
Adaptive Embedded Roadmaps For Sensor Networks

Gazihan Alankus, Nuzhet Atay, Chenyang Lu, O. Burchan Bayazit

Washington University in St. Louis

{gazihan,atay,lu,bayazit}@cse.wustl.edu

Abstract— In this paper, we propose a new approach to wire-
less sensor network assisted navigation while avoiding moving
dangers. Our approach relies on an embedded roadmap in the
sensor network that always contains safe paths. The roadmap
is adaptive, i.e., it adapts its topology to changing dangers.
Mobile robots in the environment use the roadmap to reach
their destinations. We evaluated the performance of embedded
roadmap both in simulations using realistic conditions and with
real hardware. Our results show that the proposed navigation
algorithm is better suited for sensor networks than traditional
navigation field based algorithms. Our observations suggest
that there are two drawbacks of traditional navigation field
based algorithms, (i) increased power consumption, (ii) mes-
sage congestion that can prevent important danger avoidance
messages to be received by the robots. In contrast, our approach
significantly reduces the number of messages on the network
(up to 160 times in some scenarios) while increasing the
navigation performance.

I. INTRODUCTION

Traditionally, mobile robots rely on on-board sensors to
collect environmental information. However, as the technical
challenges of wireless sensor networks are being solved, a
new interest is raised to employ them in the robot nav-
igation task. It has been shown that the assistance of a
sensor network could significantly improve the navigation
task when there are dynamically moving dangers to avoid
in the environment [1]. However, any navigation algorithm
utilizing sensor networks must consider the limited resources
provided by the network, mainly low bandwidth, small bat-
tery and limited processing power. This requires intelligent
approaches that can utilize the hardware efficiently.

In this paper, we propose Adaptive Embedded Roadmaps
(AER) as a new approach to sensor network assisted navi-
gation. The problem is to navigate safely in a danger field,
i.e., to reach a goal from a starting point while avoiding
dynamic danger regions. This requires routes to be updated
continuously to avoid the dangers. Our solution is to embed
a roadmap inside the sensor network that will maintain
a collection of possible paths. This roadmap is built in
the sensor network using a distributed fashion similar to
the probabilistic roadmap method (PRM) [2]. First, some
motes probabilistically become roadmap nodes, i.e., mile-
stone motes. Through message passing, these motes connect
themselves to the nearby milestone motes. The optimal mes-
sage route between two milestones becomes an edge of the
roadmap. When a goal is specified, the embedded roadmap
creates a spanning tree from all milestone motes to the goal
in a distributed fashion, which is in turn followed by one or
more robots. Since the environment is dynamic, the network
is adaptive. For example, if a mote on an edge is in danger,
the edge is disconnected and an alternative edge is built.
Similarly, if a milestone mote is in danger, the roadmap node

it hosts is migrated to a nearby non-milestone mote and the
connections are rebuilt. We also address the physical obstacle
problem by using a lazy approach [3]. While following the
embedded roadmap, if a robot discovers a physical obstacle,
the robot informs the milestone motes that have the edge
over the obstacle. Those motes then disconnect themselves
and the robot is directed to an alternative path.

Remember that wireless sensor network assistance to
robot navigation can be classified into two groups: (i) on-
board processing, (ii) in-network processing. In the first
approach, the sensor network transfers the spatio-temporal
information to the robot and the robot makes navigation
decisions. The number of messages are proportional to the
number of sensor motes involved in data collection, which
can be too large. Certain techniques are suggested to target
interesting locations [1], but they ultimately have to deal with
a certain vicinity of the robot. The second approach to sensor
network assisted navigation aims to find the path in the
sensor network using the limited computing power of sensor
motes in a distributed fashion [4], [5]. The straightforward
technique is to build a navigation field over the sensor motes
to reach the goal. While this approach is sufficient in the
presence of static danger regions (i.e., dangers that are not
spreading), the field needs continuous update in the presence
of moving dangers. This may cause high network congestion,
as shown in [6].

Our approach has several advantages over the traditional
approaches. It targets the embedded network similar to target
based strategy of on-board processing, yet it is not restricted
to the local regions. It uses the global spatio-temporal
information similar to in-network processing, but it does
not constantly update a global navigation field. The routes
include only a subset of the motes and are updated only
when safety of the embedded roadmap changes. This way,
the reduced message traffic increases both sensor life and
improves navigation safety by avoiding network congestion.
Additionally, since only the motes that are part of the
roadmap need to be active, the other motes can sleep to
reduce power consumption. With the help of the robots that
use the sensor network, our approach can also address obsta-
cles that are invisible to the sensors, an important point that
the traditional in-network algorithms fail to consider. Finally,
the embedded roadmap could be utilized to coordinate the
movements of the multiple robots.

We have experimented with several scenarios including
multiple robots, multiple goals, dynamic obstacles, static
obstacles, hardware failures etc. Our simulations show that
under realistic conditions our algorithm performed far better
than traditional in-network processing algorithms. We have
also showed that it is feasible to implement our algorithm

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrB5.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3645

on real hardware.

Our results demonstrate that (1) an embedded adaptive
roadmap can be used to represent spatio-temporal informa-
tion of an environment, (2) such a roadmap can safely guide
a mobile robot towards its destination at a small fraction
of communication cost compared to basic sensor network
assisted navigation algorithms.

In the next section, we give a summary of related work.
We present a formal definition of the problem in Section III.
We briefly describe our system in Section IV. Section V
discusses how to build, maintain and utilize an adaptive
roadmap on sensor networks. We present our experimental
results in Section VI and Section VII concludes our paper.

