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Abstract— In this paper, the concept of broadcast feedback
for stochastic cellular control systems is expanded to a system
with nonuniform cellular length and nonuniform transition
probability. The cellular control architecture was originally
inspired by skeletal muscles comprising a vast number of tiny
functional units, called sarcomeres. The output of the actuator
system is an aggregate effect of numerous cellular units, each
taking a bistable ON-OFF state. A central controller broadcasts
the error between the aggregate output and a reference input.
Rather than dictating the individual units to take specific states,
the central controller merely broadcasts the overall error signal
to all the cellular units uniformly. In turn each cellular unit
makes a stochastic decision with a state transition probability,
which is modulated in relation to the broadcasted error. Stability
conditions of the broadcast feedback system are obtained by
using a stochastic Lyapunov function. It is demonstrated that,
even in the presence of the distribution of the cell length and/or
the distribution of the transition probability generated in each
cell, the aggregate output of the cellular units can track a given
trajectory stably and robustly.

I. INTRODUCTION

The exact mechanism of skeletal muscle control is still
unknown. However, from the reported muscle behavior in
those references we can gain some insights as to how a vast
number of sarcomeres can be controlled with much fewer
sensors and motor neurons. It is known that the activation
of sarcomeres is not governed by a deterministic control,
but it contains a stochastic process due to the diffusion of
calcium ions [1]. Other references argue that the actomyosin
contraction process, the essential process of actuation, is
a Brownian process [2]. It is also notable that a muscle
can function properly although a significant fraction of the
cellular units are not functional.

The authors have presented new control architecture in-
spired by the muscle behavior, which in turn has the potential
to be a novel approach to the control of a vast number
of cellular units [3] [4]. The proposed architecture, called
“Broadcast Feedback”, elucidates the stochastic nature of the
cellular units as well as the relationship between many sar-
comeres and few sensors and motor neurons. In the broadcast
feedback architecture, a central control unit simply broadcasts
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the error between the reference input and the aggregate output
of the cellular units. In turn individual cellular units make
independent stochastic decisions based on the broadcasted
signal of overall error. No addressing scheme is necessary
for broadcast control, since information is sent to all the cells
rather than to a specific cell. Hence the method is highly
scalable to a vast number of cellular control systems.

This paper expands the concept of the broadcast feed-
back for stochastic cellular control systems to a system
with nonuniform cellular length and nonuniform transition
probability. We demonstrate that even in the presence of the
distribution of the cell length and/or the distribution of the
transition probability embedded in each cell, the aggregate
output of the cellular units converge to a reference robustly
by merely broadcasting the aggregate output error.

II. INSPIRATION FROM BIOLOGICAL MUSCLE
CONTROL

A skeletal muscle consists of five layers of hierarchical
structure, starting with sarcomeres as the lowest functional
units. At the molecular level, recent studies have reported
that stochastic behavior is essential in explaining intracellular
calcium transport [1] and actomyosin contraction itself [2].
At the macroscopic level, a skeletal muscle shows smooth
motion although the muscle fibers are known to have either
“ON” (producing tension) or “OFF” (relaxed) state [5],
and they exhibit prominent hysteresis [6]. Today’s artificial
muscle actuators, although similar in some aspects, are signif-
icantly different in structure from a biological muscle. Assim-
ilating the anatomical structure and motor control architecture
of a skeletal muscle, we can gain some insights as to how
an artificial muscle can be built and controlled. This leads
to an alternative to the design of today’s artificial muscle
actuators, which is worth investigation for long-term research
interests. The following are three major aspects inspired by
the biological muscle.

Binary Cellular Structure. Bistable ON-OFF control has
salient features in coping with complex nonlinearities of
actuator materials. Muscle fibers have prominent hysteresis
as addressed by [6]. Most materials for artificial muscle
actuators, too, have prominent hysteresis and state-dependent
complex nonlinearities [7][8]. The control problem becomes
much simpler for ON-OFF control, as demonstrated by [9]
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for shape-memory alloy (SMA) and by [10] for dielectric
elastomers.

Figure 1 shows an artificial muscle control system having a
binary cellular structure. Instead of driving the whole actuator
material as a bulk, the actuator material is divided into many
small segments, each controlled as a bistable ON-OFF finite
state machine [9].

