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Abstract— Accuracy is essential to surface quality control
when a range sensor is applied to measure the 3D shape of
an automotive body part. A sensor’s viewing pose, including
location and orientation, is related to measurement accuracy.
It is usually difficult to find an optimal solution by manual
control of sensor viewpoints. A CAD-guided robot view planner
developed previously can automatically generate viewpoints.
Measurement accuracy can be satisfied in a certain range.
However, the unpredictable image noises, especially in regions
with low intensity contrast, cannot be compensated by the CAD-
guided robot view planner. In another aspect, measurement
accuracy is evaluated all over the part surface. The local
accuracy of a small patch may exceed the measurement
tolerance. In this paper, feedback design is applied to the CAD-
guided robot sensor planning system. The feedback controller
can evaluate the accuracy of obtained point clouds, identify
problem regions, and generate new viewpoints. This process is
recursively executed until the measurement accuracy reaches
to a tolerant value. This feedback-based inspection system had
been implemented in previous work to fill holes of a point cloud,
which are caused by shadows and light reflections. In this paper,
the feedback controller is specifically designed to improve the
measurement accuracy. Experimental results show the success
of applying this feedback system for dimensional inspection of
an automotive body part.

I. INTRODUCTION

For quality control of a part’s surface shape, a range
sensor has many advantages than a traditional coordinate
measurement machine (CMM). However, measurement accu-
racy has to be satisfied for industrial applications. Improving
the design of a sensor itself, such as increasing the resolution
of a camera/projector, can reduce measurement uncertainties.
In another aspect, viewpoints of a range sensor, including the
location and orientation, is also related to the accuracy of a
3D shape measurement [1][2]. It is often difficult to find an
optimal solution by manually moving a range sensor to a
proper viewpoint for obtaining a qualified point cloud. This
problem is usually solved by a view planning system.

Many view planing systems [3][4] emphasize on mini-
mizing the number of viewpoints and the length of paths.
For shape inspection, a view planner should be designed to
optimize the measurement accuracy as well. Furthermore, the
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priority of the accuracy need to be higher than the topology
of the sensor path.

For an automatic vision-based 3D shape inspection sys-
tem, measurement errors are inevitable and the sources of
uncertainties usually include:

1) Intensity noise
2) Image quantization error
3) Poor surface property of light reflection.
Intensity noise is often a random noise in the process of

counting photon energy for each pixel. This type of noise
mainly depends on the image grabbing system and can be
reduced by filtering techniques. The quantization error has
been well studied [5][6]. The quantization error, unavoidable
exists in almost all vision systems, is bounded by the size of
pixels. A high resolution camera usually can provide better
measurement accuracy. With a same camera, a proper view-
point can also be used to reduce this quantization error [2].
Surface property of light reflection is a problem particularly
when a projector is involved in a vision system. Because
various materials have different reflection properties, the
projected patterns may not be clearly recorded. For example,
in a low contrast region of an image, error is often increased
because the edge of projected fringes becomes easy to be
noised.

A CAD-guided robot sensor planner is developed to gen-
erate an intelligent 3D shape inspection system [7]. It can
effectively reduce the image quantization error by properly
moving a range sensor. Optical constraints, such as field
of view, pixel resolution, and focus distance, are integrated
together to find a “best view” with the knowledge of a given
CAD model. The image quantization error is constrained in a
certain range under the planned viewpoints. However, when
the bounding box method [7] is used to estimated viewpoints,
average norm of triangles is adopted to determine viewpoint
orientation. Therefore, for a small area in the planned view,
measurement constraints may not be satisfied, which then
increase the quantization error.

Feedback-based view planning method is a possible so-
lution to improve measurement accuracy. A previous work
had been developed to fill holes by solving the shadow and
specular reflection problem [1]. In this paper, the feedback
controller is design to find a better view to improve the
collected image quality. Particularly, when a low contrast
area is detected, new viewpoints will be generated to cover
that part of surface. Although the processing time of this
feedback-based system is much longer than a CAD-guided
view planning system, the measurement accuracy will be
improved, which is indeed required for industrial applica-
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tions. The dynamic view planning system and the feedback
controller is shown in Figure 1. Details of this feedback
controller will be introduced in this paper.
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Fig. 1. A feedback-based robot sensor planning system for rapid 3D shape
inspection

The goal of this dynamic planning process is not just to
build an intelligent inspection system, our work more focus
on improving the quality of the measured point clouds. which
should be able to represent the true shape of a part. It also
needs to point out, when additional viewpoints are added
into a robot path, the density of the measured point cloud
can also be increased, which optimize the point cloud quality
in another aspect.