II. RELATED WORK

The most commonly used algorithms for sensor network
assisted navigation use a global navigation field over the sen-
sors. In [4], the goal generates an attractive potential field that
pulls the robot towards the goal, while an obstacle generates
a repulsive potential field that pushes the robot away from
the obstacle. The method in [7] locally iterates to compute
utilities that guide the robot to the goal. This approach is
further used in [8], [9] and [10] for robot coverage and
exploration of space and for multi-robot task allocation. In
[11], a similar method is analyzed. The approach presented in
[12] proposes navigation of mobile sensor nodes by forming
initial paths with a global flooding. Since initial path stays
constant, this approach cannot handle dynamic obstacles. The
approach used in [13] assumes that a path already exists
in the network, and uses controlled flooding to guide the
robot to the start of the path. Another global navigation field
approach is suggested in [5] for sensorless communication
platforms using GNATs. In that approach, the passing mobile
robots communicated the attraction information to GNATs
which in return updated the navigation field. Generally, the
navigation field based algorithms can be very costly in
large networks with dynamic obstacles since any update on
the field requires a global flooding. In order to reduce the
communication cost, the targeted querying protocols were
suggested [1], [6]. In these approaches, the sensors send the
spatio-temporal information to the robot and robot makes the
navigation decisions.

Generally, navigation field based techniques increase the
power consumption and require large bandwidths. Both of
which are decisive factors in sensor network performance.
The targeted querying algorithms do not suffer from these
constraints but they usually target nearby locations, i.e.,
only collect information from robots’ vicinity which may
affect navigation performance. In our work, we address
the shortcomings of both approaches. Through embedded
roadmap, we have a targeted navigation field that can safely
move the robots to their destinations in the presence of
dynamic obstacles.

Recently, Buragphain et al. proposed navigation algo-
rithms based on the skeleton graph of a sensor network [14].
Similar to a roadmap, a skeleton graph is a sparse subset of
the original network, which helps reduce the communication
overhead for navigation. However, a distinguishing feature
of our algorithm is that it dynamically maintains and adapts
the roadmap in response to the movement of danger fields to

order to enhance the robustness of navigation approach in dy-
namic environments. In contrast the algorithms presented in
[14] did not present algorithms for maintaining the skeleton
graphs when the danger field moves. Furthermore, we have
implemented and demonstrated our algorithm on a physical
sensor network testbed, while their algorithms are evaluated
through simulations.

III. PROBLEM FORMULATION

The navigation problem that we address in this paper is
to find safe paths for mobile robots through a sensor field.
We define a safe path as a path that is clear of dynamic

obstacles, i.e., obstacles whose location or shape changes
with time (e.g. car, fire).

In this paper, we consider fire as the representative exam-
ple for a dynamic obstacle. Thus, the temperature of the
region traversed by a robot is a function of time and is
affected by the location and movement of fire. In this case,
the problem can be restated as that of finding safe paths for
mobile robots, from start to goal, without the robots getting
burned. The temperature values of a region is discretized to
different danger levels using a number of thresholds ∆i. The
danger level δ between ∆i and ∆i+1 is considered to be i.
The number and value of thresholds are application specific
design choices. In this paper we used four thresholds as
follows. δ = 0(cool) (if T, i.e., temperature of the region, is
less than ∆cool), δ = 1(normal) (if ∆cool < T ≤ ∆normal),
δ = 2(warm) (if ∆normal < T ≤ ∆warm), δ = 3(hot)
(if ∆warm < T ≤ ∆hot), δ = 4(burn) (if ∆warm < T ≤
∆burn) and δ = ∞ above ∆burn, where the sensor hardware
no longer functions. This discretization is useful since it
avoids messages generated by slight changes in temperature.

A sensor or robot is assumed to get burned if the tem-
perature at its location is higher than the threshold ∆burn.
A safe path is now redefined as one where the maximum
temperature along the path taken by the robot remains below
the threshold ∆hot, while the robot is on the path. Cooler
paths are thus considered safer than hotter paths.

The goodness of path IP that passes through motes (i.e.,
wireless sensor nodes) mi∈1..n is defined by following
function:

goodness(IP) = c1(
∑

i∈2..n

|mi − mi−1|) + c2 max
i∈1..n

δi (1)

In other words, the goodness of path is the sum of the
normalized path length and scaled maximum danger level
on the path. By changing the variables c1 and c2, the path
can be weighted for the length or safety.

We make the following assumptions in the paper: (i)
Motes are location aware. (ii) The robot communicates with
the sensor network through an on-board gateway device.
(iii) Motes have a limited sensing range RS . (iv) Wireless
communication between motes takes place in a fixed-radius
cookie-cutter radio model with message congestion.

The sensing range RS is defined by the continuous behav-
ior of danger. It is chosen such that if the temperature sensed
by a node is below the threshold ∆i, then the temperature at
any point within the sensing range is below ∆i+1. Therefore,
paths with sensed temperature above ∆hot may have points
above ∆burn, which explains our choice of safe paths being
below ∆hot.

FrB5.1

3646

Note that, if the motes do not have location sensors
(e.g., GPS or crickets [15]), they may find their locations
based on network connectivity or radio signal strength using
existing localization algorithms [16], [17]. Alternatively, our
navigation algorithm can be modified to use Adaptive Delta
Percent [7] that utilizes sensor signal strength, in which case
we would not need location awareness for the motes.

Even though we consider the specific scenario where the
dynamic obstacle is fire, our solution can be generalized to
other types of dynamic environments where safety is defined
by changing sensory values (e.g., chemical spills, hazardous
gas and air pollution).

Q
u

er
y

 N
ex

t D
irectio

n

P
at

h
to

 R
oa

dm
ap

New O
bsta

cle

Destination

.Robot 1 Robot N

Generation

Node Connection Maintanance Goal

Potential

Sensor Network

Fig. 1. System overview.