Broadcast control. Increasing the number of cellular units
and reducing the size of each cell can bring about improved
resolution and faster response. However, as the number of
cellular units increases, it is infeasible, or at least difficult, to
control all the cellular units directly with a central controller.
Each motor neuron transmits a control signal from the central
nervous system to a target muscle fiber. The control signal
is then disseminated through a network of T tubules to a
number of sarcoplasmic reticula, which activate a bundle of
sarcomeres. This anatomical fact implies that a signal from
the central nervous system is broadcasted over a vast number
of cellular units, rather than different information is delivered
to individual units.

Distributed stochastic control. Stochastic behavior can
be observed at various motor control processes, ranging
from motor unit firing[11] to actomyosin motors[2]. Espe-
cially, molecular-level processes, such as calcium release,
breakdown of ATP, etc., are influenced by thermal noise
resulting in stochastic behavior. This implies that even though
the control command, or nerve impulse, is sent uniformly
to all units, the response of all the units may not be the
same. Stochastic decision-making at local units regulates the
aggregate output of the ensemble units without deterministic
coordination.

Combining the above three aspects inspired by a skeletal
muscle lead to the concept of stochastic cellular control
system[3][4].

III. STOCHASTIC CELLULAR CONTROL
SYSTEMS

A. Single Cells

A cell is defined to be the smallest functional unit having
its own state and producing an output. Each individual cell
takes bistable ON-OFF states as shown in Fig. 2. Each cell
has a decision-making unit that changes the transition prob-
ability from one state to the other by receiving a broadcast
signal. Let pi be the transition probability from OFF to ON,
and qi be the transition probability from ON to OFF for cell
i. We assume that the transition is performed in discrete time
step, hence the behavior of the cell is modeled as a discrete-
time, non-homogeneous Markov process. Each cell provides
the following displacement:

yi = δiηi =
{

ηi, ON
0, OFF

, (1)

where yi is the displacement of the ith cell. ηi is the
displacement when the cell is ON. δi is given as

δi =
{

1, ON
0, OFF

. (2)

Consider the case where cell i is OFF at time t, i.e., δi
t = 0.

If given a transition probability pi
t+1, the expectation and the

variance of yi
t+1 are given by

E[yi
t+1|pi

t+1] = ηipi
t+1. (3)

and

V ar[yi
t+1|pi

t+1] = E[yi2

t+1|pi
t+1] + E[yi

t+1|pi
t+1]

2

= ηi2pi
t+1(1 − pi

t+1). (4)

B. Cellular Control System

Consider a cellular control system in which N cells are
connected in series. The output y of the system is given by
the aggregate output of all the cells. From (1):

y =
N∑

i=1

δiηi, (5)

In this system, the OFF cells do not contribute to the
aggregate output. The gross stroke (the range of the output
of the system) is then given by L =

∑N
i=1 ηi.

C. Broadcast Feedback Control

In order to control the cellular system, the concept of
broadcast feedback control has been proposed [3][4]. The
output is measured at discrete time t = 0, 1, 2, · · ·. The cen-
tral controller generates a universal control command based
on the aggregate output error, i.e.,the difference between the
reference input and the current aggregate output: et = r−yt,
and broadcasts it to all the cells. The simplest control is to set
the universal control command as ut = et [3][4]. Each cell
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generates the transition probabilities, pi and qi, by receiving
u: et → pi

t+1, q
i
t+1.

In order to simplify the problem, the transition from ON
to OFF is prohibited when et > 0, and the transition from
OFF to ON is prohibited when et < 0 at each cell. We call
this control law a unilateral transition control:

pi(e) =
{

0 (e ≤ 0)
pi(e) (e > 0) (6)

qi(e) =
{

qi(e) (e < 0)
0 (e ≥ 0) . (7)

D. Implementation of Cellular Actuator System

Figure 3 shows an implementation example of the cel-
lular actuator system. MEM-PZT cellular actuators [3] are
connected to each other directly or through mechanical
impedance in series and parallel, composing in totality a
single actuator. In stead of wiring many control lines to each
individual cells, each cellular actuator has a local control unit
that receives the broadcasted signal from the central control
unit, and turn its state in a stochastic manner. The local
control unit controls the cellular actuator unit by ON-OFF
manner, which overcomes the hysteresis of the material and
simplifies the amplifier.