II. ANALYSIS OF ERRORS IN 3D SHAPE MEASUREMENT

Stripes are used widely by many types of range sensors,
precisely determining the boundaries of strips is a criti-
cal issue for a successful 3D shape measurement. A gray
coded line shifting (GCLS) method had been applied to
our digital light processor (DLP)-based range sensor [7].
To calculate the depth from one surface point to a pre-
calibrated reference, edges of strips have to be calculated in
sub-pixel resolution. If not, quantization error will be added
into measurement results. As shown in Figure 2, the edge of
a stripe can arbitrarily fall in anywhere between an image
pixel n and its next pixel n+1.
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Fig. 2. Image quantization error in edge detection
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Fig. 3. Edge detection using interpolation strategy

An edge detection method is illustrated in Figure 3: using
another image with opposite intensity stripes, A, B, C, and D
represents four intensity values that will be used to calculate
X, the location of a stripe boundary. Sub-pixel accuracy can
be obtained with this interpolation calculation.

Even though, the estimation of X may have error because
of image noises. But this error can be bounded in one image
pixel. On a view surface that has a norm parallel to the
viewing direction, resolution is often defined by the size
of a piece surface projected onto one pixel. This resolution
is a constraint widely used in many view planning system.
For a freeform surface, it may contain many small patches,
norms of each small patch will be vary so that the resolution
of each patch is quite different. Average norm of all small
patches, can be used to determines a viewpoint for those
patches. This method only satisfies the global resolution
constraint. However, for a small patch under that viewpoint,
the angel between the surface norm and the viewing direction
may exceed the threshold such that the resolution constraint
cannot be satisfied. Hence, the one pixel error bound is
increased and the measurement uncertainty will be out of
tolerance. For surface shape inspection, this small area needs
a new viewpoint to satisfy the measurement constraints.

 

Fig. 4. An image of stripes in high/low contrast area

 

Fig. 5. Intensity profile in high/low contrast area

Besides quantization error, measurement uncertainty will
also be increased in low contrast images. Considering inten-
sity noises, stripes in a high contrast area will be more robust
than stripes in a low contrast area. Figure 4 illustrates an
image with high/low contrast regions. The intensity profiles
of two lines in Figure 4 are displayed in Figure 5: the top
curve shows the intensity profile of the line through a low
contrast area and the bottom curve shows the intensity profile
of another line through a high contrast area. Image noises can
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be seen at the peak and valley of each wave, which affects
the accuracy of the edge detection algorithm.

III. MATHEMATIC MODEL OF THE FEEDBACK-BASED

INSPECTION PROCESS

The general framework of a feedback-based inspection
process had been developed [1]. This feedback system has
a CAD-guided sensor planner that can initially setup a set
of viewpoints in the open-loop. A feedback controller was
designed to add a set of viewpoints recursively according
to the quality of the obtained point clouds. Holes generated
by shadows and specular reflections were filled during the
iteration process. After when the control system reach to the
set point, a complete point cloud can be obtained for error
map generation. The diagram of the whole feedback-based
inspection system can be seen in Figure 6.
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Fig. 6. Block diagram of a feedback-based dynamic shape inspection
system

In this paper, the feedback controller is specially designed
to improve the measurement accuracy. Mathematic model
and stability of such a feedback system are all described in
followings.

A. The model of system inputs, outputs, and functions

The dynamic sensor planner need various inputs such as
CAD model and point cloud information. According to each
type of input, viewpoints will generated and be added into a
robot path. Except the range sensor model [7], the dynamic
sensor planner has three more inputs: 1) CAD model, 2) task
constraints, and 3) feedback information.