IV. SYSTEM OVERVIEW

In order to assist the robot navigation, the sensor network
must have some abstract mechanisms. For example, there
must be some mechanisms for node generation and node

connection to build an embedded roadmap. After it is built,
the sensor network also needs a maintenance mechanism
to keep the embedded roadmap up-to-date. Finally, when a
robot asks for a path, the sensor network needs to find an
optimal route to the goal through Goal Potential mechanism.
Figure 1 summarizes the interaction within the network and
with the robots. After node generation, connection builds the
roadmap. Maintenance may revoke connection to disconnect
some edges that are in danger, or find alternative edges.
When the robot arrives, it finds a path to the embedded
roadmap through connection mechanism. Goal Potential

mechanism is responsible for finding the best path to the
goal. The embedded roadmap then directs the robot towards
the goal. While following the path, if the robot discovers
an obstacle that is invisible to sensor network’s sensors, it
informs the embedded roadmap and an alternative route is
found.

V. SENSOR NETWORK ASSISTED NAVIGATION

After the initial deployment of the sensor network, the
embedded roadmap is built in a distributed fashion. Node
generation is handled by turning some motes to milestone
motes (i.e., motes that contain a roadmap node). The connec-
tion phase is a local planning operation where the milestones
broadcast connection request to their vicinity. This request
is further propagated by receiving motes. The propagation
continues until requests from two milestones intersect. In
which case, the mote at the intersection sends connection
messages to both originators. Among several possible con-
nections between two milestones, the best path (according to
Eqn. 1) is selected as the edge.

Once the roadmap is built, a robot can utilize it to
navigate. Since the robot is not aware of the topology of the
roadmap, the sensor network must find the best path. For this
purpose, we use an NF2-like [18] wavefront expansion on the
roadmap. First, through geographic routing [19] , the robot
asks the mote closest to its goal (i.e., goal mote) to connect
itself to the roadmap. Once the goal mote is connected to
the embedded roadmap, it originates a potential wave on the
roadmap where the potential value represents the goodness
of the path. When the wave reaches a milestone mote, the
milestone sets the best direction towards the goal. At the
same time, the robot requests a connection to the roadmap.
After receiving several responses from the nearby milestone
motes, then the robot selects the best route and follows it.
When the robot reaches a milestone mote, the mote directs
it towards the next mote in the path. This process is repeated
until the robot reaches its goal.

Our embedded roadmap is adaptive and changes based
on the spatio-temporal information. The topology and the
edge weights are altered if the danger spreads towards the
roadmap, hence the roadmap always contains safe paths. If
the robot on its path recognizes an obstacle unknown to the
sensors, it informs the embedded roadmap to remove edges
on the obstacle.

B

C

A
A

A

B B

B

C
C

C
C

A A

B

C

(a)

B

A

C

C

A

B

A A

B
B

A C

C

C

B

B

(b)

A

B

C

A

A

B

B

CA

C

C

C

B

B

B
B

B

A

A
A

C

C

B

CB

B
C

CA
A

A

(c)

(d)

B

Goal

(e)

Roadmap node
migration

Edge re−connect

(f)

Fig. 2. Building embedded roadmap. (a) Milestones motes,
(A, B,C), start neighbor discovery. (b) NEIGHBOR-DISCOVER is
propagated by the receiving motes. (c) Neighbors are found and
propagated back to the milestones. (d) According to the goodness
metric, the best routes to the neighbors become the edges. (e) Goal
connects to the roadmap and the best routes through a navigation
field on the roadmap are set. (f) An edge on danger disconnects
then re-connects and a roadmap node migrates (dashed lines are
previous edges, shaded areas are danger regions).

A. Building Embedded Roadmap

The building process of embedded roadmap is similar
to traditional PRMs [2]. The roadmap nodes are now the
milestone motes selected according to some criteria, e.g.,
probabilistically or based on mote capabilities. Once the
milestone motes are selected then they are connected through
message passing. In this process, an edge between two
milestone represents the best sequence (according Eq. 1) of
motes to reach one milestone from the other.

FrB5.1

3647

Node Generation. Each mote decides to host a roadmap
node with a probability p. If they host a roadmap node,
then they become milestone motes. Please note that it is also
possible to utilize alternative decision criteria such as mote
capabilities or sensor inputs.

Node Connection. The first step in node connection is
to discover the closest milestone motes that are possibly
out of each other’s communication range. This is done by
sending NEIGHBOR-DISCOVER messages to one-hop neigh-
bors (Figure 2(a)). A NEIGHBOR-DISCOVER message has
four fields, [ms, IMo, lr, δr] i.e., the one-hop neighbor that
sent this message, the originator (the discovering milestone),
the length of the route to originator, and the maximum
danger level on the route. Since a mote m receives the
NEIGHBOR-DISCOVER only from its one-hop neighbors, and
it knows their positions, the goodness of the route to IMo is
goodness = c1(|m−ms|+ lr)+ c2 max (δr, δm), where δm

is the danger level of mote m.

Each mote on the network has a Vicinity table which
contains the list of the milestone motes from which that
mote received NEIGHBOR-DISCOVER messages. The table
also stores the goodness of the route and one-hop neighbor
that sent the message. Upon receiving a new NEIGHBOR-
DISCOVER message, a mote checks its Vicinity table to see if
the new route is better than any existing route to IMo (if there
is one). If the old route was better, the message is discarded
and nothing further is done. Otherwise, Vicinity table is
updated according to NEIGHBOR-DISCOVER message to
represent a better route.