IV. ROBUSTNESS AGAINST UNIFORMITY OF THE
CELLS

Since the cellular actuator system consists of a vast number
of small cellular units, several problems are considered
unavoidable due to the limitation of micro manufacturing.
One of these problems is the difficulty in maintaining the
uniformity of the cells, such as response to the signal,
displacement, and life cycle. The cellular actuator system
is expected to sustain a sufficient response capability even
in the presence of these nonuniformities. We address several
major problems as follows.

Failure of the Cells It is difficult to maintain all the cells
functional; some of the cells may die or do not respond to
the inputs. This problem may be due to the creep of the
material, disconnection of the power lines, or break in the
receiver circuit. In addition, the number of the dead cells
may vary during the operation. It is notable that a muscle can
function robustly and stably although a significant fraction of
the cellular units are not functional.

Nonuniformity of Cell Length Even with the recent rapid
progress in micro manufacturing technologies, it is difficult
to produce many micro actuator units that have uniform
displacement or force. A certain degree of variations is
unavoidable. In contrast, the length of sarcomere in biological
muscle system is not strictly uniform, varying from 2 to
3 μm, and it is considered difficult for the central nervous
system to know the whole distribution of the length. However,
the muscle control system seems to be working without major
problems regarding this point.

Nonuniformity of Embedded Transition Probability
Similarly, it is difficult to let all the cells have uniform local
controllers that generate uniform transition probability from
the broadcasted signal; the generated probabilities at local
controllers may have some fluctuations due to noise, offset,
or signal attenuation. Needless to say, these problems can be
observed in biological systems, which are affected by thermal
noise.

In the previous papers [3] [4], we analyzed the system by
assuming that the cell length is uniform and the transition
probability at each cell is the same. In this paper, we
focus on the problems regarding the cell nonuniformities.
We demonstrate that even in the presence of these nonuni-
formities, the aggregate output of the cellular units tracks
a reference robustly. If these nonuniformities are allowed,
the requirement for developing cellular actuators could be
drastically relaxed.

V. STABILITY ANALYSIS
Due to the limitation of space, we give a detailed analysis

only for the nonuniformity of the transition probability with
the failure of the cells. Other cases will be reported in our
future publications.

A. Assumptions

In this section, the stochastic stability of a cellular control
system consisting of N cells with the broadcast feedback
is analyzed. The control system is distributed with no inter-
cellular communications, i.e., (1) the central controller does
not know the number of active or dead cells. It does not
know neither the distribution of cell length nor the transition
probability. It broadcasts only the error between the aggregate
output and reference. (2) the local control at each cell gener-
ates its own transition probability by broadcasted information
and changes its state based on the probability if the transition
is possible.
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In general, stability and performance can be improved
by observing internal states of the system. However, the
controller of individual cell becomes more complex, which
is not acceptable for a large-scale cellular control system.

We assume that the sampling rate of the broadcast feedback
is sufficiently slow compared to the cell dynamics, so that
each cell completes transition within the sampling period.
This design concept is achieved without difficulty, when
micro piezoelectric actuators are used [3][8].

B. Stochastic Lyapunov Analysis

We apply the stability theory using a stochastic Lyapunov
function by Kushner [12][13] to this problem (See Ap-
pendix). Assume that all cells are functional. The dynamics
of the error is represented by

E[et+1|et, r] = et −
N∑

i=1

pi
t+1(1 − δi

t)η
i (et > 0) (8)

E[et+1|et, r] = et +
N∑

i=1

qi
t+1δ

i
tη

i (et < 0) (9)

Note that the stationary condition of Markov chain will be
preserved once et = 0 holds since (6) and (7) provide

E[et+1|et = 0] = 0. (10)

Assume that the reference r is constant. Change of r
merely means the change of the coordinate origin, i.e., xt =
et = r − yt. Let us consider V S = e2

t for a candidate of the
stochastic Lyapunov function. The change to the Lyapunov
function candidate, ΔV S

t , is calculated as follows:

ΔV S
t = E[V S

t+1|et] − V S
t

= V ar[et+1|et] + E[et+1|et]2 − e2
t

= −k(et) ≤ 0, (11)

where E[e2
t+1] = V ar[et+1] + E[et+1]2 has been applied.