CAD model M is usually a group of triangles tessellated
from part surfaces. Mathematically, it can be represented by:

M = {Ti|Ti =< (Xi1,Yi1,Zi1),(Xi2,Yi2,Zi2), (1)

(Xi3,Yi3,Zi3) >, i = 1...n}
Task constraints TC is a set of measurement requirements,

which integrate the requirements for CAD-based planning
strategy and feedback-based planning strategy:

TC = { f ov,S,ρ, fd ,η ,Σ,σ} (2)

where the field of view f ov is defined by the length L and
width W of a rectangle area; S is the standoff distance of an
area sensor; ρ represents the image resolution; fd represents
the focus distance which contains two values: nearest focus
distance, and farthest focus distance; η represents visibility
of the area sensor, determined by three vectors: projection
vectors

−→
PV , camera viewing vector

−→
CV , and surface norm

vector
−→
SV . A piece of surface is visible if the following

equation is satisfied:



arccos(
−→
PV ·−→SV

||−→PV ·−→SV || ) < θth1

arccos(
−→
CV ·−→SV

||−→CV ·−→SV || ) < θth2

(3)

where θth1 ensures that the encoded patterns can be projected
onto the surface and θth2 ensures that this piece of surface can
be “seen” by camera. Σ represents the area of holes generated
by shadows or light specular reflections. Stripes are totally
lost in this part of area and the number of correspondent
pixels are counted to determine the size of holes; σ is the
standard deviation of measurement variations, calculated on
same surfaces within two measurements. Ideally, the shape
of those two point clouds should be identical. However,
image quantization error and poor surface reflection property
will increase the measurement uncertainties. Then, stand
deviation of the differences of two measurements can be
used to show how the two point clouds are vary from each
other. If σ is larger than a predetermined threshold, another
viewpoint then need to be set for this area.

Feedback information contains the analysis results of the
measured point clouds, which are usually three types of
defect map: a shadow map IS, a reflection map IR, and an
inaccuracy map IA [1]. The shadow map and reflection map
have been described previously, in this paper, we focuses
on the inaccuracy map IA, which is described in Equation
4, pi represents a 3D point in a region which has quite
different shape between two measurements, ka represents the
number of points in this region, and σth is a threshold value
predefined as the requirement of measurement accuracy.

IA = {pi(xai,yai,zai)|i = 1,2...ka,σ > σth} (4)

Measurement error is not evenly distributed over a point
cloud [7]. For a single surface point, the measurement
accuracy is related to the sensor viewpoint. The accuracy
map IA can effectively show the differences between the
measurements on two viewpoints.

Viewpoints are the output of this dynamic sensor planner.
A viewpoint includes a location p and a viewing vector v.
As shown in Equation 6, V0 represents the initial set of
viewpoints generated from CAD model, Vk represents the
sets of viewpoints estimated in feedback, k represents the
iteration times.

V0 = {Ψ0i = (pi,vi), pi ∈ R3,vi ∈ R3} (5)

Vk = {Ψki = (pki,vki), pki ∈ R3,vki ∈ R3}
V = (

n⋃
k=1

Vk)
⋃

V0

The developed dynamic sensor planner also has two func-
tions:

1) Initial viewpoint configuration f0: An initial viewpoint
configuration is a process to estimate viewpoints based
on the given CAD model of a part. Function f0
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represents a bounding box algorithm developed to find
a viewpoint set V0 from CAD model M.

f0 : M �→V0 (6)

2) Feedback-based viewpoint configuration gk: gk is a
projection from a defect map IA to new viewpoints.

gk : IA �→Vk (7)

The viewpoint evaluator Λ is a function, which makes a
decision about if the quality of a point cloud Pc satisfies the
measurement requirement. If not, defect map IA will be fed
back to the dynamic sensor planner to update set V .

Λ : V �→ IA (8)

where viewpoint set V is the input to Λ. Figure 7 illustrates
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Fig. 7. Block diagram of the feedback controller, viewpoint evaluator Λ

the detail structure of this function. Two point clouds will
be measured sequentially. Differences between those two
point clouds will be input to the error evaluator. Meanwhile,
an image processor is designed to identify the area with
intolerant shape differences. Symbol uk and vk are used for
system stability analysis and will be described next. A logic
switch signal K is the output signal of Λ. Q is a cost function
that determine the area of inaccurate points. If Q is less than
a threshold Eth, the switch k will be closed and the iteration
process will be stopped, the current point cloud can then be
sent out for comparison with its CAD model M.

