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Abstract— This paper presents an algorithm which can ef-
fectively constrain inertial navigation drift using monocular
camera data. It is capable of operating in unknown and large
scale environments and assumes no prior knowledge of the size,
appearance or location of potential environmental features. Low
cost inertial navigation units are found on most autonomous
vehicles and a large number of smaller robots. Depending on the
grade of the sensor, when used alone, inertial data for control
and navigation will only be reliable for a matter of seconds
or minutes. An algorithm is presented that simultaneously
estimates relative feature location in sensor space and inertial
position, velocity and attitude in world coordinates. Feature
locations are maintained in sensor space to ensure measurement
linearity. Image depth is represented by an inverse function
which permits un-delayed feature initialization and improves
linearity and convergence. It is shown that the resulting
navigation solution is able to be constrained, providing results
comparable to inertial-GPS systems. Results are presented for
an autonomous aircraft operating in a large semi-structured
environment.

I. INTRODUCTION

The problem of aiding inertial navigation sensors has
received a substantial amount of attention, particularly in the
aerospace literature where inertial sensors found their first
application. In the most common scenario, inertial sensors
are integrated with GPS measurements providing a solution
that exploits the complementarity in these two sensors. In
the robotics community efforts have focused on vehicle
model and camera aiding, due in part to a requirement
for operation without GPS sensors. However, there are no
published methods of camera aided inertial navigation in the
most general sense. By this we mean suitable for autonomous
vehicles with purely monocular data, providing a constraint
on position, velocity and orientation in three dimensions,
requiring no separate depth sensors and making no prior
assumptions about environmental landmarks or conditions.
This paper presents such a formulation. It is demonstrated
using autonomous aircraft data but is well suited to many
other applications including urban, underwater, indoor and
interplanetary environments.
Inertial navigation sensors provide a number of desirable
attributes to autonomous vehicles. They provide six-degree-
of-freedom data at high frequency for vehicle control, they
are self-contained and modern electro-mechanical varieties
are small, light weight and rugged. The principal drawback
of such sensors is their dead-reckoning nature and the fact
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that navigation variables are time integrals of their measure-
ments. This leads to unconstrained drift in position, velocity
and attitude if some secondary sensor is not employed to
periodically calibrate or constrain the inertial sensors.
Similarly, monocular vision is a particularly favored solution
to the perception problem in the robotics community, owing
to its availability, cost, and in the visual spectrum, its
human friendly format. The two sensors therefore, are natural
candidates for the approach presented here.
This paper is organized as follows. Section II presents a
review of relevant literature and defines this papers contri-
bution, section III sets out the mathematical formulation of
the problem including the estimation structure, section IV
presents results from a test implementation on autonomous
aircraft data and section V concludes with future directions.

II. PREVIOUS WORK

There are a number of fields where relevant work is
being carried out with cross fertilization starting to occur
more often. The computer vision and robotics literature both
contain examples of camera aided inertial sensing systems
and we also take inspiration from a number of developments
in the SLAM literature. The sub-headings we use below
reflect content as we judge it and not necessarily publication
type or author affiliation.

A. Computer Vision

In [1], a stereo vision technique with inertial sensors
and a known target is presented. The stereo vision sensors
eliminate the image depth ambiguity for their application
in small indoor scenes. Camera translations, on the order of
centimeters and larger rotations are compensated with inertial
measurements. In [2] image contours are tracked relative to
an initial template with camera motion estimates compen-
sated by inertial sensors. The template depth is manually
entered and a scheme for automatic calculation is deferred
to future work. In [3] inertial sensors are used as a vertical
reference for a stereo vision system. The gravity vector de-
fines the reference from which images can be segmented and
focal length calibrated. In [4] and [5], an epipolar constraint
filter is presented, which adds a constraint to the possible
camera motion based on consecutive epipolar segments. The
author’s state that a deliberate bias is introduced for each
feature used to constrain the inertial drift. This is done as
a trade off for computational efficiency but is justified by
their statement that a large number of well spaced features
will mitigate the total effect of these combined biases. In
addition, the technique does not constrain vehicle attitude.
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B. Robotics and Autonomous Vehicles