Next, the mote checks the Vicinity table to see if other
NEIGHBOR-DISCOVER messages were received from dif-
ferent milestone motes. If no message was received, then
NEIGHBOR-DISCOVER is propagated further after updat-
ing the fields (Figure 2(b)). If the mote has received a
NEIGHBOR-DISCOVER message from another mote IMn,
both IMo and IMn needs to be informed about their
neighborhood. This is achieved by sending NEIGHBOR-
FOUND messages to both. This message has five fields,
[ms, IMo, IMn, ln, δn], i.e., sender of the message, the des-
tination milestone (originator of discovery), the neighbor
milestone, the length of route to the neighbor and maximum
danger level on route the neighbor. Since the mote needs
to inform both neighbors, it sends two NEIGHBOR-FOUND

messages, one for each site. ln and δn of the messages are
found from Vicinity table and the messages are sent to the
one-hop neighbors stored in Vicinity (the best route). Upon
receiving a NEIGHBOR-FOUND message, each mote checks
its Vicinity table to see if there was a better route from IMn.
If not, it adds the neighbor to its Vicinity table, updates ms,
ln and δn and propagates the NEIGHBOR-FOUND message to
the one-hop neighbor on the best route towards the originator.
This process is repeated until NEIGHBOR-FOUND message
is received by IMo (Figure 2(c)). This milestone mote checks
its Vicinity table to see if it knows a better route to neighbor
IMn. If not it adds this route to the Vicinity table. Otherwise,
NEIGHBOR-FOUND message is discarded.

Once the neighboring milestones are discovered, each
milestone mote creates an edge between itself and the lower-
id neighbor milestones by sending CREATE-EDGE message
in their directions. The direction is selected from Vicinity

table entry. Each intermediate mote receiving this message

recognizes itself as an edge-mote and propagates the message
to the next mote in the direction of the destination milestone
mote. Once CREATE-EDGE message is received by the
destination milestone mote, an acknowledgment is sent back
to the originator. At the end of this process, all milestone
motes know their milestone neighbors on the roadmap and
the weight (goodness) of the edge between them. Similarly,
all of the edge motes are aware that they are part of the
embedded roadmap. Figure 2(d) shows an example of an
embedded roadmap after the connections and Algorithms 1
and 2 summarize these processes.

Algorithm 1 Node Connection: Milestone Mote

1: Broadcast NEIGHBOR-DISCOVER message
2: while not time-out do
3: if NEIGHBOR-FOUND message is received then
4: check Vicinity table for neighbor
5: if Path to neighboring milestone is better than current route then
6: Add neighboring milestone, direction to it and path goodness to Vicinity
7: end if
8: end if
9: end while

Algorithm 2 Node Connection: Non-Milestone Mote

1: while waiting for messages do
2: if NEIGHBOR-DISCOVER received then
3: Compute goodness of route to originator
4: if Previous route to originator in Vicinity is better then
5: Go back to mesg. waiting state
6: end if
7: if Another milestone mote in Vicinity then
8: Unicast NEIGHBOR-FOUND messages in direction of milestones
9: Goto back to mesg. waiting state

10: end if
11: Update NEIGHBOR-DISCOVER message and propagate to neighbors
12: end if
13: if NEIGHBOR-FOUND received then
14: Compute goodness of route to neighbor
15: if Previous route to neighbor in Vicinity is better then
16: Go back to mesg. waiting state
17: end if
18: Update NEIGHBOR-FOUND message and unicast to neighbor in route to

originator
19: end if
20: if EDGE-CREATE received then
21: set state to Edge-Mote
22: Update EDGE-CREATE message and unicast to neighbor in route to destina-

tion milestone
23: end if
24: end while

B. Goal Potential

Goal motes represent the robot destinations. The decision
to become a goal mote can be initiated by environmental
factors or by a robot. In order to utilize the robustness
provided by embedded roadmap functions, the goal mote
becomes a milestone mote if it is not already one. If the goal
is on an edge mote, the edge is broken. After the goal mote
becomes a milestone, it connects to the nearby milestone
motes. The connection is done through the same mechanisms
used in roadmap connection phase (i.e., Algorithms 1 and
2). The next step is generating the navigation field on the
roadmap, using a GOAL message originating from the goal
mote. A GOAL message has four fields [ms, Go, lg, δg], i.e.,
the sender of the message, goal id, length of the path to
the goal and maximum danger level on the way to the goal.
Once initialized by the goal mote, this message is forwarded
to all motes on the roadmap, aggregating the information
about best paths to the goal. Every mote m on the roadmap

FrB5.1

3648

Algorithm 3 Goal Dissemination: All Roadmap Motes
1: if GOAL message is received then
2: check Goals table for this goal
3: if Incoming message is better than the one in the table then
4: G = aggregated goal message with values for the path including this mote
5: Set the entry in the Goals table according to G
6: Send G to other neighboring edge motes
7: end if
8: end if

Algorithm 4 Maintenance: Milestone and Edge Motes
1: δt = current temperature level
2: for Each edge neighbor do
3: if δt = δhot then
4: break the edge, send BREAK-EDGE

5: if This is a milestone mote then
6: Call milestone migration
7: end if
8: else
9: δl = last temperature level sent to this neighbor

10: if δt 6= δl then
11: send UPDATE-EDGE with δt

12: end if
13: end if

14: end for

Algorithm 5 Milestone Migration
1: Ask the one-hop neighbors for their temperature readings
2: Wait until they answer or timeout ends
3: Target = one-hop neighbor with the best temperature
4: Send MIGRATE-MILESTONE message to Target

5: Cancel being milestone for this node

maintains a Goal-Potentials table that has one entry per goal
that keeps goodness of the path and its one-hop neighbor.
The contents of the record is propagated to other nodes on
changes, similar to NEIGHBOR-DISCOVER aggregation, i.e.,
the outgoing GOAL message would contain the updated path
length as lg +|m−ms|, the danger level as max (δg, δm) etc.
This way, a distributed minimum spanning tree is maintained
on the roadmap for each goal mote. Algorithm 3 summarizes
the goal dissemination and Figure 2(e) shows an example.
Note that if multiple robots try to reach the same goal, the
goal potential of that goal needs to be computed only once.

