control often use one or
more of leader-following (e.g. [1], [2]), behavioral (e.g. [3],
[4]), and use of virtual structures (e.g. [5], [6] approaches
in either a centralized or decentralized manner. Centralized
control schemes (e.g. [2] and [7]) use a single controller
that generates collision free trajectories in the workspace.
Although these guarantee a complete solution, centralized
schemes require high computational power and are not robust
due to the heavy dependence on a single controller. On the
other hand, decentralized schemes, see e.g. [8], [9], require
less computational effort, and are relatively more scalable to
the team size. The decentralized approach usually involves
a combination of agent based local potential fields (e.g.
[2], [10], [11]). The main problem with the decentralized
approach, when collision avoidance is taken into account,
is that it is extremely difficult to predict and control the
critical points of the controlled systems. Recently, a method
based on a different navigation function from [12] provided a
centralized formation stabilization control design strategy is
proposed in [7]. This work is extended to a decentralized ver-
sion in [9]. However, the formation is stabilized to any point
in workspace instead of being ”tied” to a fixed coordinate
frame. In [12], [7] and [9], the tuning constants are extremely
difficult to obtain. In most of the above papers, point-
robots with simple (single or double integrator) dynamics
(e.g. [2], [7], [9], [11], [13]) or fully actuated vehicles [6]
(which can be converted to a double integrator dynamics via
a feedback linearization) were investigated. Vehicles with
nonholonomic constraints were also considered (e.g. [3]).
However, the nonholonomic kinematics are transformed to a
double integrator dynamics by controlling the hand position
instead of the inertial position of the vehicles. Consequently,
the vehicle heading is not controlled. In addition, switching
control theory [14] is often used to design a decentralized
formation control system (e.g. [1]), especially when the
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vehicles have limited sensing ranges and collision avoidance
between vehicles must be considered. In this paper, coopera-
tive controllers are designed to force a group of N unicycle-
type mobile robots with limited sensing ranges to perform
desired formation tracking, and to guarantee no collisions
between the robots. The physical dimensions and dynamics
of the robots are also considered. The control development
is based on novel potential functions. Moreover, p times
differential bump functions are introduced and incorporated
into the potential functions to avoid the use of switchings.

II. PROBLEM STATEMENT

A. Robot dynamics

We consider a group of N mobile robots, of which each
has the following dynamics [15]:

η̇i = Ji(ηi)ωi, (1)

Miω̇i = −Ci(η̇i)ωi −Diωi + τi

where i = 1, ..., N, ηi = [xi yi φi]T denotes the position
(xi, yi), the coordinates of the middle point, P0i, between the
left and right driving wheels, and heading φi of the robot
i coordinated in the earth-fixed frame OXY , see Fig. 1,
ωi = [ω1i ω2i]T with ω1i and ω2i being the angular velocities
of the wheels of the robot i, τi = [τ1i τ2i]T with τ1i and τ2i

being the control torques applied to the wheels of the robot i.
The rotation matrix Ji(ηi), mass matrix Mi, Coriolis matrix
Ci(η̇i), and damping matrix Di in (1) are given by

Ji(ηi) =
ri
2

⎡
⎣cos(φi)− sin(φi)

sin(φi) cos(φi)
1
bi

− 1
bi

⎤
⎦ , Mi =

[
m11i m12i

m12i m11i

]
,

Ci(η̇i) =
[

0 ciφ̇i

−ciφ̇i 0

]
, Di =

[
d11i 0
0 d22i

]
(2)

with Ii = mcia
2
i + 2mwib

2
i + Ici + 2Imi

ci =
r2i
2bi

mciai,m11i =
r2i
4b2i

(mib
2
i + Ii), ,

m12i =
r2i (mib

2
i − Ii)