We focus particularly here on outdoor applications as
the robotics literature dealing with indoor applications is
substantially consistent with the computer vision literature.
The first application of camera aided inertial navigation was
developed for the aiding of strategic missiles in their boost
phase [6]. The inertial systems in use here were highly
specialized and this technique required a single sighting of
a known star to correct for initial alignment errors. It is of
historical interest but provides no direct technical insight into
our work. In [7] a low flying unmanned helicopter integrates
motion estimates derived from stereo vision optical flow
and inertial sensors. In [8] and [9] a NASA application is
presented where the horizontal components of interplanetary
lander descent velocity are deduced from inertial sensors and
vision. This method relies on laser altimetry to estimate the
depth in the image. Applications in environments containing
landmarks with known size and location have been reported
in [10] and [11]. These scenarios require the vehicle to
observe and associate features that it has complete prior
knowledge of, which severely limits this technique’s applica-
bility in new or unstructured environments. In [12] and [13]
a scheme is presented for using bearing only observations
of unknown landmarks to aid inertial sensors. The scheme,
however relies of sophisticated stadiametric optics mounted
on gimbals and requires a constant vehicle velocity vector
for up to a minute at a time, restricting it to specific military
applications in manned vehicles. No results are presented and
the formulation is left as a mathematical concept.

C. Other Aided INS Approaches

It is worth briefly mentioning the other non-GPS inertial
aiding approaches in the literature. In [14] an aircraft
vehicle model is used to aid inertial sensors. Conceptually
this approach bounds the allowable inertial dynamics
to the vehicle flight envelope and in this way is able
to constrain inertial drift. A similar scheme for ground
vehicle applications was demonstrated in [15]. A ground
vehicle model aided INS for periods of interrupted GPS
was reported to be an important component of the recent
DARPA Grand Challenge winner [16].

D. SLAM

Two additional publications that have influenced the cur-
rent work are [17] and [18]. The first presents a SLAM
formulation with an inverse depth parametrization for relative
feature location. This formulation of the SLAM problem
gives improved linearization characteristics and allows un-
delayed feature initialization in a bearings only setting.
In [18] a methodology for relative position sensing using
inertial and monocular camera data in grasping applications
is developed. The authors present an argument, which we
adopt, for sensor centric feature representation that places
all non-linearities in the prediction model and subsequent
unscented filtering. The inverse depth characterization is also
presented here but without elaboration. The work in [19]

Fig. 1. Problem Geometry and Reference Frame Definitions

presents two approaches, with different feature parameteri-
zations but otherwise similar in state structure to [18]. The
first uses a Levenberg-Marquardt batch optimization and the
second an IEKF recursive formulation. In the recursive case,
scene features are added to the state in a delayed fashion and
are parameterized directly in cartesian coordinates by using
the batch optimization over the set of stored measurements.

E. Contribution

We aim for a technique that allows aiding of an inertial
navigation system (INS) especially during periods when
GPS is unavailable. In our application, a UAV conducting
a tracking mission, this occurs when the aircraft is banking
and turning steeply and the GPS antennae are shaded by
the fuselage. The technique should take advantage of well
established real-time estimation techniques. In practice, this
means a solution that is suited to some variation of the
Kalman Filter. In this work we use the Unscented Filter [20].
We take a feature based approach to the vision processing
and store feature information in our estimated state. Feature
numbers can be scaled on-line to suit processing ability.
Future work will look at the observability of vehicle dy-
namics given the number of features available. In generating
the theory, we make no assumption about what types of
features are used or what environmental conditions the
vehicle encounters. In practice we use a template matching
feature extraction technique but this is generalizable to any
method that returns feature centroids in the image. We take
advantage of the inverse depth method from [17] and we
extend the work in [18] to incorporate a globally referenced
position and multiple features. Unlike [18] and [19] we take
the approach of previous inertial-GPS systems and use the
inertial measurement for prediction rather than update in the
estimation.

III. MATHEMATICAL FORMULATION

A. Problem Geometry

We take as our starting point a locally level frame with
axes triplet corresponding to north, east and down directions
relative to the local surface. This frame is referred to as the
mechanization frame and denoted with superscript ‘m’. We
approximate an inertial frame with this mechanization frame.
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This approximation is appropriate to local movement on the
order of kilometers [21]. We define a vehicle body frame
centered at the inertial sensor cluster within the vehicle,
denoted by superscript ‘b’. A sensor (camera) frame, denoted
by superscript ‘c’, is defined at the camera focal point offset
from the vehicle body frame by a constant lever arm, l. These
three frames are depicted in Fig. 1. A direction cosine matrix
(DCM) may be defined to transform vector components in
one frame into any other frame. Such a construct is denoted
Cj

i if transforming components from frame ‘i’ into frame
‘j’. Free vectors are denoted without superscripts but where
appropriate for concrete realization, a superscript will be
added to define which frame the vector is decomposed in.

