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Abstract— This paper presents a control architecture for
artificial muscle materials such as shape memory alloys and
polymer actuators. The active material is broken up into many
small independent cells that can be regulated in a binary fashion
into ON and OFF states, so that the actuator displacement is
determined by the number of ON cells. In order to control
the number of cells that contract, a novel closed loop feedback
control method is employed. Each cell is given a small stochastic
finite state machine that governs its transition between ON and
OFF states. A central controller globally varies the probabilistic
rate with which all of the cells make state transitions. Using
this architecture, actuator displacement can be controlled in a
stable, robust fashion. Different feedback laws are compared
using the fixed policy value iteration algorithm to calculate
expected settling time in response to a step reference. A simple
law based on calculating expected future behavior is found to be
very close to the optimal law computed using the value iteration
algorithm. The performance of the control laws is verified on
a 50 cell shape memory alloy cellular actuator.

I. INTRODUCTION

This paper discusses a control system for artificial mus-

cles, materials which produce strain in response to a chem-

ical, electrical, or thermal stimulus. Artificial muscles are

of great interest to the robotics community because they

promise truly linear actuation at densities comparable to hu-

man muscle. This density is a key requirement for integrating

the large number of actuators necessary to perform high-DOF

tasks, such as the grasping motions of the human hand [1].

Already, shape memory alloy (SMA) actuators, conducting

polymer (CP) actuators, and electrostatically-stricted poly-

mer (ESSP) actuators have demonstrated material properties

that compare quite favorably with human muscle [2],[3].

Controllability is a major impediment to the adoption

of artificial muscle actuators. The strain-producing physical

processes in many artificial muscle materials often exhibit

difficult-to-control behaviors such as hysteresis and satura-

tion. Limits on strain are often imposed because of material

failure, such as over-oxidation in CP actuators or dielectric

breakdown in ESSP actuators. Because of this, it is often

difficult to use feedback control laws to control artificial

muscle materials. Several researchers have proposed an alter-

native control architecture for artificial muscles, inspired by

the structure of biological muscle[4],[5]. The active material

within the actuator is broken into many small cells connected

together in serial and parallel networks, like the fibers and
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Fig. 1. In a cellular actuator, the artificial muscle material is broken down
into many small cells, each with a simple local controller designed to hold
the material in a stable relaxed or contracted state. This paper describes
a method of activating cells in which the transitions between states occur
randomly, with probabilities pt and qt determined by a central controller.

motor units in biological muscles. Each cell can be in a

contracted, or ON, state or a relaxed, or OFF, state. The

summed displacement of all the cells determines the output

displacement of the actuator. This architecture decouples the

local, non-linear material behavior from the net displacement

and compliance produced by the actuator. The control prob-

lem remaining is to determine how to recruit the number of

cells needed to produce the desired output.

The authors have previously proposed that the recruitment

problem can be solved by embedding a small decision maker

within each cell that causes the cell to switch randomly

between ON and OFF states[6]. This stochastic system does

not require that the cells be indivdually addressed, or that

the individual cell states be known by a central controller.

Instead, the central controller measures the aggregate dis-

placement of the actuator and broadcasts commands to all

of the cells, governing the probability with which state

transitions are made. Because the actuator displacement is a

summation of each cell’s randomly determined displacement,

the central limit theorem guarantees that the variance of the

actuator response will quickly become small as the number

of cells becomes large, yielding an almost deterministic

response. Previously, a linear feedback law relating the

probability of recruitment to the actuator’s displacement error

has been shown to converge[7]. However, it is clear from

simulation and experiment that better performance can be

achieved through more thorough modeling of the actuator’s

stochastic behavior. This paper explores how the choice

of a control law impacts the performance of the actuator.

In Section II-A, the kinematics governing the motion of

the cellular actuator are derived, explaining how the state
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Fig. 2. The actuator is composed of many small cells arranged in a serial-
parallel configuration. Each cell is modeled as producing a displacement δ
and a compliance c.

of the actuator can be determined only by the number of

ON cells. A Markov model is then derived in Section II-

B that describes how cells are recruited to produce motion.

Section III then describes how an optimal control law can

be computed using the dynamic programming algorithm to

minimize the convergence time of the actuator to a step

reference input. The value iteration algorithm is also used

to evaluate the expected convergence time of the previous

linear law and a non-linear law closely approximating the

optimal control law. Finally, Section IV confirms the models

of Section III with data taken from a fifty cell SMA actuator.