4b2i
,mi = mci + 2mwi (3)

where mci and mwi are the masses of the body and wheel
with a motor; Ici, Iwi and Imi are the moments of inertia of
the body about the vertical axis through Pci (center of mass),
the wheel with a motor about the wheel axis, and the wheel
with a motor about the wheel diameter, respectively; ri, ai

and bi are defined in Fig. 1; the nonnegative constants d11i

and d22i are the damping coefficients. For convenience, we
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convert the wheel velocities ω1i and ω2i of the robot i to its
linear, vi, and angular, wi, velocities by the relationship:

�i = B−1
i ωi, Bi =

1
ri

[
1 bi
1 −bi

]
(4)

where �i = [vi wi]T . It is noted that Bi is invertible
since det(Bi) = −2bi/ri. With (4), we can write the robot
dynamics (1) in the following convenient form:

ẋi = vi cos(φi)
ẏi = vi sin(φi)
φ̇i = wi

M i�̇i = −Ci(wi)�i −Di�i +Biτi (5)

where M i = B−1
i MiBi, Ci(wi) = B−1

i Ci(η̇i)Bi

Di = B−1
i DiBi = Di, Bi = B−1

i . (6)
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Fig. 1. Illustration of robot parameters and formation setup.

B. Formation control objective

Assumption 1.
1) The robot i has a physical safety circular area, which

is centered at the point P0i and has a radius Ri, and
has a circular communication area, which is centered
at the point P0i and has a radius Ri, see Fig. 1. The
radius Ri is strictly larger than Ri.

2) The robot i broadcasts its state and reference trajec-
tory in its circular communication area. Moreover, the
robot i can receive the states and reference trajectories
broadcasted by other robots j, j = 1, 2, ..., N, j �= i in
the group if the points P0j of these robots are in the
circular communication area of the robot i.

3) The dimensional terms (ri, ai and bi) of the robot i
are known. The terms involved with mass, inertia and
damping (m11i,m12i, d11i, d22i and ci) of the robots
are unknown but constant.

4) At the initial time t0 ≥ 0, each robot starts at a location
that is outside of the safety areas of other robots in the
group, i.e. there exists a strictly positive constant ε1
such that

‖qi(t0) − qj(t0)‖ − (Ri +Rj) ≥ ε1, (7)

for all (i, j) ∈ (1, 2..., N), i �= j, where qi = [xi yi]T .

5) The reference trajectory for the robot i is qid =
[xid yid]T , which is generated by

qid = qod(sod) + li (8)

where qod(sod) = [xod(sod) yod(sod)]T is referred to
as the common reference trajectory with sod being the
common trajectory parameter, and li is a constant vec-
tor. The trajectory qod satisfies the following conditions

lim
t→∞u2

od(t) �= 0, uod =
√
x′2od + y′2od ṡod,√

x′2od + y′2od > 0, |uod(t)| ≤ umax
od (9)

where x′od = ∂xod

∂sod
, y′od = ∂yod

∂sod
, and umax

od is a strictly
positive constant. Moreover, u̇od, üod are also bounded.
The constant vectors li, i = 1, 2, ..., N satisfy

‖li − lj‖ − (Ri +Rj) ≥ ε2, (10)

for all (i, j) ∈ (1, 2..., N), i �= j where ε2 is a strictly
positive constant.

Formation control objective: Under Assumption 1, de-
sign the control input τi and update laws for all terms
involved mass, inertia and damping for each robot i such
that each robot asymptotically tracks its desired reference
trajectory qid while avoids collisions with all other robots in
the group, i.e. for all (i, j) ∈ {1, 2, ..., N}, i �= j, t ≥ t0 ≥ 0

lim
t→∞(qi(t) − qid(t)) = 0, lim

t→∞(φi(t) − φid(t)) = 0,

‖qi(t) − qj(t)‖ − (Ri +Rj) ≥ ε3 (11)

where φid(t) = arctan( y′
od

x′
od

), and ε3 is a positive constant.

III. PRELIMINARIES

We here present one definition and one lemma, which
will be used in the control design in the next section.