C. Roadmap Maintenance

Roadmap Edge Maintenance. In order to direct the
robots to the safe paths, the embedded roadmap always needs
to be aware of goodness of the routes to the goal. To provide
an up-to-date information of goodness, an edge mote on
the roadmap sends UPDATE-TEMPERATURE messages to its
edge neighbors whenever its danger level changes (i.e., there
is a significant change in the temperature). This message is
propagated to the milestones at each end of the edge. Upon
receiving this message a milestone updates its Vicinity and
Goal-Potentials tables accordingly. If the new temperature
is greater than ∆hot, the edge is broken. After an edge
is broken, the milestone mote with the higher id tries to
reconnect the edge after treconnect seconds. If a change
in the edge (either goodness or topology) affects the best
route, the milestone mote initiates the aggregation of GOAL

messages to its neighbors to maintain the best paths to the
goal. Algorithm 4 summarizes this process.

Roadmap Node Migration. Milestone motes are the most
important motes in this algorithm. The roadmap may become
highly disconnected if they die or sense ∆hot. Therefore
it is important for the milestone motes to stay alive and
be in low temperature areas. In time, milestone motes may
inevitably get in fire. This leads to broken edges and a

possibly disconnected roadmap. To overcome this problem,
we introduce maintenance of milestone motes by milestone
migration.

The purpose of milestone migration is to make milestone
motes transfer the roadmap node to one of their neighboring
motes. When the milestone mote senses ∆hot, it asks its one-
hop neighbors for their temperature readings to see which
neighbor is the safest. Then, it sends a MIGRATE message
to the safest neighbor including the current state of the
milestone mote. It also sends BREAK-GOAL messages to its
neighboring milestone motes to break the edges and connect
to the new milestone mote. The edge connections to the
new milestone mote are done similar to basic edge creation.
Pseudo code for migration can be seen in Algorithm 5.
Figure 2(f) shows an example maintenance scenario.

Robustness and Node Failure. If a mote on the roadmap
dies before it informs other motes, the roadmap may become
disconnected. In order to avoid such cases, a heart beat
message could be sent over the roadmap motes to check
their health. Instead of continuously checking the health of
all the motes in the roadmap (which is a costly operation),
we check the motes only when the robot is about to move
on their edges. When a robot arrives to a milestone mote,
the milestone sends a SENTINEL message towards the goal.
This message is propagated until it reaches the milestone at
the other end of the edge. If any edge mote propagating
this message to its one-hop neighbor could not get an
acknowledgment, it becomes a milestone mote, breaks the
edge and connects to the milestone motes in the vicinity.
Goal-Potentials are updated accordingly. As an additional
precaution, while following the roadmap, if a robot could not
get an reply from the next mote on the path, the robot informs
the last mote. The last mote then behaves as if SENTINEL

message failed, and updates the connections.

D. Navigation

Reaching Roadmap. In order to find the roadmap, the
robot makes a local query to the sensor network with a
FIND-ROADMAP message. The motes that receive this query
forward it along the entries in their Vicinity table. A local
query tree is formed as a result. When this tree hits a mote
in the roadmap, a ROADMAP-FOUND message is sent to the
robot along with the distance and temperature information
of the path. The robot selects the best one among these
messages and starts following it until it reaches the roadmap.

Following Roadmap. Once the robot is on the roadmap, it
sends FOLLOW-QUERY messages and gets the goal informa-
tion from its one hop neighbors using ROADMAP-FOLLOW

messages. This is repeated until the robot reaches the goal.
If the roadmap edge that the robot was following is broken,
the robot sends a FIND-ROADMAP message to the network
and tries to reach the roadmap again. If the robot discovers
a static obstacle, an OBSTACLE-HIT message is sent to the
current edge, which in turn breaks the edge and disables its
recreation. If the robot senses a temperature level of ∆hot,
it returns back to the last mote on its path and informs the
mote. The mote then breaks the edge and the robot is directed
to an alternative path.

VI. EXPERIMENTS

In our experiments we would like to answer following
questions: (i) how successful an embedded roadmap is in

FrB5.1

3649

preventing the robot moving into the danger, (ii) how well
our approach is working with respect to existing navigation
field based algorithms (iii) how feasible it is to use our
algorithm on real hardware.

In order to answer those questions, we ran our experi-
ments both in the simulated sensor network and on real
hardware. Videos of the experiments can be viewed at
http://www.cse.wustl.edu/∼bayazit/sn.