The mathematic models of a point cloud Pc, a point cloud
generator Γ and an error map generator ∆, shown in Figure
6 have been introduced in details in [1].

B. The model of the dynamic measurement process

Equation (9) describes the model of the dynamic view
planning process in a state space: V and Pc are state
variables, M and TC are inputs, and error map E is the output
of the system:


V

.= f0(M,TC)∪gk(IA)
Pc

.= Γ(V )
E = ∆(M,Pc)

(9)

where
.= indicates that V and Pc are accumulated results

from iterations. As shown in Figure 6, given a CAD model
M and a set of task constraints TC, a group of viewpoints
V0 will be initialized first, a point cloud Pc is then generated
according to V0. Initially, V is equal to V0. Two functions Γ
and Λ are then going to be executed based on this viewpoint
set V . As described previously, Γ is an execution to obtain
point clouds Pc from set V . Meanwhile, function Λ evaluates
the current viewpoint by detecting regions of inaccurate

points. If necessary, a group of new viewpoints can then be
generated through function gk. The measured point cloud is
kept updating until the cost function Q reports a stop signal.
According to this automatic control scheme, an error map
can be generated only when the measured point cloud is
considered to be accurate. This final point cloud will be used
for surface quality inspection.

C. Stability analysis of the feedback controller

Stability of this dynamic inspection process is analyzed
to ensure the iteration process will converge. As described
above, a cost function Q is used to determine when the
feedback will stop, generally, Q is calculated according to
the area of holes and the area of inaccurate measurements.
Seen in Equation (10), u represents the total area of holes,
called a hole cost. And v represents the total area of shape
difference between two point clouds, called a distance cost.
Then, Q can be optimized by adding more viewpoints such
that both u and v are minimized. The cost function Q can
be represented on a complex plane such that u and v are
the real and imaginary part respectively. A weight number w
is defined as a ratio between the hole cost and the distance
cost. For filling holes, the v can be set to “0” because the
hole cost is going to be focused. Similarly, when focusing
on viewpoints to improve the measurement accuracy, u can
be ignored at this time. In combination of hole and accuracy,
w can be set to a number from “0” to “10”, depends on the
number of holes and the size of each hole. If only several
small holes include, w is set to a value less than “1”, but if a
big hole is detected, w then need to be set to a large number
close to “10”.

Q = ‖w ·uk + jvk‖ (10)

The recursive planning process stops when Q is reduced
to a tolerant value. Ideally, Q would be 0, indicating that the
present point cloud has no holes and is exactly identical to the
point cloud measured in last step. Because new viewpoints
will always bring more 3D points to update the point cloud,
the hole cost and the distance cost could be minimized by
continuously adding viewpoints. Hence, the system will be
stable after a finite number of iterations, k.

IV. EXPERIMENTAL IMPLEMENTATION AND RESULTS

An accuracy test is conducted first on flat surface with
difference intensity contrast property. Figure 8 shows the
deviations of measurements: Figure 8(a) displays the result
in low contrast region and Figure 8(b) displays the result
in high contrast region. It can be seen that the deviation of
measurements in the high contrast region is smaller than it
in the low contrast region.

A method to solve this problem is to move the range sensor
close to the low contrast surface region and take multiple
measurements on that viewpoint. Collecting and averaging
the point cloud data from multiple measurements can effec-
tively reduce the measurement error. Results of a test on a
flat surface are shown in Figure 9, in which (a) shows the
deviation of the measured surface from a single shot and
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   (a)      (b) 
 

Fig. 8. Deviation of measurement errors. (a) Deviation of results in a low
contrast region (b) Deviation of results in a high contrast region

  
(a)          (b) 

 

Fig. 9. Reduce measurement uncertainty in a low contrast area by
replacing the range sensor and averaging data from multiple measurements.
(a) Deviation of results on a viewpoint close to surface with single shot (b)
Deviation of results on a viewpoint close to surface with multiple shots

(b) shows the average height calculated from multiple shots.
Meanwhile, compare Figure 9 (a) to Figure 8(a), it can be
seen that the deviation becomes smaller when the sensor is
close to the part surface. The trade off of this method is,
more calculations have to be executed for measuring this
surface, such as the identification of low contrast region,
planning new viewpoints, and data processing of 3D shape
measurements.