B. Filter Structure

The simplest mechanization frame for inertial navigation
is the local level frame discussed above but it is expected that
the resulting formulations could be extended to other inertial
mechanizations. The equations of navigation (See [21] for a
derivation) for this frame are

r =
∫∫

v̇ + r0 (1)

v̇ = Cm
b (f b − ∆f b) − (2Ωie) × v + gl (2)

gl = gm − Ωie × (Ωie × r) (3)

Ψ =


 φ
θ
ψ


 (4)

Ψ̇ = E(Ψ)(ωb − ∆ωb) (5)

E(Ψ) =


 1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ


 (6)

∆̇f b = 0 (7)

˙∆ωb = 0 (8)

Where v is the time derivative of position, Ωie is the constant
Earth rotation rate vector, gm is the mass gravitation vector,
gl is a ‘local’ gravitation vector incorporating centripetal
acceleration effects from the Earth’s rotation, Ψ is an array of
angles representing vehicle roll, pitch and yaw respectively
(collectively termed Euler angles), Cm

b is a function of Ψ,
f b and ωb are the inertial sensor measurements of specific
force and angular velocity, respectively, both made in the
vehicle body frame and ∆f b, ∆ωb are the inertial sensor
measurement biases which much be estimated online for
fast drifting sensors or operations over long periods of time.
These represent the traditional non-linear continuous time
processes of inertial navigation. We will alter them in a
limited fashion to give an intuitive understanding of the
approach this work implements.

First we assume a stationary landmark and ignore aerody-
namic flexibility to write a relative velocity equation between
the vehicle and any features it may be observing

δv =
d

dt
δr (9)

=
d

dt
(rl − r − Cm

b lb) (10)

= −v − Cm
b [ωb×]lb (11)

The notation, [n×] represents the skew-symmetric cross
product matrix of vector n. Taking the next derivative

˙δv = −v̇ − Cm
b [ω̇b×]lb − Cm

b [ωb×]2lb (12)

= −Cm
b (f b − ∆f b) + (2Ωie) × ṙ − gl (13)

−Cm
b [ω̇b×]lb − Cm

b [ωb×]2lb (14)

Rearranging (11) also gives

ṙ = −δv − Cm
b [ωb×]lb (15)

We define an estimation problem with state and initial
covariance

x =




r
δv
Ψ

∆f b

∆ωb


 P =



σ2
r 0 0 0 0
0 σ2

δv 0 0 0
0 0 σ2

Ψ 0 0
0 0 0 σ2

∆fb 0
0 0 0 0 σ2

∆ωb




(16)

The state derivatives are defined by equations (15), (14),
(5), (7) and (8) which are discretized using a first order
model at 400 Hz (the inertial sensor frequency) and estimated
using the unscented filter [20] driven by white noise on the
measurements f b and ωb as defined by

Q =
[
σ2
fb 0
0 σ2

ωb

]
(17)

Initial covariances are determined from calibration sensitivi-
ties for velocity, attitude and sensor biases and a GPS fix on
runway location for the position.

C. Camera Model

Let δrc be the realization of vector δr in the camera
reference frame resulting from a transformation from the
mechanized frame according to Cc

m. That is

δrc = Cc
mδr

m (18)

= Cc
bC

b
mδr

m (19)

= Cc
bC

mT
b δrm (20)

where Cc
b is a fixed calibrated transformation. The projection

of this vector onto the image plane results in the camera
measurement. We use a modified pinhole model which
defines pixel coordinates by

u = fu
δrc

y

δrc
x

(21)

v = fv
δrc

z√
(δrc

x)2 + (δrc
y)2

·
√

1 +
(δrc

y)2

(δrc
x)2

(22)
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where fu and fv are the camera focal lengths and the sub-
script denotes the respective component of the vector. In [17]
and [18] an inverse depth formulation of the bearings only
SLAM problem is presented wherein linearity and improved
estimation properties result. Following those publications we
define

ρ =
1
δrc

x

(23)

and rewrite (21) and (22) as

u = fuρδrc
y (24)

v = fv
δrc

z√
1
ρ2 + (δrc

y)2
·
√

1 + ρ2(δrc
y)2 (25)

D. Feature Initialization

The methods presented are applicable to any feature
extraction technique that returns the centroid of a feature
in image coordinates. In our implementation we have used
a template matching technique that extracts small plastic
targets, cars and buildings in the environment (Fig. 2).
Given a set of p features from an image processing algorithm
we augment the unscented filter process with pixel coordi-
nates u, v and initial inverse depth ρ such that

xaug =




x
u1

v1
ρ1

...
ui

vi

ρi




Paug =




P 0 0
0 P1 0

. . .
0 0 Pi


 i ∈ 1 : p

(26)