Simulations. We first compare our adaptive embedded
roadmap (AER) algorithm’s performance to traditional nav-
igation field algorithms. For this purpose, we compare the
efficiency and navigation safety of each algorithm. We are
also interested in evaluating our algorithm’s robustness and
its behavior when the physical obstacles exist in the envi-
ronment. In our experiments, we have run our algorithm on
several fire scenarios. As a representative of global naviga-
tion field algorithms in sensor networks, we have selected [4]
which we will refer as GNF. In our implementation of GNF,
we included a number of improvements such as maximum
hops proposed in [4] instead of periodically flooding the
entire network from each mote. In our experiments, we have
used NS-2 Network Simulator [20]. NS-2 is one of the most
commonly used simulators in the networking research and
can accurately simulate network behavior such as wireless
message transfer, message transmission and network con-
gestion, etc. In order to have a realistic fire simulation, we
have used NIST Fire Dynamics Simulator (FDS) [21]. We
used 10 different realistic fire scenarios. In all the scenarios,
the fire starts in different locations scattered over the region
and then spreads over the region in time. The size of the
environment is 450m×450m. The simulated robot can detect
the temperature and nearby static obstacles. Experiments
with non-holonomic constraints, localization and motion
uncertainties are left for future research. Unless otherwise
stated, there are no static obstacles in the scenario. During
the experiments, the default values for the AER parameters
were as the following: ∆cold = 50,∆warm = 70,∆hot =
90,∆burn = 120, c1 = 0.01, c2 = 100 (see Section III,
note that since safety is more important for us, the danger
constant is very high). The random mote failure ratio we used
was less than 1%. We experimented with the roadmap node
generation probability and found 0.1 to be a useful constant.
The values below had problems with coverage and values
above introduced redundancy in the graph. The quantitative
analysis of roadmap node generation probability, as well as
adaptation of number of nodes in the roadmap are left for
future research.

Efficiency. The purpose of our first experiment is to
compare the efficiency of AER and GNF, which is measured
using the number of messages. Note that messages are sent
very quickly in the network unless they are dropped, but
sending messages is the main cost in a sensor network
because of high battery usage. To compare the scalability
of each approach, we created three networks with (i) 25
motes, (ii) 100 motes, and (iii) 225 motes. All the networks
have uniform distribution of motes (i.e., grid topology).
We ran both algorithms with different networks with the
same fire scenario, with the same start and goal points.
While GNF generated and updated the navigation field as
described in [4], AER built and maintained the embedded
roadmap. We used the average of 10 runs for AER since

(a) (b)

Fig. 3. Number of Messages. x-axis represents number of motes
in the environment, logarithmic y-axis is number of messages. (a)
When the motes fail in high temperature . (b) When the motes are
not effected by fire.

it is probabilistic. To see how a change in the number of
danger levels would effect our algorithm (see Section III), we
experimented running AER without the danger level δwarm

(i.e., a total of three danger levels as opposed to original
four). Additionally we evaluated how the survivability of
a mote effects the performance. Normally, a mote burns
when its temperature reaches δhot. However, there are several
examples of danger scenarios where the danger may not harm
the sensor (e.g., chemical spill or radiation fall-out). Hence
we have ran each algorithm with and without sensor burning.
Figure 3 shows our experimental results. In the figure, AER4
refers to original algorithm and AER3 refers to AER with
three danger levels. The x-axis represents number of motes
in the sensor network and logarithmic y-axis represents the
number of messages generated in the network. In Figure
3, (a) is when motes burn, (b) is when they do not. As
the number of sensors increases the number of messages
generated by GNF significantly increases. Also, if the motes
are not effected by the danger, the efficiency of GNF further
decreases. In all cases, AER algorithm performed better than
GNF. For example, in experiment with 225 motes and no
mote burning, AER generated 160 times fewer messages.
Both AER variants performed similarly. This suggests that
number of danger levels do not significantly effect the total
number of messages in the network hence the maintenance
cost is actually very low. We were expecting to see more
messages from GNF so we further investigated the number
of dropped messages. We found that a large portion of the
messages generated by GNF were actually dropped because
of network congestion. This is the main drawback of GNF
algorithm since the motes close to the robot may fail to
propagate messages to the robot, jeopardizing its safety.

Navigation Safety and Quality. Our first experiment
showed that AER is more efficient than GNF. Next we
wanted to see if AER can generate paths as safe as GNF.
In order to compare the path safety, we considered three
different cases: (i) single robot reaching single goal, (ii) two
robots reaching two goals, (iii) four robots reaching four
goals. The sensor field has 225 motes placed uniformly.
In this experiment, we considered 10 fire scenarios. Our
comparison is based on the average safety of each algorithm.
Figure 4(a) shows that AER performed better than GNF,
because in some scenarios with GNF, it was too late for the
robot to escape the fire when the danger information arrived.
Figure 4(b) shows the distances that the robots traveled
for the same experiments. This figure shows that the paths
generated by AER is not very different in length than paths

FrB5.1

3650

1 robot 2 robots 4 robots
0

0.2

0.4

0.6

0.8

1

Number of Robots

S
u

c
c
e

s
s
 R

a
ti
o

Success Ratio vs. Number of Robots

AER
GNR

(a)

1 robot 2 robots 4 robots
0

0.5

1

1.5

2

Number of Robots

P
a

th
 L

e
n

g
th

 (
k
m

)

Path Length vs. Number of Robots

AER
GNR

(b)

0 100 200 300 400 500
0

10

20

30

40

50

60
Number of Edges vs. Time

Time (s)

N
u

m
b

e
r

o
f

E
d

g
e

s

Mote burning
No mote burning

(c)

0 100 200 300 400 500
0

10

20

30

40

50

60
Number of Edges vs. Time

N
u

m
b

e
r

o
f

E
d

g
e

s

Time (s)

2 Robots
4 Robots
8 Robots
16 Robots

(d)

Fig. 4. Simulation results. (a) Navigation safety for different
scenarios. (b) Comparison of path lengths. Path lengths do not scale
linearly with number of robots since different scenarios include
different length routes. (c) Number of edges on the roadmap as the
danger spreads. (d) Number of edges on the roadmap as the robots
discover static obstacles.

of GNR.