II. THE CELLULAR ACTUATOR ARCHITECTURE

A. A kinematic description

The cellular actuator architecture is broken down in a

hierarchy of fibers and cells, shown in Fig. 2. Cells are iden-

tical, independently controlled active material units, similar

to individual motor units in skeletal muscle[8]. Each cell is

modeled as having a small rigid displacement δ in series with

a small compliance c. The values of δ and c vary with the

state of the cell,

δ =

{

0, state = OFF
η, state = ON

(1)

c =

{

coff , state = OFF
con, state = ON

(2)

These cells are connected together in series to form fibers,

as shown in Fig. 2, which are in turn connected in parallel

to form the whole actuator. The displacement of the actuator

can be predicted through the elastic averaging of each

cell’s displacement in this serial-parallel kinematic network.

We would like to show that the actuator displacement and

stiffness can be determined by a simple expression in terms

of the total number of ON cells Non, so that this can be used

as a state for a state-space model of the actuator. Because a

fiber is composed of many compliant cells in series, the net

displacement and compliance of each fiber is equal to the

Fig. 3. Each cell responds to the broadcast command, turning ON if it is
OFF with probability pt, and turning OFF if it is ON with probability qt.

sum of the individual cell displacements and compliances

within the chain. From (1) and (2), we can see that these in

turn reduce to linear functions of Non
j , the number of cells

within fiber j of the actuator:

δj =

Nj
∑

i=1

δi = ηNon
j + 0Noff

j = ηNon
j (3)

Cj =
∑Nj

i=1
ci = Non

j con + Noff
j coff

= Njc
off + Non

j (con − coff)
(4)

The parallel combination of fibers to produce the actu-

ator’s net output y is slightly problematic. If one fiber is

consistently shorter or longer than the others, the contribution

of each fiber may not be uniform. Also, the compliance of

each fiber can vary with the number of ON cells, so one fiber

could potentially be stiffer or more compliant than the others.

Fortunately, the state transitions of the cells are random and

independent, so there should be no bias in the number of

ON cells in each chain. Making these assumptions, y can be

approximated as the average displacement of each fiber. For

M fibers in parallel,

y ≈ ηNon/M + FdC (5)

Fd is a disturbance force, and C is the net compliance of

the actuator, which is assumed to be the average compliance

of one chain divided by M,

C ≈
[

(N/m)coff + (Non/M)(con − coff )
]

/M (6)

Equations (5) and (6) provide a good steady-state ap-

proximation for the behavior of the cellular actuator. If the

transient response time of the active material is short relative

to the time scale of motion, the number of cells ON at

time t, Non
t , will uniquely determine the displacement of

the actuator.

B. A Markov model of cell recruitment

In order to predict the time evolution of the cellular

actuator, some model for predicting the future state Non
t+τ

from the present state Non
t must be found. Because of

the stochastic nature of the recruitment process, the joint

probabilities of each cell responding to a broadcast command

can be used to derive a Markov model for Non
t+τ conditioned
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on the globally broadcast transition probabilities pt and

qt. This Markov model can then be used to analyze and

synthesize closed-loop feedback control laws for the actuator.

The ON or OFF state of each cell is dermined by a small

finite state machine within each cell. A state transition graph

for the state machine is depicted in Fig. 3. At regular time

intervals of τ seconds, each cell makes a random decision

to transition from OFF to ON with probability pt, and from

ON to OFF with probability qt. The values of pt and qt

are determined by a broadcast command from the central

controller, and are in general mutually exclusive, so that

either pt or qt is always zero. Such a random decision

maker could be implemented in many ways. For example, the

cell could contain an analog noise source and a comparator

that triggers a transition with a small fixed probability p0.

The broadcast command could then be a train of pulses,

calculated so that the number of pulses broadcast determines

the net probability of transition.

The total number of cells responding to a broadcast

command can be thought of as the sum of each decision

made by the individual cells, represented as a binary random

variable with a probability distribution given by pt and qt.

Because the cells all share the same probability distribution,

the summed number of cells turning on or off will be

binomially distributed. Figure 4 shows the shape of the

probability distribution, which for large values of N will

approach a normal distribution. A broadcast command with

probability (pt, 0) will cause between 0 and N − Non
t cells

to turn ON with the binomial distribution

P (Non
t+τ = Non

t +x) =

(

N
N − Non

t

)

px
t (1−pt)

N−Non
t −x.

(7)

Similarly, the probability of x cells turning off given Non
t

and a command (0, qt) is given by the distribution over the

number of cells currently ON,

P (Non
t+τ = Non

t − x) =

(

N
Non

t

)

qx
t (1 − qt)

Non
t −x. (8)

These distribtions, (7) and (8), constitute a Markov model

for the state evolution of the actuator because they depend

only on the current state Non
t and the current broadcast

command (pt, qt).