Pi =


 σ2

ui
0 0

0 σ2
vi

0
0 0 σ2

ρi


 (27)

The image covariances σui
and σvi

are expressed in pixels
as defined by camera resolution and chosen feature extrac-
tion technique and σρ is chosen according to the heuristic
algorithm presented in [17]. The initial inverse depth ρ is a
somewhat arbitrary selection and we make the choice on
very approximate prior knowledge of the environment. It
will be shown later however that the estimation scheme is
robust to enormous variations in this initial condition (order
of meters to kilometers), making the algorithm capable of
operating in environments with very large and very small
scales simultaneously. The number of augmented features,
p, is scalable and in the results here was set to a maximum
of six. Features are deleted when they are predicted to be
outside the scene and new ones, if available, are added. In
this way, computational burden can be controlled.

Fig. 2. Example vision frame. Small, plastic targets are placed in
the environment and along with cars and buildings are extracted using
a template matching algorithm. Blue circles represent feature extraction
coordinates (measurements), red circles represent feature coordinates from
the localization filter (predictions).

E. Measurement Equation

Given a set of q initialized and associated features the
measurement equation is the linear mapping

z =




u1

v1
...
ui

vi


 i ∈ 1 : q (28)

This formulation eliminates linearization about uncertain
range estimates which adds significant robustness over other
approaches to bearing only estimation. Features are asso-
ciated with their predictions using the joint compatibility
test described in [22]. This provides a robust means of
eliminating spurious matches and minimizes any ‘flickering’
in the associations of closely spaced features which are
unreliably extracted.

F. Augmented State Prediction

Given the augmented states described above, which are
kept in sensor centric coordinates it is necessary to derive a
prediction equation. This process will describe the constraint
applied to the inertial drift by the camera measurements. As
a reference we firstly calculate

d

dt
δrc = Ċc

bC
mT
b δr + Cc

bĊ
mT
b δr + Cc

mδṙ (29)

= Cc
b(C

m
b [ωb×])T δr + Cc

mδṙ (30)

= −Cc
b[ω

b×]CmT
b δr + Cc

mδṙ (31)

Now from (23) and (24) we have

ρ̇ = −ρ2 ˙δrc
x (32)

u̇ = fuρ̇δrc
y + fuρ ˙δrc

y (33)
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Fig. 3. Vehicle close up. An large infra-red camera (not used in this work)
is visible on the left hand side. The smaller camera on the right is the visual
spectrum camera used in this work. A processing stack is visible on the far
right and a hard drive for logging is visible on the far left.

and from (25) we have

v̇ = fv ·
ρ3

√
1
ρ2 + (δrc

y)2( δ̇r
c
z

ρ − δrc
z

˙δrc
x)√

ρ2(δrc
y)2 + 1

(34)

where the component rates of δrc are taken row-wise from
(31). The prediction of (23), (24) and (25) in the unscented
filter is accomplished with discretized versions of (32)
through (34).

IV. RESULTS

Inertial and image data sets are gathered aboard a UAV
operating over a rural environment. Images are collected at
20 fps and are synchronized to inertial measurements with
GPS time. A view of the sensors we used is found in Fig.
3. The results presented here are post processed from data
logged during flight. For comparison we use an INS-DGPS
baseline with standard deviation on the order of 2 meters in
position, 0.2 meters/second in velocity and 0.5 degrees in
attitude [23].
The data is generated from a tracking mission where the
aircraft observes small plastic targets, which are used only
to simplify the vision processing, cars and buildings. The
aircraft flies a low altitude (approximately 125 meters above
ground level) trajectory orbiting pre-programmed ground
coordinates in a tracking mission. We switch off the GPS
updates and observe the performance of the camera aided
approach we have presented next to an inertial only solution
in the same situation.

A. Feature Initialization and Filter Convergence

Figure 4 demonstrates the convergence of the depth es-
timate for a newly initialized feature. In this example the
true feature location is at approximately 200 meters depth in
the image. Initial depths from 20 meters to 10 kilometers are
shown to converge. Convergence, even in the worst case sce-
nario occurs within 65 filter updates, which is equivalent to
approximately 3.25 seconds of flight. The number of required
filter updates, or equivalently, time to depth convergence is
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Fig. 4. Initial depth convergence properties. True feature depth is at 200
meters. This log plot shows convergence properties are approximately linear
in initial depth error. Future work will investigate the convergence of far
features from underestimated initial depths.

approximately linear in the initial depth error. By selecting
the initial depth estimate with reasonable prior environmental
knowledge, in our case a known maximum altitude and a
tracking mission, convergence occurs within 10 filter updates
or 0.5 seconds for all encountered features.