Note that the variance appears in (11), indicating the effect
of the variance on the stability condition. If the process is
deterministic and, thereby, the variance is zero, the stability
condition has no difference from that of a deterministic
Lyapunov function. Due to the stochastic nature of the
process, the left hand side of the above inequality condition
is larger with the added variance term. Therefore, more
strict (conservative) stability condition must be met for the
stochastic process. It is obvious that V ar[et+1] → 0 and
et+1 → E[et+1] if N → ∞, resulting in deterministic
analysis shown in [3].

When the inequality condition, (11), is satisfied, the pro-
cess is called a nonnegative supermartingale, for which the
Lyapunov function is guaranteed to converge to a nonnegative
limit with probability one.

C. Nonuniform Transition Probability

Assume that the length of the cells is uniform, i.e, ηi =
η̄ (i = 1, · · · , N). Consider the case in which pi(e) and qi(e)
are affected by noise:

pi(e) = fp(e) + wi
p (12)

qi(e) = fq(e) + wi
q (13)

where fp(e) and fq(e) are deterministic functions of e
uniformly given to all cells. wi

p and wi
q are white noise

that cause the nonuniformity. Let p̄ = 1/N · ∑N
i=1 pi and

q̄ = 1/N · ∑N
i=1 qi be the mean of generated transition

probabilities.
If et > 0, the expected aggregate output is given by

E[yt+1|yt] = E

[
E

[
N∑

i=1

pi
t+1(1 − δi

t)η̄ | pi
t+1

]]

= yt + (N − n) · p̄t+1 · η̄. (14)

Therefore,

E[et+1|et, r] = et + p̄t+1(r − L − et). (15)

These are the same results as obtained in the previous section.
Suppose δi

t = 0. By applying the law of total variance, the
variance of a single cell is given by

V ar[yi
t+1|yi

t] = E[V ar[yi
t+1|pi

t+1]|yi
t] + V ar[E[yi

t+1|pi
t+1]|yi

t]
= η̄2(p̄ − p̄2). (16)

Therefore, the variance of the error is given by

V ar[et+1|et, r] = V ar[yt+1|yt, r]

=
N∑

i=1

V ar[yi
t+1|yi

t]

= η̄2 · (N − n) · p̄(1 − p̄) (17)

Similarly, the expectation and variance for et < 0 are
obtained.

The variance of pi or qi does not show in (15) or (17)
explicitly. Furthermore, these results are similar to the case
where the transition probabilities are uniform, i.e., pi = p̄,
qi = q̄ (i = 1, · · · , N). This implies that the closed loop
stability is determined only by p̄ and q̄, which will be given
in the following section.

D. Condition of Stochastic Stability for the Nonuniform
Transition Probability

Suppose that a broadcast feedback controller performs
proportional control of the output y, i.e., only the error et

is broadcasted. If each cell has the following set of transition
probabilities as a function of the broadcasted error, the error
asymptotically converges to Pm, which is a small region
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including e = 0, with probability one. Figure 5 shows the
obtained transition probabilities.

p̄(e) =
{

0 e ≤ η/2
0 < p̄(e) < min(2e−η̄

L−η̄ , 1) e > η̄/2 (18)

q̄(e) =
{

0 < q̄(e) < min(−2e−η̄
L−η̄ , 1) e < −η̄/2

0 e ≥ −η/2
(19)

For large N , we have given a stable transition control for
the stochastic cellular control system [3] which is given by
(24) and (25) in Appendix. The transition control given by
(18) and (19) is an extension to the general case. Although
this transition control is slightly more conservative than (24)
and (25) since a small dead band is required, it takes the
stochastic variance into account and guarantees the converge
for any N . The system is also stable for any number of
dead cells for any feasible r if the system is stable when
all the cells are functional. Further, as described previously,
the system allows a variation of (18) and (19) due to noise.
Sketch of derivation and proof. Substitute (18) and (19) for
(8) and (9), and check (11) . Use L ≥ L + et − r > 0 to
simplify the expression. Use E[et+1|et, r] = et − p̄t+1(L −
r+et− η̄NOFF

dead ) instead of (15) where NOFF
dead is the number

of dead cells staying in the OFF state.