Definition 1. A scalar function h(x, a, b) is called a p
times differential bump function if it enjoys the following
properties

1) h(x, a, b) = 1 if 0 ≤ x ≤ a,

2) h(x, a, b) = 0 if x ≥ b,

3) 0 < h(x, a, b) < 1 if a < x < b,

4) h(x, a, b) is p times differentiable with respect to x

where p is a positive integer, x ∈ R+, and a and b are
constants such that 0 ≤ a < b.

Lemma 1. Let the scalar function h(x, a, b) be defined as

h(x, a, b) = 1 −
∫ x

a
f(τ − a)f(b− τ)dτ∫ b

a
f(τ − a)f(b− τ)dτ

(12)

where the function f(y) is defined as follows

f(y) = 0 if y ≤ 0 and f(y) = yp if y > 0 (13)

with p being a positive integer. Then the function h(x, a, b)
is a p times differentiable bump function.

Proof. See http://mech.uwa.edu.au/∼duc/bumpduc.pdf
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IV. CONTROL DESIGN

A. Stage I

1) Step I.1: Define

φie = φi − αφi
, vie = vi − αvi

(14)

where αφi
and αvi

are virtual controls of φi and vi, respec-
tively. With (14), the first two equations of (5) are read:

q̇i = ui + Δ1i + Δ2i (15)

where qi = [xi yi]T , and

Δ1i =

[
(cos(φie) − 1) cos(αphii) − sin(φie) sin(αφi)
(sin(φie) cos(αφi) + (cos(φie) − 1) sin(αφi)

]
αvi ,

Δ2i =

[
cos(φi)
sin(φi)

]
vie, ui =

[
cos(αφi)
sin(αφi)

]
αvi . (16)

To fulfill the task of position tracking and collision avoid-
ance, we consider the following potential function

ϕI1 =
N∑

i=1

(γi + 0.5βi) (17)

where γi and βi are the goal and related collision avoidance
functions for the robot i specified as follows:
-The goal function is designed such that it puts penalty on
the tracking error for the robot, and is equal to zero when
the robot is at its desired position. We choose

γi = 0.5‖qi − qid‖2. (18)

-The related collision function βi should be chosen such that
it is equal to infinity whenever any robots come in contact
with the robot i , i.e. a collision occurs, and attains the
minimum value when the robot i is at its desired location
with respect to other group members belong to the set Ni

robots, where Ni is the set that contains all the robots in the
group except for the robot i. We choose

βi =
∑
j∈Ni

βij (19)

where the function βij = βji is a function of ‖qij‖2/2 with
qij = qi − qj , and enjoys the following properties:

1) βij = 0, β′
ij = 0, β′′

ij ≥ 0 if ‖qij‖ = ‖qijd‖,
2) βij > 0 if 0 < ‖qij‖ < bij ,

3) βij = 0, β′
ij = 0, β′′

ij = 0, β′′′
ij = 0 if ‖qij‖ ≥ bij ,

4) βij = ∞ if
(‖qij‖ − (Ri +Rj)

) ≤ 0,

5) βij ≤ μ1, |β′
ij | ≤ μ2, and |β′′

ijq
T
ijqij | ≤ μ3, (20)

∀μ4 ≤ ‖qij‖ ≤ μ5,

6) βij is at least 3 times differentiable with respect to qij

where bij is a strictly positive constant such
that bij ≤ min (Ri, Rj), β′

ij = ∂βij

∂(‖qij‖2/2) and

β′′
ij = ∂2βij

∂(‖qij‖2/2)2 , β′′′
ij = ∂3βij

∂(‖qij‖2/2)3 , and μl, l = 1, ..., 5
are positive constants.