B. Ground Observation Trajectory

Here we present a segment of trajectory with the camera
aided INS in operation for approximately four minutes.
Reliable operation over this time frame without absolute
positioning would be a substantial improvement over current
INS-GPS navigation when the GPS is unreliable. We com-
monly find when the aircraft is banking sharply and orbiting
features that the GPS antennae are shaded by the fuselage
and/or unable to maintain signal tracking given the dynamics.
Figure 5 demonstrates velocity and attitude results from the
trajectory segment. Velocity and attitude estimates are crucial
for vehicle stabilization and control and it is typical to feed
the control system high frequency estimates from the inertial
sensors. In this application we supply inertial data to the
control system at 50 Hz.
Velocity estimates from the inertial system alone display
linear drift in time while velocity estimates are constrained
around zero using the camera aided technique we have
presented. At some points the east velocity results display a
correlation between the INS only and camera aided methods.
This occurs during periods when image features are lacking.
Attitude estimate errors are less pronounced than velocity
errors as they are described by random walk from integrated
sensor noise. Velocity and position errors, in contrast are in-
duced by sensor noise and compounded by incorrect gravity
compensation and specific force resolution.
A two dimensional view of the trajectory is given in Fig.
6 and the corresponding altitude is depicted in Fig. 7.
Horizontal positional control of the UAV is important in
a mission specific context but is less important for vehicle
safety than accurate altitude, velocity and attitude estimates.
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Fig. 5. Deviation of aircraft velocity and attitude parameters from INS-DGPS baseline. Solid lines indicate the camera aided INS algorithm described,
dotted lines indicate INS only operation. Velocity components are presented in the top row, attitude components in the bottom row. The data is taken from
a segment of the flight path orbiting a number of ground features for approximately four minutes. INS only operation shows substantial drift and becomes
unusable early in the segment, in contrast to the proposed camera aided algorithm which is able to successfully constrain velocity and attitude errors during
the segment. Accurate estimation of these parameters is essential for vehicle stabilization and control. On this time scale INS only attitude drift is not
pronounced. Yaw error is defined in the traditional sense, clockwise from North, the vertical jumps indicate switching signs in the yaw angle deviation.
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Fig. 6. 2D trajectory. The solid line indicates the camera aided INS
algorithm, the dotted line is INS only and the dashed line is the INS-DGPS
baseline. The INS only solution continues to drift off the scale while camera
aided INS successfully constrains the trajectory. Table I defines the RMS
error in position. Altitude is displayed in Fig. 7.

Root mean square errors over the trajectory segment are
summarized in Table I. The position and velocity errors
are an order of magnitude above typical GPS performance
specifications but are still significantly improved compared
to the unbounded divergence of inertial only operation.

V. CONCLUSION AND FUTURE WORK

A new method of aiding inertial navigation sensors with
monocular camera data was presented. The typical rapid drift
in inertial navigation estimates is effectively constrained,
adding robustness to periods of operation without other aid-
ing sensors. The method borrows from recent advances in the
SLAM literature to allow un-delayed initialization of features
in a 3D world with significant scale variations. The algo-
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Fig. 7. Vehicle altitude. The solid line indicates the camera aided INS
algorithm, the dotted line is INS only and the dashed line is the INS-DGPS
baseline. The INS only solution is in error more than 100 meters after just
50 seconds of operation. RMS altitude error is displayed in Table I. The
altitude scale is referenced to sea level, ground level is approximately 650
meters.

TABLE I

CAMERA AIDED RMS ERRORS DURING TEST FLIGHT SEGMENT

RMS Error
Position North 37.6 m

East 36.1 m
Altitude 14.8 m

Velocity North 2.4 ms−1

East 2.2 ms−1

Up 1.1 ms−1

Attitude Roll 0.86 deg
Pitch 0.87 deg
Yaw 0.78 deg

rithm is scalable to computational availability and exhibits
naturally efficient data association properties. It is the first
demonstration of camera aided inertial navigation capable of
handling arbitrary environments with purely bearings only
measurements. Future work will focus on extending the time-
frame that this method is capable of operating for which at
present is largely limited by the practical considerations of
sensor placement, feature type and filter tuning. A system
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analysis, including observability of bias drift and quantitative
filter performance will also be looked at. In addition, the
performance during trajectories with substantially steady
level flight will be explored by extracting and tracking image
features close to the horizon. The detection of moving targets
which will corrupt the state estimates as they are currently
formulated will also be necessary for operation in more fluid
environments. A real time implementation will be considered
for ground and air vehicles.
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