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Abstract— This paper presents an enhanced algorithm for
matching laser scan maps using histogram correlations. The
histogram representation effectively summarizes a map’s salient
features such that pairs of maps can be matched efficiently
without any prior guess as to their alignment. The histogram
matching algorithm has been enhanced in order to work well in
outdoor unstructured environments by using entropy metrics,
weighted histograms and proper thresholding of quality met-
rics. Thus our large-scale scan-matching SLAM implementation
has a vastly improved ability to close large loops in real-time
even when odometry is not available. Our experimental results
have demonstrated a successful mapping of the largest area
ever mapped to date using only a single laser scanner. We
also demonstrate our ability to solve the lost robot problem by
localizing a robot to a previously built map without any prior
initialization.

Index Terms— Scan matching, closing the loop, SLAM.

I. INTRODUCTION AND PREVIOUS WORK

One of the major difficulties that large scale SLAM

algorithms encounter is the closing of large loops. One

common obstacle is the difficulty of recognizing when a

robot has returned to a previously mapped area; this prob-

lem is exacerbated when an environment contains repeated

structures, in which case multiple ambiguous matches may

exist. Additionally, the unbounded growth of open loop

uncertainties makes it necessary to check increasingly larger

areas for revisits. In worst case, the unbounded uncertainties

result in a situation equivalent to the lost robot problem, a

case where there is no prior knowledge of the robot’s location

with respect to an existing map.

The ready availability of 2D laser scanners has resulted

in the development of many scan matching algorithms for

map-making, the majority of which require an initial guess

to converge on the alignment between scans [1], [2], [3],

[4]. While these algorithms are suitable for pose tracking

and incremental map building, they are unacceptable for

global localization because they will fail to converge. Those

algorithms which are appropriate for global localization

generally require polygonal environments as they depend

upon the extraction of geometric features such as lines and

corners [5], [6], [7], [8]. These approaches are likely to fail

in unstructured outdoor scenes.

The localization and map-making algorithms utilized in

this paper run within the Atlas framework [9], [10], [11].

The Atlas framework was developed to be a hybrid metrical/

topological approach to SLAM that achieves efficient map-

ping of a variety of large-scale environments. The framework
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Fig. 1. A sample set of weighted projection histograms displayed as an
image. The negative weights help to distinguish contributions from scan
points with opposite orientations.

is maintained as a graph of coordinate frames: each vertex

in the graph contains a local map, and each edge represents

the transformation between adjacent map frames. Loops are

detected and closed by matching maps and adding the align-

ment transformation to the graph. The framework’s iterative

scan match implementation works well for local mapping of

outdoor environments; however, the same iterative approach

when applied to map matching was inefficient in finding

loops when the prior uncertainties are large.

The improvements to the scan map matching algorithm

described in this paper employ a histogram correlation ap-

proach very similar to [6], but which has been enhanced to

work well in unstructured outdoor environments.

The paper is organized as follows. In Section II, the

histogram correlation algorithm and its enhancements are

described. Section III demonstrates how the approach makes

mapping a large outdoor area and solving the lost robot

problem feasible. Finally we conclude in Section IV.

II. THE ALGORITHM

The algorithm in this paper is described in parts: first,

the generation of the histograms for each local map, and

second, the correlation of local maps’ histograms to deter-

mine whether there is a match, and if so, to find the ensuing

transformation between their coordinate frames.
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A. Histogram Map Representation

Each local map requires a compact representation of its

salient characteristics; this representation can be used to

distinguish the local map from other maps and to determine

its transformation to another map of the same area. This

representation consists of an orientation histogram of the

scan normals plus a set of weighted projection histograms

created from the orthogonal projections of scan points onto

lines of varying orientation.

The orientation histogram is used to compute the rota-

tional offset between pairs of local maps irrespective of

any translational offsets. The peaks of the orientation his-

togram, most apparent when there are numerous flat surfaces

visible in the laser scans, represent the dominant surface

orientations. We have determined empirically that an angle

bin size of about 3 degrees works well in our environment

of industrial buildings and residential neighborhoods. In

general, the histogram’s bin size should be commensurate

with the noise and certainty of the scans in the local map.

The set of weighted projection histograms are used to de-

termine the translational offsets between pairs of maps once

their rotational offset has been determined. Each projection

histogram Hp(θp, d) is generated by orthogonally projecting

every scan point, (xi, yi), on to a line with angle θp and

creating a histogram of the offsets di of the points which

have been weighted by the dot product of the scan normals

(nxi
, nyi

) with the line:

di = xi cos(θp) + yi sin(θp) (1)

Hp(θp, d) =
∑

‖di−d‖< ∆

2

nxi
cos(θp) + nyi

sin(θp) (2)

The dynamic range of the projection histograms is en-

hanced by weighting each point according to its surface

orientation. Points with orientations parallel to the projection

line are de-weighted so that they do not blur the histogram,

whereas points with surfaces perpendicular to the line are

given more weight. Furthermore, since the weights can be

negative, it is possible to distinguish contributions from scan

points with opposite normal orientations. This improves the

dynamic range and saliency of the projection histograms,

because the cumulative contribution from long walls will not

wash out parallel projections, and perpendicular walls will

only match with walls of the same orientation.