VI. SIMULATION

A. Simulation Model

We demonstrate that the new transition control given by
(18) and (19) provides higher robustness against the cell
nonuniformities than the previous transition control given by
(24) and (25). A position control of a series of MEMS-PZT
cellular actuators with 7% strain [3] is examined for N = 25
and N = 1000. A step-like desired displacement is given

and the response is examined in terms of stability. The new
transition control laws are implemented as follows.

p̄(e) =
{

0 e ≤ η/2
min(1.5e−η̄

L−η̄ , 1) e > η̄/2 (20)

q̄(e) =
{

min(−1.5e−η̄
L−η̄ , 1) e < −η̄/2

0 e ≥ −η/2
(21)

Similarly, gp = gq = 1.5 are used for (24) and (25).
The following three cases are examined:

1) N = 25. Nonuniform transition probability. Uniform
cell length.

2) N = 25. Uniform transition probability. Nonniform
cell length.

3) N = 1000. Nonuniform transition probability. Nonni-
form cell length. 200 units (20%) are not functional,
staying in OFF state.

Figure 6 shows the distribution of cell length where the
mean of the length is 280[μm]. Also, noise with mean 0
and variance 4.0 × 10−4 is applied to (12) and (13) for the
uniformity of the transition probability.

The broadcast signal et is updated in every 0.005[sec] so
that state transition in each individual cell is performed in
sync with this update. Sampling delay T = 0.005[sec] is
added to the observation of et.

B. Simulation Results and Discussion

As shown in Fig. 7(a), the output stably tracks the given
trajectory even the embedded transition probability is affected
by noise. However, as shown in Fig. 7(b), the output becomes
unstable if the previous transition control is applied. It should
be noted again that the previous transition control does
not take into account the stochastic variance, which may
lead to oscillatory response. Although the robustness against
the nonuniformity of cell length has not been discussed in
this paper, the new transition control shows a potential to
cope with this nonuniformity in Fig. data4. Figure 9 shows
another potential of the cellular control system. That is, if the
number of cells is large enough, the effect of the variance by
nonuniformities as well as by stochastic transition control
becomes negligible, resulting in high robustness.

VII. CONCLUSION

In this paper, a broadcast feedback approach has been pro-
posed for a large-scale stochastic cellular control system with
nonuniformity. It has been demonstrated that, the aggregate
output of the cellular units can track a given trajectory stably
and robustly even in the presence of the distribution of the
cell length and/or the distribution of the transition probability
embedded in each cell. Detailed analyses including the case
for nonuniform cell length will be presented in our future
publications.
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APPENDIX

A. Asymptotic Stability of Discrete Stochastic Systems
Let V S(x) be a scalar-valued, non-negative, continuous

function, satisfying V S(0) = 0, V S(x) > 0, x �= 0. V S(x)
has continuous first derivatives in the bounded set Qm =
{x : V S(x) < m}, m < ∞. Let x0, x1 · · · be a scalar-
valued discrete parameter Markov process, where x0 is the
initial condition in Qm. If a non-negative, real, scalar function
k(xt) exists, such that the difference between V S(x) at time
t and the conditional mean E[V S(xt+1)|xt] at time t + 1 is
bounded as

E[V S(xt+1)|xt] − V S(xt) = −k(xt) ≤ 0 (22)

in Qm, then xt converges to

xt → Pm = Qm ∩ {x : k(x) = 0} (23)

with a probability no less than 1 − V S(x0)/m. V S(x) is
called a stochastic Lyapunov function.

B. Transition Control for Uniform Cellular Actuators with
Large N

Assume that N is large enough, and all the cellular
units are uniform in term s of displacenemt and transition
probability, i.e., pi = p̄, qi = q̄ and ηi = η̄ (i = 1, · · · , N).
The stable transition probabilities are given by [3]:

p̄(e) =
{

0 (e ≤ 0)
min(gpe/L, 1) (e > 0) (24)

q̄(e) =
{

min(−gqe/L, 1) (e < 0)
0 (e ≥ 0) (25)

where gp and gq are control gains. The closed loop stability
is guaranteed by 0 < gp, gq < 2.
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