III. CHOOSING A CONTROL LAW

A full state feedback controller for the cellular actuator

takes the form shown in Fig. 5. Given a reference signal

yref and measurements of the current displacement yt and

disturbance force Fd, the controller estimates the number of

ON cells using (5) and (6),

N̂on
t = (ytM − FdNcoff)/(η + con − coff ) (9)

An estimate for the desired number of ON cells Nref can

be similarly calculated,

Fig. 4. The aggregate behavior of many cells responding to a broadcast
command can be described by a binomial probability distribution. Here a 50
cell actuator is shown, with 15 cells currently on and a broadcast command
pt = 0.6, qt = 0.

Fig. 5. Closed loop control of the cellular actuator is achieved using a state

observer which estimates N̂on
t , the number of cells currently contracted,

based on measurements of actuator displacement yt and disturbance force
Fd. Using this estimate and the reference position yref , the controller
determines the correct transition probabilities pt and qt to broadcast to
the cells. The local controllers then respond stochastically to the broadcast
signal.

Nref = (yrefM − FdNcoff)/(η + con − coff ) (10)

A broadcast command is then calculated using a control

law and sent to the local controllers on the cells. Previously,

control laws for this artificial muscle architecture were

derived using a stochastic Lyapunov function approach [7].

A linear law was chosen of the following form:

Non
t < Nref : pt = (Nref − Nt)/N, qt = 0

Non
t > Nref : pt = 0, qt = (Non

t − Nref )/N
(11)

However, convergence in the sense of Lyapunov yields no

information about how well the control system can track a

reference input. Furthermore, it seems unlikely that this lin-

ear law is optimal in any sense. In order to get a quantitiative

measure of actuator performance, the dynamic programming

framework can be used to pose this control problem as

an optimal control problem, where the cost function to be

minimized is the response time of the actuator to a step

reference. For some background on dynamic programming,

chapter 7 of Bertsekas’ book on dynamic programming may

be useful, covering infinite horizon dynamic programming

problems [9].
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A. Computing an optimal control law using dynamic pro-

gramming

The expected time Tc which the actuator takes to converge

to a reference Nref from an initial state Non
0 can be

expressed as an infinite series of local time costs g(Non
t ),

Tc(N
on
0 ) = E{

∞
∑

n=1

g(Non
nτ )|Non

0 }, (12)

where g is equal to the discrete time interval length τ if

Nref has not yet been reached, and zero if Nref has been

reached,

g(Non
t ) =

{

0 , Non
t = Nref

τ, Non
t 6= Nref

(13)

Bellman’s equation can be used to write (12) recursively,

Tc(N
on
t ) = g(Non

t ) + E{Tc(N
on
t+τ )|Non

t , pt, qt} (14)

The control law used to compute pt and qt is assumed to be

a function of Non
t . This recursive expression for convergence

time is convenient because the expected future cost Tc(N
on
t+τ )

can be written as a summation over all possible states using

the discrete probability distribution predicted by the Markov

model from (7) and (8),

Tc(N
on
t ) = g(Non

t ) +

N
∑

k=1

Tc(Nk)P (Nk|N
on
t , pt, qt) (15)

For any convergent control law, (15) can be used to

compute the expected convergence time by making an ini-

tial guess of Tc(N
on), and then repeatedly calculating the

convergence time using the previous iteration’s guess of

Tc(N
on). This technique is called the fixed policy value

iteration algorithm. The minimum time to converge T ∗

c (x0)
can then be computed by computing the convergence time

using iteration, but while minimizing (15) at every iteration,

Tc(N
on
t ) = g(Non

t ) + min
pt,qt

N
∑

k=1

Tc(Nk)P (Nk|N
on
t , pt, qt)

(16)

B. Value iteration results

The value iteration algorithm was computed for a 50 cell

actuator, and used to calculate both the convergence time of

the linear control law from (11) and the optimal control law.

A plot of the expected convergence time to Nref = 36 for 50

cells is shown in Fig. 6. As expected, the optimal control law

outperforms the original linear law significantly, particularly

when the initial number of ON cells is near the middle of

the actuator’s working range.

Fig. 6. The expected time as a function of the initial number of recruited
cells is shown for several control laws, for a reference Nref = 36 cells.

Fig. 7. The law setting the expected value of Non
t equal to Nref has

an expected convergence time that lies within less than one percent of the
optimal control law for all initial values of Non.