The orientation of each projection line and ultimately the

number of projection histograms generated are determined

by the number of angle bins. For the projection histograms,

the size of the offset bins should be small enough that the

details of the environment’s structure are captured, but not

so small that there are too few points in the bins. We have

determined empirically that a bin size of 1 m works well for

our environment.

An example of the weighted projection histograms is

depicted as an image in Fig. 1.

B. Histogram Matching

The goal of the histogram matching algorithm is to deter-

mine quickly whether or not any pair of maps match, and
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Fig. 2. (a) An example environment where the entropy sequence gives
better results than the orientation histogram when computing rotational
alignment. (b) The peaks in the orientation histogram are a result of noise;
correlations cannot be used for reliable matching. The normalized entropy
sequence of projection histograms, however, is more likely to produce a
correct match since it is not dominated by noise.

if so, to find the transformation between their coordinate

frames.

The first step of the matching process is to compute the

correlation between the maps’ orientation histograms in order

to determine possible rotational offsets. In order to avoid

boundary effects, the correlation is computed by circular

convolution, where the histograms have been normalized by

their Frobenius norms such that the circular convolution of

the histogram with itself has a maximum value of 1.0, see

Fig. 3(c).

As an alternative to using orientation histograms, it is also

possible to compute the rotational offset using the sequence

of entropy measures E(θp) for each projection histogram

H(θp, d).
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Fig. 3. (a) and (b) show two example local scan-match maps, where the dots are the scan points, and the solid line is the trajectory of the vehicle. (c)
The orientation histograms and their correlation. (d) and (e) The two orthogonal projection histograms used to score the match. (f) The maps brought into
alignment using the peaks of the match.
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Ĥ(θp, d) =
‖H(θp, d)‖

∑

d ‖H(θp, d)‖
(3)

E(θp) =
∑

d

Ĥ(θp, d) log
(

Ĥ(θp, d)
)

(4)

The absolute value of each projection histogram element is

necessary since the weights may be negative.

Prior to matching, the entropy sequence is normalized

to make it commensurate with an orientation histogram by

shifting such that the minimum is zero and dividing by the

Frobenius norm.

Ê(θp) = −
E(θp) − max(E(θp))

√

∑

θp
(E(θp) − max(E(θp)))2

(5)

The entropy sequence is negated because minimum entropy

projections correspond to angles where the points are tightly

packed.

Since the sequence of entropy measures repeats every

180◦, each peak in the correlation of entropy sequences

produces two potential orientation offsets. This ambiguity,

however, is often resolved during the next step due to the

fact that the false offset will have a low correlation in the

projection histograms.

This approach works better in unstructured outdoor en-

vironments where there are few dominant peaks in the

orientation histograms but there is nevertheless a strong

signal in the normalized sequence of projection entropies,

see Fig. 2. In such environments, orientation histograms are

too noisy for reliable matching.

Once the rotational offset has been computed, two per-

pendicular projection histograms are selected to compute the

translational offsets. It is best to use the projection histogram

with the least entropy (typically the one corresponding to the

largest peak in the orientation histogram) and its orthogonal

partner, as this choice slightly improves the saliency of the

match. The peaks in the correlation between each chosen

histogram and its correspondent in the other map represent

the offsets that are in the direction of the projection lines,

see Fig. 3(d) and (e).

The translation vector between the maps’ coordinate

frames is calculated by solving the simple linear system for

tx and ty:
(

cos(θp) − sin (θp)
sin(θp) cos (θp)

) (

tx
ty

)

=

(

dθp

dθp+ π
2

)

(6)

where θp is the angle that the first projection line makes

with the x-axis, dθp
is the offset of the maximum peak of

the correlation of the first projection histogram, and dθp+ π
2

is the offset computed from the correlation of the second

projection histogram.

The accuracy of the resulting transformation is dependant

upon the bin sizes. Even though the alignment may be coarse,

as in Fig. 3(f), the accuracy should be sufficient for the

standard iterative scan matching algorithm [1] to converge

on the precise match.

While it is possible to compute a transformation for

any two maps, that transformation will only make sense
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Fig. 4. The probability of detection vs. probability of false alarms
for various match correlation threshold settings. Since false matches are
problematic, we have chosen a threshold of .6 which had a P(FA) of less
than 1 percent and a detection probability of 48%.

if the maps actually overlap. Therefore, it is important to

assess the match quality before accepting a match. Match

quality is assessed by multiplying the peak value of the

orientation histogram correlation with the peak values of the

two projection histogram correlations.

The threshold on the quality metric for accepting matches

is determined empirically. The probabilities of detection,

P (D), and false alarms, P (FA), for each threshold value

are estimated by analyzing a large set of quality metrics of

known correct and false matches, see Fig. 4. Using these

probability functions, we have chosen a threshold value of

0.6 which has a P (D) of 0.48, and a P (FA) of less than

1%.