There are many functions that satisfy all properties of βij

given in (20). An example is

βij =
hij

(‖qij‖2/2, a2
ij/2, b

2
ij/2

)
1 − hij

(‖qij‖2/2, a2
ij/2, b

2
ij/2

) (21)

where hij

(‖qij‖2/2, a2
ij/2, b

2
ij/2

)
is a p times differentiable

bump function defined in Definition 1 with p ≥ 3 and
aij ≥ (Ri + Rj), and bij ≤ min (Ri, Rj , ‖li − lj‖). The
time derivative of ϕI1 along the solutions of (15) satisfies

ϕ̇I1 =
N∑

i=1

ΩT
i

(
ui + Δ1i + Δ2i − q̇od

)
(22)

where we have used q̇id = q̇od, ui − uj = ui − q̇od − (uj −
q̇od),∀(i, j) ∈ (1, 2, ..., N), i �= j, and

Ωi = qi − qid +
∑
j∈Ni

β′
ijqij . (23)

From (22), we choose ui as follows:

ui = −k0u
2
odΨ(Ωi) + q̇od (24)

where Ψ(Ωi) denotes a vector of bounded functions of
elements of Ωi in the sense that Ψ(Ωi) =

[
ψ(Ωix) ψ(Ωiy)

]T

with Ωix and Ωiy the first and second rows of Ωi, i.e.
Ωi = [Ωix Ωiy]T . The function ψ(x) is a scalar, at least
three times differentiable and bounded function with respect
to x, and satisfies

1) |ψ(x)| ≤ �1,
2) ψ(x) = 0 if x = 0, xψ(x) > 0 if x �= 0,
3) ψ(−x) = −ψ(x), (x− y)[ψ(x) − ψ(y)] ≥ 0,
4) |ψ(x)/x| ≤ �2, |∂ψ(x)/∂x| ≤ �3, ∂ψ(x)/∂x|x=0 = 1

(25)

for all x ∈ R, y ∈ R, where �1, �2, �3 are strictly positive
constants. Some functions that satisfy the above properties
are arctan(x) and tanh(x). The strictly positive constant k0

is chosen such that

k0 <
1

2�1umax
od

. (26)

The above condition ensures that αφi
and αvi

are solvable
from ui. From (24) and (16), we have

cos(αφi
)αvi

= −k0u
2
odψ(Ωix) + cos(φod)uod,

sin(αφi
)αvi

= −k0u
2
odψ(Ωiy) + sin(φod)uod (27)

where we have used ẋod = x′odṡod = cos(φod)uod and
ẏod = y′odṡod = sin(φod)uod since φod = arctan(y′od/x

′
od)

and
√
x′2od + y′2od > 0, see Assumption 1. Now solving (27)

for αφi
and αvi

gives

αφi = φod +

arctan

( −k0uod

( − ψ(Ωix) sin(φod) + ψ(Ωix) cos(φod)
)

−k0uod

(
ψ(Ωix) cos(φod) + ψ(Ωix) sin(φod)

)
+ 1

)
,

αvi = cos(αφi)
( − k0u

2
odψ(Ωix) + cos(φod)uod

)
+

sin(αφi)
( − k0u

2
odψ(Ωiy) + sin(φod)uod

)
. (28)

Note that (28) is well defined since
−k0uod

(
ψ(Ωix) cos(φod) + ψ(Ωix) sin(φod)

)
+ 1 ≥

−2�1k0u
max
od + 1 > 0 where (26) was used. It is of interest
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to note that αφi
and αvi

are at least twice differentiable
functions of qod, φod, uod, qi, qij with j ∈ Ni, j �= i. Now
substituting (24) into (22) results in

ϕ̇I1 = −k0u
2
od

N∑
i=1

ΩT
i Ψ(Ωi) +

N∑
i=1

ΩT
i (Δ1i + Δ2i). (29)

2) Step I.2: At this step, we view wi as an immediate
control to stabilize φie at the origin. As such, we define

wie = wi − αwi
(30)

where αwi
is a virtual control of wi. To design the virtual

control αwi
, we consider the following function

ϕI2 = ϕI1 + 0.5
N∑

i=1

φ2
ie (31)

whose derivative along the solutions of (29), (30) and the
third equation of (5) satisfies

ϕ̇I2 = −k0u
2
od

N∑
i=1

ΩT
i Ψ(Ωi) +

N∑
i=1

ΩT
i Δ2i +

N∑
i=1

φie

(
ΩT

i Δ1i

φie
+ wie + αwi

− ∂αφi

∂qod
q̇od − ∂αφi

∂φod
φ̇od −

∂αφi

∂uod
u̇od − ∂αφi

∂qi
(ui + Δ1i + Δ2i) − (32)

N∑
j=1,j �=i

∂αφi

∂qij
(ui + Δ1i + Δ2i − (uj + Δ1j + Δ2j))

)
.

