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Abstract—We have proposed self-organizing network ele-
ments (SONE) as a learning method for robots to meet the
requirements of autonomous exploration of effective output,
simple external parameters, and low calculation costs. SONE
can be used as an algorithm for obtaining network topology by
propagating reinforcement signals between the elements of a
network. Traditionally, the analysis of fundamental features in
SONE and their application to supervised learning tasks were
difficult because the learning method of SONE was limited to
reinforcement learning. Here the abilities of generalization,
incremental learning, and temporal sequence learning were
evaluated using a supervised learning method with SONE.
Moreover, the proposed method enabled our SONE to be
applied to a greater variety of tasks.

I. Introduction

The use of autonomous robots is expected to have
application to the exploration of space and the deep sea.
However, a robot’s creator cannot determine in advance
all appropriate behaviors, since the robot will encounter
unknown situations. One solution to this problem would
be the use of learning methods in robots.

The required conditions for such a learning system are
very strict. First, the learning system requires robustness
and autonomy to cope with various environments and
tasks. To achieve this condition, the external parameters
of the learning system must be simple in order to avoid
hard tuning. Moreover, the calculation cost must be low
enough that appropriate behaviors can be learnt within a
time span suitable for the changing situation. Thus, the
robot requires a learning system that meets the following
three criteria:

1) Autonomous exploration of effective outputs
2) Simple external parameters
3) Low calculation costs
To meet the first condition of autonomous exploration

of the effective outputs, traditionally many learning
systems have been proposed based on Reinforcement
Learning (RL) or Genetic Algorithms (GA). Several
methods have also been proposed to meet the second
condition, simple external parameters.

Approaches based on RL include Multi-Layered Rein-
forcement Learning (MLRL)[8] and Direct-Vision-Based
Reinforcement Learning (DVB-RL)[9]. In the field of RL,
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the learning system requires the division of the state
space for each task and environment. So, there is an
external parameter used to choose a dividing method.
MLRL is able to divide the state space automatically
by the use of a network based on Q-learning modules.
However, MLRL requires the choice of a transaction
of the inputs for each task and environment. On the
other hand, DVB-RL introduces a neural network as a
reinforcement learning system, and it realizes a direct
connection between the network and sensor-motor I/O.
Thus, DVB-RL does not require the division of the state
space or transaction of the inputs. However, the topology
of the neural network in DVB-RL must be tuned for each
task and environment. Therefore, the second condition is
not met by these learning methods.

NeuroEvolution of Augmenting Topology (NEAT)[10]
has been proposed as a learning method based on GA.
NEAT does not require division of the state space,
transaction of the inputs, or determination of the network
topology, because the parameters in the neural network
are determined evolutionarily using GA. However, the
methods based on GA require a time span in which to
evaluate phenotypes. When a long span is introduced
into the system, the determination of the learning span
for each task and environment is not required. However,
learning costs a lot of time. On the other hand, when
a short span is introduced, the learning span must be
tuned according to the task and environment. Therefore,
either the second or the third condition (parameter or
time cost) is not met.

Real-time NEAT (rtNEAT) [11] and NEAT+Q[12]
have been proposed as real-time or online learning
methods based on NEAT, but their application to an
autonomous robot is difficult. While rtNEAT realizes the
online evolution of a group of agents in a video game,
this method is useful only for groups, and its application
to a single robot is difficult. NEAT+Q has also been
proposed as a method for real-time learning by NEAT,
but it requires a division of the state space for combining
NEAT and Q-learning.

We have previously proposed Self-Organizing Network
Elements (SONE) to overcome these problems. In an
experiment with a simulated robot, the effectiveness of
the method has been confirmed [19], [20]. The network
is obtained by RL with SONE and it works effectively
in a simple robot. However, when using SONE in a more
complicated robot, it is preferable to prepare the network
before the activation of the robot, so as to provide some

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA3.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 92



basic control rules before RL. As a method of obtaining
such a network, we propose an enhancement of SONE to
provide supervised learning.

The ability for generalization, incremental learning and
temporal sequence learning were evaluated using the
method proposed in this paper. The obtained results
suggest that SONE can be used for various supervised
learning tasks. In section two, we describe SONE. In
section three, we describe the proposed implementation
of supervised learning. In section four, we outline the
experiments carried out in this research. In section five,
we present our discussion, and finally in section six, we
present our conclusions and outline our future work.

II. Self-Organizing Network Elements

In traditional RL methods, the division of the state
space, transaction of the inputs, or the network topology
must be tuned by the creator of a robot according to the
task or environment. On the other hand, in traditional
GAs, there is the problem of evaluation span. As a solu-
tion to these problems, we have proposed Self-Organizing
Network Elements (SONE).