In any case, all transformations computed with valid

quality metrics are subsequently verified by the iterative

scan matching alignment. Furthermore, any false matches

from truly ambiguous environments are filtered by the cycle
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(a)

(b)

(c)

Fig. 5. (a) The map showing no loop closures. (b) The optimized map after distributing the errors around the loops. (c) The map overlaid onto an aerial
image.
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Fig. 6. The laser is mounted sideways to the front of the vehicle.

verification procedure in the Atlas framework.

III. RESULTS

This section presents the results of a mapping of our

industrial compound and adjacent neighborhood. These re-

sults demonstrate the effectiveness of the histogram matching

approach for closing loops in large scale environments: of

particular note is the fact that we did not use odometry in

generating the local maps.

Furthermore, since histogram matching allows us to rec-

ognize places we have been before without any prior trans-

formation, we are able to use the technique to solve the lost

robot problem.

A. Large Scale Mapping without Odometry

The experiment utilized a single SICK LMS laser scanner

mounted on the front of a car, positioned such that its 180◦

field-of-view is oriented to the left, see Fig. 6. Each laser

scan consists of 361 points at 40Hz. GPS was recorded for

ground truth, but was not used in any of the map-making. The

car was driven around our industrial compound and adjacent

neighborhood at 25 km/h speeds for a total path length of

6.7 km.

During the run, 231 local maps were generated, each map

containing 15 saved scans spaced approximately 2 m apart.

Maps were processed with the Scan-Match implementation

of the Atlas framework which had been modified slightly to

suppress map reuse in order that the network structure be

more apparent.

Fig. 5(a) illustrates what the global map looks like when

histogram matching is disabled. Fig. 5(b) depicts the glob-

ally optimized map with histogram matching enabled, and

Fig. 5(c) overlays the map onto an aerial photo, demonstrat-

ing the correctness of the map’s topology.

Repeated loops are indicated by off diagonal entries in

the graph adjacency matrix, depicted in Fig. 7(a). The same

network structure is visible in the image of histogram match

quality metrics, Fig. 7(b). The map connectivity percentage

(as described in Chapter 7 of [9]) is 97%.

Without histogram matching, it would not have been

possible to recognize loop closures of this size.

B. Lost Robot Problem

The lost robot problem occurs when, on startup, an ex-

isting map has been loaded but we do not initialize the

robot’s location in the map. In such a situation, the robot

begins by generating a disjoint Atlas graph while continually

attempting to match the current map to any previously

existing map. Once a successful match has been found and

verified, the two graphs will be connected and the robot is

found.

To demonstrate solving the lost robot problem, we re-

processed the same data set in two parts. The process was

initialized with a graph of the first large loop generated from

the initial 11 minutes of data. The next 4 minutes of data

was discarded to ensure that the robot would be completely

lost in a new area, and then the map-making process was

resumed.

Since this location was not in the loaded maps a disjoint

graph was established. After 2 minutes of travel, the vehicle

first re-entered an area covered by the previously loaded

maps, and the histogram matching algorithm immediately

discovered the first link. Verification of the link was sus-

pended until the discovery of the next link to the existing

area. At this point, the cycle verification procedure verified

both links and the graphs were connected.

Please refer to the attached video for an animation of this

experiment.

IV. CONCLUSION AND FUTURE WORK

This paper has presented an enhanced algorithm for

matching laser scan maps using histogram correlations. The

histogram representation effectively summarizes a map’s

salient features such that pairs of maps can be matched

efficiently without any prior guess as to their alignment. The

algorithm has been enhanced in order to work well in outdoor

unstructured environments in several ways: A sequence of

entropy measures of projection histograms can be utilized

in place of orientation histograms, the projection histograms

are made more salient by weighting them by the scan point’s

orientations, and an empirical method is used to determine a

threshold on the quality metric that yields few false alarms.

This technique vastly improves the Atlas scan match

implementation’s ability to close large loops in real-time

even when odometry is not available. Moreover, the ability

to discern matches quickly and without the need of an initial

guess as to the alignment allows the lost robot problem

to be solved in real-time. Our experimental results have

demonstrated a successful mapping of the largest area ever

mapped to date using only a single laser scanner. We have

also demonstrated our ability to solve the lost robot problem

by localizing a robot to a previously built map without any

prior initialization.

Since the overlaps between disjoint maps can now be

easily discovered, we would like to investigate the possibility

of automatically combining the maps generated from multi-

ple disjoint runs or even dividing the mapping task among

multiple robots. Further future work will involve extending
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Fig. 7. (a) The Atlas graph’s adjacency matrix. (b) The product of the match correlations for each pair of maps. The repeated loops of the environment
are indicated by the off diagonal strips. Highly ambiguous maps are indicated by maps that match many columns in the matrix, i.e. the maps 75-80 are
of a strip of road with trees planted at regular intervals.

the histogram matching approach to 3D laser maps and other

map representations such as those generated by sonar, radar,

or stereo vision.
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