It is noted that Δ1i

φie
is well defined since sin(φie)

φie
=∫ 1

0
cos(λφie)dλ and cos(φie)−1

φie
=

∫ 0

1
sin(λφie)dλ are

smooth functions for all φie ∈ R. From (32), we choose
the virtual control αwi

as

αwi
=−kiφie − ΩT

i Δ1i

φie
+
∂αφi

∂qod
q̇od +

∂αφi

∂φod
φ̇od +

∂αφi

∂uod
u̇od +

∂αφi

∂qi
(ui + Δ1i) +

N∑
j=1,j �=i

∂αφi

∂qij
(ui + Δ1i − (uj + Δ1j)) (33)

where ki is a positive constant. Substituting (33) into (32)
results in:

ϕ̇I2 = −k0u
2
od

N∑
i=1

ΩT
i Ψ(Ωi) −

N∑
i=1

kiφ
2
ie +

N∑
i=1

[
φiewie +

(
ΩT

i − φie
∂αφi

∂qi
−

N∑
j=1,j �=i

(∂αφi

∂qij
φie −

∂αφj

∂qji
φje

))
Δ2i

]
.

(34)

To prepare for the next section, let us compute the term
M i�̇ie where �ie = [vie wie]T . From the second equation
of (14), (30), and the last equation of (5), we have

M i�̇ie = −Ci(wi)�i −Di�i −M i[α̇vi
α̇wi

]T +Biτi

= −Di�ie + ΦiΘi +Biτi (35)

where

Φi =
[

w2
i − αvi

− α̇vi
0 0 0

0 0 0 − wivi − αwi
− α̇wi

]
, (36)

Θi =
[
bici d11i m11i +m12i ci/bi d22i m11i −m12i

]T

where ϑi = ui + Δ1i + Δ2i, i = 1, ..., N .

B. Stage II

At this stage, we design the actual control input vector τi
and update laws for unknown system parameter vector Θi for
each robot i. To do so, we consider the following function

ϕII = ϕI2 +
1
2

N∑
i=1

(
�T

ieM i�ie + Θ̃T
i Γ−1

i Θ̃i

)
(37)

where Θ̃i = Θi − Θ̂i with Θ̂i being an estimate of Θi, and
Γi is a symmetric positive definite matrix. Differentiating
both sides of (37) along the solutions of (35) and (34) and
choosing the actual control τi and the update law for Θ̂i as

τi= B
−1

i

(
− Li�ie − ΦiΘ̂i −

[(
ΩT

i − φie
∂αφi

∂qi
−

N∑
j=1,j �=i

(
∂αφi

∂qij
φie −

∂αφj

∂qji
φje

))
Δ2i φie

]T )
,

˙̂Θi= ΓiΦT
i �ie (38)

where Δ2i = [cos(φi) sin(φi)]T , and Li is a symmetric
positive definite matrix, result in

ϕ̇II = −
N∑

i=1

[k0u
2
odΩ

T
i Ψ(Ωi) + kiφ

2
ie +�T

ie(Di + Li)�ie].

(39)

From the above control design, we have the closed loop
system

q̇i = −k0u
2
odΨ(Ωi) + q̇od + Δ1i + Δ2i,

φ̇ie = −kiφie − ΩT
i Δ1i

φie
− ∂αφi

∂qi
Δ2i −

N∑
j=1,j �=i

∂αφi

∂qij
(Δ2i − Δ2j), (40)

M i�̇ie = −(Di + Li)�ie + ΦiΘ̃i −
[(

ΩT
i − φie

∂αφi

∂qi

−
N∑

j=1,j �=i

(
∂αφi

∂qij
φie −

∂αφj

∂qji
φje

))
Δ2i φie

]T

,

˙̃Θi = −ΓiΦT
i �ie .