Robustness and Node Failure. In this experiment, we
evaluated the robustness of our algorithm by increasing the
mote failure ratio (10%, 20% and 30%). We ran the same
scenario with a single robot for each failure ratio. During the
simulation we randomly killed some motes until the failure
ratio is reached. These experiments are repeated 10 times.
We found that AER is very robust and the robot could reach
the goal every time. We observed that SENTINEL messages
detected the disconnected motes and helped find alternative
paths, as long as the connectivity of the roadmap is satisfied.
We are also interested in observing the behavior of AER
when fire is spreading. Our maintenance functions should
keep the network connected and find alternative edges as
the danger moves. Figure 4(c) shows the average number
of edges in the roadmap as the fire spreads. In the figure,
experimental results for both mote-burning and non-mote-
burning cases are shown. It can be seen that there is a slight
decline in the number of edges. We found that as the fire
spreads, only few motes were left to maintain the roadmap
(in mote-burning, the motes failed after ∆burn, in mote-non-
burning, there were fewer motes with temperature less than
∆safe). However, an interesting observation was that, our
network was behaving similarly when motes failed or danger
reached them.

Obstacle Detection. In our previous experiments, since we
did not want the presence of static obstacles to effect the
evaluation of AER, we assumed the only obstacle in the
environment was fire. In this experiment, we investigated
the behavior of the embedded roadmap when static obstacles
exist. For this purpose, we designed an environment without
fire but with static obstacles. There are four cases, 2,4,8 and
16 robots trying to reach 2,4,8 and 16 goals respectively.
The embedded roadmap is the same for all cases. We would

like to observe how the number of edges in the environment
changes as the robots discover edges. In order to avoid
additional edges during the goal connection, the robots start
on roadmap nodes and try to reach other roadmap nodes.
Figure 4(d) shows the change in the number of edges as
the robots move. The y-axis represents the number of edges
and x-axis is the simulation time. Initially, the embedded
roadmap is built. With 16 robots, the number of edges drops
sharply and then converges. In contrast, with 2 robots the
drop is very slow and the remaining number of edges is very
high. In fact, as the number of robots increases, the number
of edges reduces with a speed proportional to the number of
robots. This shows that during the deployment of embedded
roadmap, as the number of robots using it increases, the
roadmap’s topology will converge to satisfy environmental
constraints.

Start 2

Start 1

Spreading

Fire

Static

Obstacle

Goal

Fig. 5. Environment for the experiment with real hardware. There
are two starting locations. Fire starts as the first robot moves (path
shown in blue, i.e., dotted line). Through sensor network, first robot
avoids the fire. When it discovers the static obstacle, it updates the
embedded roadmap edges. The second robot (path shown in red,
i.e., dashed line) then moves around the static obstacle. Movie of
the experiment is available at [22].

Experiment on the real hardware. In order to evaluate
the feasibility of our algorithm on the real hardware, we
have designed an experiment where two robots were trying
to reach an exit while fire was spreading. Figure 5 shows
the experimental environment. The width of the environment
is 20 meters, and the height is 6 meters max. There are
34 motes in the environment. Their locations are shown as
the black dots in the figure. The milestone motes also have
circles around them. Motes are restricted to communicate
only with the immediate neighbors in a grid fashion. Two
robots are simulated by a single Pioneer 3-DX robot [23].
After reaching the goal, the robot is relocated and simulated
the second robot. For the sensor network we have used Tmote
sky motes [24]. The embedded roadmap is implemented on
Agilla [25], a mobile agent middleware for sensor motes.
The mobile agents are software programs that can migrate
from one mote to another. In addition to being able to clone
themselves, they can also communicate with other agents.

In our implementation there are two agents, roadmap agent
and edge agent. Initially, roadmap agent is injected to the
network. Through migration, this agent visits every mote on
the network. At each mote, it probabilistically decides to
become a milestone mote. If it becomes one, then it leaves a
copy on the mote and jumps to the nearby motes. If it does
not become a milestone, then it communicates with the base
to send an edge agent to the mote. Once all the motes of the
environment have the agents on them, then the connection
phase starts. The connection algorithm in Section V-A is

FrB5.1

3651

implemented using inter-agent communication. The main-
tenance can be done through agent migration. The goal is
another agent that is injected to the network by the robot.
The aggregation of the best path from the goal (Section V-B)
is done by inter-agent communication. Fire is simulated with
another agent.

Since ǫ−goodness of this mote space is very low, we have
manually selected the roadmap modes to retain connectivity.
The movies of other embedded roadmaps with probabilistic
selection is available at [22]. Figure 5 shows the paths
of each robot. The robots have no a priori knowledge of
the environment and the network directs the robots to the
goal. The robot sensors are restricted to detect the obstacles
that are only 3 feet away. First robot starts at the upper
right corner of the environment. Initially, the sensor network
directs it through shortest path, but when the fire starts,
the direction of the robot changes. After avoiding fire, the
robot follows the shortest path again, as the network directs.
However, there is an obstacle on the path about which sensor
network has no information. The robot detects obstacle,
sends a message to the network to delete that edge. Then,
it returns to the last roadmap mote that it visited, and starts
following an alternative path, and eventually reaches the goal.
The path of this robot is shown with the blue (dotted) line.
In the experiment, the robot reached goal in around 180
seconds. Second robot starts from the lower right corner.
At this time, fire spreads farther, so instead of following
the shortest path on the diagonal, the robot follows a path
that is closer to the wall to stay away from fire. When this
robot comes to the obstacle that first robot detected, sensor
network takes the robot around it. The path of this robot is
shown with red (dashed) line. In the experiment, the second
robot reached the goal in around 110 seconds. The movie of
this experiment is available at [22]. This experiment shows
that our algorithm can be implemented on real hardware and
can safely navigate the robots in the presence of moving
dangers.