C. An almost-optimal control law

While calculating the optimal control law, it was observed

that the values of pt and qt produced by the value iteration

algorithm were almost exactly equal to the values satisfying

the expression

E{Non
t+τ |N

on
t , pt, qt} = (1 − pt − qt)N

on
t + ptN = Nref

(17)

In other words, the control law setting the expected value

of Non
t+τ equal to Nref is almost optimal. This is not a

surprise. The central limit theorem predicts that the state

transition probability distribution should converge to a nor-

mal distribution, whose maximally likely value is equal to the

expected value. One could think of this law as approximately

maximizing the one-step-ahead probability of reaching Nref .

To verify the similarity between these two laws, the fixed

policy value iteration algorithm was used to compute the

expected convergence time of the expectation-based control

law:
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Fig. 8. The expected time as a function of the initial number of recruited
cells is shown for several control laws, for a reference Nref = 36 cells.
The “stepping” behavior of the actuator, especially visible at the top left,
denotes the points at which commands are broadcast.

Non
t < Nref : pt = (Nref − Nt)/(N − Non

t ), qt = 0
Non

t > Nref : pt = 0, qt = (Non
t − Nref)/Non

t

(18)

The results, shown in Fig. 7, show that the expected

convergence time of (18) calculated using value iteration lies

within less than a percent of the optimal result.

IV. EXPERIMENTAL VALIDATION

A 50 cell prototype stochastic cellular actuator has been

built to evaluate the performance of feedback control laws

in the presence of real-world factors such as active material

response and sensor noise. The actuator consists of 2 fibers

each having 25 cells in series. Helically wound SMA wires

(Toki BioMetal, 0.1 mm diameter) 40 mm long are looped

eight times through a small piece of perforated circuit board,

as shown in the magnified inset of Fig. 9. When turned

on, each cell produces roughly 6 mm of displacement at

a load of 3.4 N. The actuator is capable of producing a net

displacement of 160 mm.

To provide position feedback, the actuator is connected

to a tendon that wraps around a capstan connected to a

potentiometer. The other end of the tendon is connected to

a weight providing a known, adjustable disturbance force.

The local control of each cell is accomplished using a

current buffer controlled by a computer through a National

Instruments I/O card. The local stochastic decision making

process and the central controller are implemented in C,

using a pseudo-random number generator as a noise source.

To verify that the value iteration calculations shown in

Figures 6 and 7 accurately predict the performance of the

real actuator, the protype was made to track a square wave

having an amplitude equal to a third of the actuator’s total

range and a period equal to 14 times the sampling interval

Fig. 9. A prototype actuator having 2 fibers of 25 cells. Two cells are
shown in detail at the lower left, made up of helically wound SMA wire. A
potentiometer, at the bottom, is used to measure the actuator displacement.
Below the potentiometer, a weight is used to provide a known disturbance
force to the actuator.

τ , which was set to 8 seconds. The sampling interval was

large in part because the size of the actuator necessitated a

very large current source, and the limited amount of current

available placed a power constraint on the rate at which the

SMA was heated. A smaller, more compact actuator could

be made to respond much faster.

The tracking performance of the two control laws is shown

in Fig. 8. As predicted, the linear control law converged to

each step change in the reference in 6 or 7 time intervals on

average, compared to the 3 or so observed in the expectation

control law. A small amount of steady state error was

observed in both actuators, but this was presumably caused

by limited actuator resolution rather than the control laws.

The slower response of the linear control law may be use-

ful in some circumstances. The expectation control law also

exhibited more overshoot than the linear control law, which

may be undesirable in some applications. The performance

of the expectation control law also degraded more quickly

as the sampling interval was shortened, which is probably a
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symptom of its tendency to overshoot.

V. CONCLUSIONS AND FUTURE WORK

Cellular control architectures are a promising method

for controlling artificial muscle materials that are otherwise

difficult to control by conventional means. This control

technique, based on using local stochastic decision makers

within each cell, is a powerful, scalable way to control

cellular actuators, because it is based on simple laws of

probability whose random uncertainty decreases as more

cells are added. This same stochastic nature also makes this

control architecture amenable to analysis and optimization

using well-established stochastic optimal control techniques

such as dynamic programming.

The authors are currently developing a compact cellular

actuator designed for robotic applications, having more cells

designed for faster response. Various designs for simple,

robust local stochastic decision making units are under

development, which will enable a departure from the current

computer-based testbed. Further work toward better control

laws is also progressing. The state estimator presented in

this paper makes steady-state assumptions that limit the

control system performance when the sampling interval τ
is decreased. An estimator relying on a brief time history

of the actuator’s position and commands could dramatically

improve the accuracy of state estimation, even in the presence

of significant transient behavior in the active material.
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