Theorem 1. Under Assumption 1, the control τi and

the update law ˙̂Θi given in (38) for the robot i solve the
formation control objective. In particular, the closed loop
system (40) is forward complete, no collisions between any
robots can occur for all t ≥ t0 ≥ 0 and the position and
orientation of the robots track their reference trajectories
asymptotically in the sense of (11).

Proof. See Appendix A.
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Appendix A: Proof of Theorem 1. +Proof of no colli-
sions and complete forwardness of closed loop system. From
(39) and properties of the function ψ , see (25), we have
˙ϕII ≤ 0, which implies that ϕII(t) ≤ ϕII(t0),∀t ≥ t0. With

definition of the function ϕII in (37) and its components in
(31), (17), (18) and (19), we have

ϕII(t) ≤ ϕII(t0) (41)

for all t ≥ t0 ≥ 0. From the definition of ϕII , see 37, the
condition specified in item 4) of Assumption 1, and Property
5) of βij , and definition of φie,�ie, we have the right hand
side of (41) is bounded by a positive constant depending on
the initial conditions. Boundedness of the right hand side of
(41) implies that the left hand side of (41) must be also
bounded. As a result, βij(t) must be smaller than some
positive constant depending on the initial conditions for all
t ≥ t0 ≥ 0. From properties of βij , see (20), ‖qij(t)‖−(Ri+
Rj) must be larger than some positive constant depending on
the initial conditions denoted by ε3, i.e. there are no collisions
for all t ≥ t0 ≥ 0. Boundedness of the left hand side of (41)
also implies that of (qi(t)− qid(t)), φie(t),�ie(t) and Θ̂i(t)
for all t ≥ t0 ≥ 0. This in turn implies by construction that

xi(t), yi(t), φi(t), vi(t) and wi(t) do not escape to infinity
in finite time.

+Equilibrium points. An application of Theorem 8.4 in
[16] to (39) yields

lim
t→∞

(
k0u

2
od(t)

N∑
i=1

ΩT
i (t)Ψ(Ωi(t)) +

N∑
i=1

kiφ
2
ie(t) +

N∑
i=1

�T
ie(t)(Di + Li)�ie(t)

)
= 0. (42)

By noting that limt→∞ u2
od(t) �= 0 as specified in item 5)

of Assumption 1, the limit equation (42) implies that

lim
t→∞Ωi(t) = 0, lim

t→∞φie(t) = 0, lim
t→∞�ie(t) = 0.

By construction, limt→∞ Ωi(t) = 0 and limt→∞ φie(t) = 0
imply that limt→∞(φi(t) − φod(t)) = 0. Moreover, from
definition of Ωi in (23), limt→∞ Ωi(t) = 0 means

lim
t→∞

(
qi(t) − qid(t) +

∑
j∈Ni

β′
ijqij(t)

)
= 0. (43)

The limit equation (43) implies that q(t) =
[qT

1 (t) qT
2 (t), ..., qT

N (t)]T can tend to qd =
[qT

1d q
T
2d, ..., q

T
Nd]

T since β′
ij |‖qij‖=‖qijd‖ = 0 (Property 1)

of βij), or some vector denoted by qc = [qT
1c q

T
2c, ..., q

T
Nc]

T

as the time goes to infinity, i.e. the equilibrium points can
be qd or qc. It is noted that some elements of qc can be
equal to that of qd. However, for simplicity we abuse the
notation, i.e. we still denote that vector as qc. Indeed, the
vector qc is such that

Ωi|q=qc
=

[
qi − qid +

∑
j∈Ni

β′
ijqij

]∣∣∣∣
q=qc

= 0 (44)

for all i = 1, ..., N . To investigate properties of the equilib-
rium points, qd and qc, we consider the first equation of the
closed loop system (40), i.e.

q̇i = −k0u
2
odΨ(Ωi) + q̇od + Δ1i + Δ2i. (45)

Since we have already proved that the closed loop system
(40) is forward complete, and limt→∞ φie(t) = 0 and
limt→∞�ie(t) = 0 imply from the expressions of Δ1i and
Δ2i, see (16) that limt→∞(Δ1i(t) + Δ2i(t)) = 0, we treat
Δi(t) � Δ1i(t) + Δ2i(t) as an input to (45) instead of a
state. To investigate properties of the equilibrium points, qd
and qc, we linearize (45) at these points.