As with DVB-RL, the use of a network avoids the
division of the state space and transaction of the inputs,
so we introduced a network system, which can be directly
connected to the robot I/O. Next, the learning method
for the network topology is important to consider. In
traditional GAs, there is a problem of evaluation span,
because the whole network is evaluated. When the robot
I/O is directly connected to the network, the evaluation
of the whole network is related to the evaluation of
complete behaviors for the robot in response to the
whole environment. So, the evaluation span is determined
by the span of the whole task that the robot has to
learn. On the other hand, SONE are able to evaluate
each element in the network. In general, the activation
or deactivation of an element occurs for a particular
situation encountered during the whole task. Thus the
evaluation of an element is only related to behavior in a
particular situation. As such, SONE do not require the
duration of the whole task to evaluate the topology. Using
this feature, real time and online learning of network
topology were achieved with SONE.

The evaluation of elements is also encountered in the
field of neural networks[3]. However, it is difficult to
accomplish reinforcement learning because almost all of
the evaluation methods are based on error and not on
reinforcement signals. In our SONE, learning is realized
by reinforcement signal propagation rules. The evalua-
tion of any element in the network can be made using
these rules. Then, the generation or self-destruction of
any element in the network can be handled on the basis
of the evaluation.

The one-step calculation cost of SONE is the order
of the number of nodes (V ) plus the number of Links
(E), O(V + E). In addition, SONE can allow online
reinforcement learning and can create their own topology

without the tuning of learning parameters. Therefore, all
the functions previously described can be accomplished
using SONE.

We applied SONE to four logic circuit elements: or-
node, and-node, inverted link, and non-inverted link.
Paired with each of these elements, we introduced four
test elements. In this paper, we present only the im-
plementation of the or-node and non-inverted link as
examples.

A. Or-node

The or-node (Fig.1) has several (N) links and a test
link, and each input is determined from X(1)−X(N)and
XT . Every element in a self organizing network has three
phases in the calculation of its behavior: the action phase,
the propagation phase, and the restructuring phase. In
the action phase, an or-node only executes the operation
of ”OR” for its output Y (=

⋃N
i=1 X(i)). In the propaga-

tion phase, an or-node propagates reinforcement signals
to the links based on the propagation rules (Cases 1-5,
TableI). Each case has its conditions described by X(1)−
X(N), Y,N , and the number of True (T ) signals from
links, NT . Based on these cases, the or-node generates
reinforcement signals as follows: R1(k) for a link and
R2(k) for an input-side node of the link. The or-node
also propagates R1 to the test link (R2 = 0). However, in
this case, calculation must be done under the assumption
that the test-link is the same as other links. When Y is
not the same for this assumption as it is in the real state,
R1is substituted by −R1. In the restructuring phase, the
or-node self-destructs when the number of its output-side
links is 0, and promotes the test-link as a new link when
the stored reinforcement signal in the test-link is higher
than a threshold (TH3). Moreover, the or-node creates
a new test-link between random nodes when the existing
test-link self-destructs or is promoted as a new link.

B. Non-inverted link

A non-inverted link has a test node with two test links,
TL1 and TL2 (Fig.2). TL1 is connected to the same node
to which the non-inverted link is connected such that TL1
represents the same operation as a non-inverted link. TL2
is randomly connected to a node in the network.

In the action phase, a non-inverted link only outputs
as Y its input X (Y = X). In the propagation phase,
the non-inverted link propagates a reinforcement signal
to the test-node based on the propagation rules (Cases
1-4 TableII). Each case has its conditions described by
Y , the output of the test node YT , and the reinforcement
signal from a node R1. Based on these cases, the non-
inverted link generates a reinforcement signal RT to the
test node. In the restructuring phase, the non-inverted
link stores R1 as its evaluation value R (R ← R + R1).
If R is less than 0, the non-inverted link self-destructs.
Moreover, when the reinforcement signal stored in the
non-inverted link is higher than a threshold (TH1), and
the reinforcement signal stored in TL1 and TL2 is higher
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TABLE I

The generation rule for the reinforcement signal in an or-node

Case1 : (Y = T ) ∧ (X(k) = F )
R1(k) = 0, R2(k) = 0

Case2 : Y = F
R1(k) = R/N, R2(k) = R/N

Case3 : (Y = T ) ∧ (NT = 1) ∧ (X(k) = T )
R1(k) = R, R2(k) = R

Case4 : (Y = T ) ∧ (NT 6= 1) ∧ (R ≥ 0) ∧ (X(k) = T )
R1(k) = −R× (NT − 2)/N, R2(k) = 0

Case5 : (Y = T ) ∧ (NT 6= 1) ∧ (R ≥ 0) ∧ (X(k) = T )
R1(k) = R×NT /N, R2(k) = 0

TABLE II

The generation rule for the reinforcement signal in a non-inverted

link

Case1 : (R > 0) ∧ (YT = Y )
RT = 0

Case2 : (R > 0) ∧ (YT 6= Y )
Reconstructing TL2

Case3 : (R ≤ 0) ∧ (YT = Y )
RT = R1

Case4 : (R ≤ 0) ∧ (YT 6= Y )
YT = −R1

than a second threshold (TH2), the non-inverted link
promotes the test node to the real structure and destroys
itself. If the stored reinforcement signal in TL2 is less
than 0, the test node generates a new TL2.