The developed dynamic inspection system has been im-
plemented on a PUMA 560 robot. An automotive body part,
pillar-m32510, is used for system testing. Viewpoints can
be simulated using NuGra f T M . Detailed information about
system setup has been described in [7].

 

Low Contrast Area 

Fig. 10. Measurement of part surface with low intensity contrast areas

Figure 10 shows the collected images of stripes within
high/low contrast regions. The low contrast region can be
detected using image processing technique, measurement
results show that the uncertainties are not tolerant in this
region. Another viewpoint is generated accordingly using the
feedback information. The iteration process is conducted ten
times, the standard deviation of points all over the point cloud
are calculated. The variation of the obtained point clouds

 

Fig. 11. Stability analysis of the feedback system

becomes smaller and smaller, and the feedback process is
going to stop at when the cost function(per) δ reaches to a
predetermined set point.

 

Fig. 12. A measured point cloud after iterations

 

 
 
 Fig. 13. Stripes and the correspondent point cloud from another view

The curve of the standard deviation between two point
clouds is shown in Figure 11. The number is dropped from
0.1981 to 0.0921 at the last step. The point cloud obtained
in the last step is shown in Figure 12. Figure 13 displays
the 3D part surface and its correspondent point cloud from
another view.

Table I shows the results of each iterations. With more
points are obtained in each step, the standard deviation
of shape differences between each two measurements are
reduced as well as the cost to evaluate the quality of the
point cloud. This recursive process stops when the cost is
less than a predefined limit 0.025.
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TABLE I

IMPROVE ACCURACY FROM A RECURSIVE PROCESS

Iterations, k σ time, t(sec) No. of Points cost
k=1 0.1934 41.2 243,185 0.1718
k=2 0.1387 72.0 363,348 0.1021
k=3 0.1113 101.0 356,734 0.0602
k=4 0.1011 130.4 365,343 0.0450
k=5 0.0975 159.4 375,239 0.0378
k=6 0.0951 178.6 364,347 0.0329
k=7 0.0944 207.9 353,283 0.0280
k=8 0.0931 238.1 345,342 0.0265
k=9 0.0928 267.7 364,812 0.0253
k=10 0.0921 295.3 345,453 0.0249

 

Fig. 14. CAD model of an automotive body part,

 

Fig. 15. Point Clouds of pillar-m32510, measured from four viewpoints

Figure 14 displays a tessellated CAD model of an au-
tomotive body part, pillar-m32510. There are totally 2,716
triangles used to represent the geometry shape of this part.
The measured point clouds are shown in Figure 16. The
measured point clouds can be registered together to form
a point cloud, which represents the geometry shape of the
real part.

 
 

Fig. 16. The entire point cloud of part pillar-m32510

Shape difference between the CAD model and the regis-
tered point cloud can be illustrated by a color-coded error
map. As shown in Figure 17: at the left side of part, the
surface is higher than the designed shape. The reason is that

 

Shape error  

Qualified Shape 

Fig. 17. A color-coded error map of part pillar-m32510

this part is punched under pressure, because the curvature is
not that smooth as the right side, forces are not only from
the top but also from the left, push the surface up than it
supposed to be. This part of area need to be checked again
in manufacturing process to ensure that shape of this part
meets the dimensional requirements.

V. CONCLUSIONS

A feedback-based robot view planning system is devel-
oped to improve the accuracy of a 3D shape measure-
ment. Image quantization error and poor surface property
will increase the measurement uncertainties. Dynamic sen-
sor planning methods are developed in a feedback-based
planning system to improve the measurement quality. The
developed system can recursively add new viewpoints for
3D shape measurement. The feedback process will stop
when the quality of point clouds are satisfied for error
map generation. Mathematical model of this system are
developed. An application of this feedback-based planning
system is shown in an experiment on an automotive body
part.
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