+Properties of equilibrium points. The system (45) can be
written in a vector form as

q̇ = −k0u
2
odΨq(q, qd) + vec(q̇od) + vec(Δi) (46)

where Ψq(q, qd) = [ΨT (Ω1), ...,ΨT (Ωi), ...,ΨT (ΩN )]T ,
vec(q̇od) = [q̇T

od, ..., q̇
T
od, ..., q̇

T
od]

T , and
vec(Δi) = [ΔT

1 , ...,Δ
T
i , ...,Δ

T
N ]T . Therefore, near an equi-

librium point qo, which can be either qd or qc, we have

q̇ = −k0u
2
od ∂Ψq(q, qd)/∂q

∣∣
q=qo

(q−qo)+vec(q̇od)+vec(Δi)
(47)
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where ∂Ψq(q,qd)
∂q = [

∧
ij ] with

∧
ij = ∂Ψ(Ωi)

∂Ωi

∂Ωi

∂qj
, (i, j) ∈ N

denoting the set of all agents. Let N
∗ be the set of the agents

such that if the agents i and j belong to the set N
∗ then

‖qij‖ < bij . Next we will show that qd is asymptotically
stable and that qc is unstable.

-Proof of qd being asymptotic stable. Using properties of
βij and ψ listed in (20) and (25), we have

∂Ψ(Ωi)
∂Ωi

∣∣∣∣
q=qd

= In, β
′
ijd = 0,

∂Ωi

∂qi

∣∣∣∣
q=qd

= In +
∑
j∈Ni

β′′
ijdqijdq

T
ijd,

∂Ωi

∂qj

∣∣∣∣
q=qd

= −β′′
ijdqijdq

T
ijd (48)

where β′
ijd = β′

ij

∣∣
qij=qijd

and β′′
ijd = β′′

ij

∣∣
qij=qijd

, with
qijd = qid − qjd. We consider the function

Vd =
√

1 + ‖q − qd‖2 − 1 (49)

whose derivative along the solutions of (47) with qo replaced
by qd, using (48), and noting that q̇od = q̇id satisfies

V̇d ≤ − k0u
2
od√

1 + ‖q − qd‖2

N∑
i=1

‖qi − qid‖2 +
N∑

i=1

‖Δi‖ (50)

since β′′
ijd ≥ 0, see Property 1) in (20). The last inequality

of (50) implies that qd is asymptotically stable because
limt→∞ u2

od(t) �= 0, and we have already proved that
limt→∞ Δi(t) = 0 .

- Proof of qc being unstable. Again using properties of βij

and ψ in (20) and (25), we have

∂Ψ(Ωi)
∂Ωi

∣∣∣∣
q=qc

= In,

∂Ωi

∂qi

∣∣∣∣
q=qc

=
(
1 +

∑
j∈Ni

β′
ijc

)
In +

∑
j∈Ni

β′′
ijcqijcq

T
ijc,

∂Ωi

∂qj

∣∣∣∣
q=qc

= −β′
ijc − β′′

ijcqijcq
T
ijc (51)

for all i = 1, ..., N, i �= j, where qijc = qic − qjc, β′
ijc =

β′
ij

∣∣
qij=qijc

and β′′
ijc = β′′

ij

∣∣
qij=qijc

. Since βi are specified in
terms of relative distances between agents, instead of using
Vc = 0.5‖q − qc‖ to investigate stability of (47) at qc, we
consider the Lyapunov function candidate