C. Network

A network can be self-organized by the phases of its el-
ements; the action phase, the propagation phase, and the
restructuring phase. In the initial state of the network,
input-nodes and output-nodes are prepared according to
the number of the robot I/O elements. Input-nodes are
dummy nodes and only receive as input from the robot its
output Y . Output-nodes are or-nodes which do not have
the ability to self-destruct. These elements are managed
in a list, which registers input nodes and output nodes in
this order. The list registers newly created nodes (middle
nodes) before the node, which is the output side of this
new node in the network.

When the robot calculates the output of the network,
the action phase is activated for every node in the list.
In this calculation, nodes are activated from the head
to the tail of the list. When the robot learns, all the
output nodes take the reinforcement signal to be the
same amount as the signal calculated from the robot’s
states. Then the reinforcement signals are propagated
during the propagation phase. In this calculation, nodes
are activated from the tail to the head of the list. After
this propagation, the network enters the restructuring
phase for all of its elements. In this calculation, any
activation order is applicable. These calculations are
repeatedly done in this order by the robot so that it learns
in real-time and online.

Fig. 1. Or-node

Fig. 2. Non-inverted link

III. Proposed implementations

Traditional experiments involve 3-bit operation tasks
and collision avoidance tasks in simulated robots using
SONE. However, the value of reinforcement signals in
such experiments is set equal among output nodes be-
cause it is very difficult to compare the value of each
network’s output in one step. In this system, complicated
control of the outputs using supervised signals cannot be
treated because the output nodes must learn against dif-
ferent targets to achieve supervised learning. Therefore,
we introduced a supervised learning phase to the SONE.

A. Implementation of supervised learning method

In addition to the traditional learning phase (the
reinforcement learning phase), we created a new learning
phase which we call the supervised learning phase. This
phase is where the network learns using a target vector
given from outside of the network. It is reasonable to
propagate reinforcement signals to the output nodes after
converting target signals because each node is evaluated
using reinforcement signals from the other nodes and the
network changes its topology to get more reward signals
(positive reinforcement signal). So in this phase, when the
output of an output-node is the same as target value, a
reward signal (1) is set to the output-node. On the other
hand, when the output of the output-node is a counter,
a penalty signal (-1) is set to the output-node. In this
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implementation, the reward system in the network can be
shared by both learning phases. Therefore, both learning
phases can coexist in a single network.

IV. Experiments

We introduced tracking experiments for a circular
track (C-track) and an infinite shaped track (I-track) in a
real numbered two-dimensional space. These experiments
started from a specific point on a track. At first, the
network received input from the x-y coordinate point on
the track. The network had to output the next point
to allow movement on the track. If the point to which
the agent moved was not the same as teaching data, the
network learnt the correct point from the teaching data.
Then the correct point was inputted to the network. The
I/O interface for the SONE was a 16-bit binary A/D and
D/A transformer which was used to correspond with real
numbers during tasks.

The experiment involving the C-track was a static task
for the SONE because the network can only calculate the
next point from the input. However, in the experiment
involving the I-track, the network had to store the input
in the memory and calculate the output from the memory
because the network cannot calculate the output from
only the input at the two points overlapping at the centre
of the I-track. So, the I-track is generally classified as a
temporal sequence problem.

Teaching data was created for each track by choosing
eight points on the track (the two data points at the
centre of the I-track were included). We determined
”one step” to the calculation of an output vector in
previous work[19], [20], since the SONE can learn by
online. However in the present experiment, we use the
term ”one step” to describe one cycle of the dataset as
occurs with a large number of traditional experiments
in neural networks. Each experiment was stopped when
the error calculated by a one-dimensional norm had not
been renewed in 10,000 steps. We defined the point next
to the last renewed point as the convergence point in this
paper.

A. Noise-free environment

The results shown in TableIII indicate the average
data for ten trials. In the experimental results listed in
TableIII, the average error of bit (AEB) was within one
bit. The outputs within one step was 8 × 32 = 256 bits
(C-track or I-track) and 16× 32 = 512 bits (C&I-track).
These results suggest that learning was successful. The
average error of real number (AER) was measured by
using the standard radius of a circle. This error converged
to zero. Figure 3 shows the convergence of the error in
the experiment for the C&I-track. The results shown in
this figure indicate that AER converges with AEB.