VII. CONCLUSION

In this paper, we have presented a new approach to sensor
network assisted navigation. At the heart of our approach
is an adaptive embedded roadmap that always contains safe
paths of the environment. Our experiments show that this
approach reduces the workload of the sensor network and
improves navigation safety. The embedded roadmap enabled
us to use global information at a reduced network usage. Our
future work includes using the embedded roadmap to reach
mobile goals as well as implementing embedded roadmap
on mobile sensors. The mobility of the target and sensors
brings challenging problems to be solved, at the same time
it creates new opportunities for the network to react against
danger for a safer navigation.

Although we used the embedded roadmap mainly for nav-
igation purposes, such a roadmap can have many other uses
once it is built. Examples for such uses are using the network
for message passing between robots and coordinating the
robot movements through embedded roadmap.

REFERENCES

[1] G. Alankus, N. Atay, C. Lu, and B. Bayazit, “Spatiotemporal query
strategies for navigation in dynamic sensor network environments,”

in Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), August 2005, pp.
3718–3725.

[2] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, August
1996.

[3] R. Bohlin and L. E. Kavraki, “A randomized algorithm for robot path
planning based on lazy evaluation,” in Handbook on Randomized
Computing, P. Pardalos, S. Rajasekaran, and J. Rolim, Eds., pp. 221–
249. Kluwer Academic Publishers, 2001.

[4] Q. Li, M. De Rosa, and D. Rus, “Distributed algorithms for guiding
navigation across a sensor network,” in Proceedings of the 9th annual
international conference on Mobile computing and networking. 2003,
pp. 313–325, ACM Press.

[5] K. J. OHara and T. J. Balch, “Distributed path planning for robots in
dynamic environments using a pervasive embedded network,” in Pro-
ceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent System, AAMAS 2004, July 2004, pp. 1538–
1539.

[6] S. Bhattacharya, N. Atay, G. Alankus, C. Lu, B. Bayazit, and G.-C.
Roman, “Roadmap query for sensor network assisted navigation in
dynamic environments,” in International Conference on Distributed
Computing in Sensor Systems (DCOSS’06), June 2006.

[7] M. A. Batalin, G. S. Sukhatme, and M. Hattig, “Mobile robot
navigation using a sensor network,” in IEEE International Conference
on Robotics and Automation, New Orleans, Louisiana, Apr 2004, pp.
636–642.

[8] M. A. Batalin and G. S. Sukhatme, “Coverage, exploration and
deployment by a mobile robot and communication network,” Telecom-
munication Systems, vol. 26, no. 2-4, pp. 181–196, August 2004.

[9] M. A. Batalin and G. S. Sukhatme, “Sensor network-based multi-robot
task allocation,” in Proceedings of IEEE/RSJ International Conference
On Intelligent Robots and Systems, October 2003, vol. 2, pp. 1939–
1944.

[10] M. A. Batalin and G. S. Sukhatme, “Using a sensor network for
distributed multi-robot task allocation,” in Proceedings of IEEE/RSJ
International Conference On Intelligent Robots and Systems, April
2004, vol. 1, pp. 158–164.

[11] M. A. Batalin and G. S. Sukhatme, “The analysis of an efficient
algorithm for robot coverage and exploration based on sensor network
deployment,” in IEEE International Conference on Robotics and
Automation, Barcelona, Spain, April 2005, pp. 3478–3485.

[12] A. Verma, H. Sawant, and J. Tan, “Selection and navigation of
mobile sensor nodes using a sensor network,” in Third IEEE In-
ternational Conference on Pervasive Computing and Communications
(PerCom’05), 2005, pp. 41–50.

[13] P. Corke, R. Peterson, and D. Rus, “Coordinating aerial robots and
sensor networks for localization and navigation,” in Proceedings of the
Seventh International Symposium on Distributed Autonomous Robotic
Systems. June 2004, Distributed Autonomous Robotic Systems 6,
Springer-Verlag.

[14] C. Buragohain, D. Agrawal, and S. Suri, “Distributed navigation
algorithms for sensor networks,” in Proceedings of IEEE INFOCOM,
April 2006.

[15] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket
location-support system,” in Proc. 6th ACM MOBICOM, Boston, MA,
August 2000.

[16] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher,
“Range-free localization schemes for large scale sensor networks,” in
MobiCom ’03: Proceedings of the 9th annual international conference
on Mobile computing and networking, New York, NY, USA, 2003, pp.
81–95, ACM Press.

[17] K. Lorincz and M. Welsh, “Motetrack: A robust, decentralized
approach to rf-based location tracking,” in Proceedings of the
International Workshop on Location and Context-Awareness (LoCA
2005) at Pervasive 2005, May 2005, pp. 63–82.

[18] J. C. Latombe, Robot Motion Planning, Kluwer Academic Publishers,
Boston, MA, 1991.

[19] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing
for wireless networks,” in MobiCom’00, 2000, pp. 243–254.

[20] “NS-2 Network Simulator,” http://www.isi.edu/nsnam/ns/.
[21] Kevin McGrattan et. al., Fire dynamics simulator (version 4) technical

reference guide, National Institute of Standards and Technology, 2004.
[22] “Adaptive Embedded Roadmaps For Sensor Networks, companion site

for ICRA’07,” http://www.cse.wustl.edu/∼bayazit/sn.
[23] “Mobilerobots inc.,” http://www.mobilerobots.com/.
[24] “Moteiv corporation,” http://www.moteiv.com/.
[25] C.-L. Fok, G.-C. Roman, and C. Lu, “Rapid development and

flexible deployment of adaptive wireless sensor network applications,”
in Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS’05). June 2005, pp. 653–662, IEEE.

FrB5.1

3652