V̄c =
√

1 + ‖q̄ − q̄c‖2 − 1 (52)

where q̄ = [qT
12, q

T
13, ...q

T
1N , q

T
23, ..., q

T
2N , ..., q

T
N−1,N ]T and

q̄c = [qT
12c, q

T
13c, ...q

T
1Nc, q

T
23c, ..., q

T
2Nc, ..., q

T
N−1,Nc]

T . Dif-
ferentiating both sides of (52) along the solution of (47) with

qo replaced by qc gives

˙̄Vc =− k0u
2
od√

1 + ‖q̄ − q̄c‖2

∑
(i,j)∈N\N∗

‖qij − qijc‖2 −

k0u
2
od√

1 + ‖q̄ − q̄c‖2

∑
(i,j)∈N∗

(1 +Nβ′
ijc)‖qij − qijc‖2 −

k0u
2
odN√

1 + ‖q̄ − q̄c‖2

∑
(i,j)∈N∗

β′′
ijc

(
qT
ijc(qij − qijc)

)2 +

1√
1 + ‖q̄ − q̄c‖2

∑
(i,j)∈N

(qij − qijc)T (Δi − Δj) (53)

where i �= j and (51) has been used. To investigate stability
properties of q̄c based on (53), we will use (44). Define
Ωijc = Ωic − Ωjc, ∀(i, j) ∈ {1, ..., N}, i �= j where
Ωic = Ωi|q=qc

= 0, see (44). Therefore Ωijc = 0. Hence∑
(i,j)∈N∗ qT

ijcΩijc = 0, i �= j, which by using (44) is
expanded to∑

(i,j)∈N∗

(
qT
ijc(qijc − qijd) +Nβ′

ijcq
T
ijcqijc

)
= 0

⇒
∑

(i,j)∈N∗
(1 +Nβ′

ijc)q
T
ijcqijc =

∑
(i,j)∈N∗

qT
ijcqijd (54)

where i �= j. The sum
∑

(i,j)∈N∗ qT
ijcqijd is strictly negative

since at the point, say F , where qij = qijd, ∀(i, j) ∈ N
∗, i �=

j all attractive and repulsive forces are equal to zero while
at the point, say C, where qij = qijc ∀(i, j) ∈ N

∗, i �= j
the sum of attractive and repulsive forces are equal to zero
(but attractive and repulsive forces are nonzero). Therefore
the point, say O, where qij = 0, ∀(i, j) ∈ N

∗, i �= j must
locate between the points F and C for all (i, j) ∈ N

∗, i �= j.
That is there exists a strictly positive constant b such that∑

(i,j)∈N∗ qT
ijcqijd < −b, which is substituted into (54) to

yield ∑
(i,j)∈N∗

(1 +Nβ′
ijc)q

T
ijcqijc < −b, i �= j. (55)

Since qT
ijcqijc > 0,∀(i, j) ∈ N

∗, i �= j, there exists a
nonempty set N

∗∗ ⊂ N
∗ such that for all (i, j) ∈ N

∗∗, i �= j,
(1 + Nβ′

ijc) is strictly negative, i.e. there exists a strictly
positive constant b∗∗ such that (1+Nβ′

ijc) < −b∗∗, ∀(i, j) ∈
N

∗∗, i �= j. We now define a subspace such that qij − qijc =
0, ∀ (i, j) ∈ N \ N

∗∗ and qT
ijc(qij − qijc) = 0, ∀(i, j) ∈

N
∗, i �= j. In this subspace, we have

V̄c =
√

1 +
∑

(i,j)∈N∗∗
‖qij − qijc‖2 − 1,

˙̄Vc ≥ b∗∗k0u
2
odV̄c −

∑
(i,j)∈N∗∗

‖Δi − Δj‖. (56)

where we have used (1+Nβ′
ijc) < −b∗∗, ∀(i, j) ∈ N

∗∗, i �=
j. It is straightforward to show from (56) that qc is an
unstable equilibrium point.
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