B. Noisy environment

In this experiment, the signals inputted to the network
had 5% noise in real numbers. The effect of learning is

Fig. 3. Error history (noise-free)

Fig. 4. Error history (noisy environment)

shown in TableIV. Compared to the noise-free experi-
ments, both AEB and AER decreased, and the number
of nodes and links at the CP increased.

The convergence of the error for the C&I-track is
shown in Fig.4. The results shown in this figure indicate
that the AER converges with the AEB, as it does in the
noise-free case shown in Fig.3. Figs. 6 and 5 show the
history of tracking and the structure obtained using the
C&I-track. The nodes lying to the left in Fig.5 are the
input-nodes, and the nodes lying to right are the output-
nodes. The network formed in the middle is the result of
the self-organization of network elements.

C. Incremental learning

To investigate the incremental learning feature of
SONE, we performed the following experiment. In the
previous experiment, C&I-tracks were switched at each
step. Therefore, the C-track and I-track were learnt al-
most simultaneously. In this new experiment, we initially
taught the C-track to completion and then taught the I-
track. We changed the track back to the C-track when
the I-track was completely learnt by the network. This
experiment was then repeated.

The error history is indicated in Fig. 7. In this figure
the step at which the error increases sharply is the step
in which the tracks were switched. Fig.7 also shows that
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TABLE III

Conclusion of learning (Noise-free)

Data Average steps Average error (bit) Average error (real number) Number of nodes at CP Number of links at CP

C-track 88.3 0.3 6.25× 10−7 70.8 244.0
I-track 1064.9 0.3 4.93× 10−5 82.2 306.3

C&I-track 923.1 1.0 2.78× 10−4 149.6 536.7

TABLE IV

Conclusion of learning (noisy environment)

Data Average steps Average error (bit) Average error (real number) Number of nodes at CP Number of links at CP

C-track 196.3 0 0 91.5 318.2
I-track 1068.7 0 0 153.9 537.5

C&I-track 2779.8 1 2.08× 10−6 448.1 1725.3

Fig. 5. Generated circuit

Fig. 7. Error history in incremental learning

overshoot peaks decreases.
This experiment was also performed using a recurrent

neural network (RNN). The topology of the RNN was
2-20-2 layers with five nodes as the context layer. The
learning ratio of the RNN was 0.01. The error history is
indicated in Fig.8.

V. Discussions

A. Influence of binary on convergence

Before the experiment, we considered that convergence
in the errors of the bits and the errors of the real numbers

Fig. 8. Error history in incremental learning with RNN

would be very different because the flags in the higher
section of the output can change as a result of noise or
for some other reason. In our experiments, however, both
graphs converge in the same manner.

To explain this effect, we propose the following hypoth-
esis. Learning higher sections of the outputs may be an
easier task for SONE and convergence may occur fast in
higher sections because the higher sections of teaching
data do not generally change so often in the tracking
task. If this hypothesis is true, the learning of SONE is
very stable and reliable even in a system in which there
is no guarantee of convergence, because, even when the
lower section does not converge, the higher section can
converge.

B. Generalization

Generalization is a key topic of research in the field
of neural networks, and experiments with noise have
confirmed that SONE have some type of generalization
ability. In this experiment, SONE must generalize the
dataset and respond to inputs that are always different
because of noise. However, SONE could learn all tracks
with high accuracy and the error converged to zero
sometimes. Therefore, SONE also have this ability to
generalize.
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C. Incremental learning

The errors of the C-track and I-track both converged at
the same time in the incremental learning experiments.
So, new data is assimilated by the SONE without the
complete removal of data previously learnt.

When compared to the RNN, learning speed was very
fast (about 1/10,000 in terms of the number of steps)
and the stability of learning was better. Unfortunately,
RNN has the problem of excessive learning. So, the error
overshot and did not come back, as shown in Fig.8. To
minimize this effect, a low learning ratio is more effective.
However, if we minimize the learning ratio, the number
of steps required for learning increases. Therefore, it is
difficult for a standard RNN to solve this type of problem
as fast as SONE.

D. Temporal sequence tasks

The I-track experiment required a network to store the
input in the memory and to calculate the output from
the memory because the network could not calculate the
output only from the input at the two points overlapping
at the centre of the I-track. So in general, the I-track is
classified as a temporal sequence problem. The SONE
must create an accurate feedback loop to solve tempo-
ral sequence problems because the nodes do not store
signals.

The accomplishment of the I-track experiment indi-
cated that the SONE could obtain the structure of
memory by using a feedback loop in a way similar to
RNN.

VI. Conclusion and future work

We have proposed a supervised learning method using
SONE. The system can create the network topology by
itself. Also, the time cost for calculation was determined
to be O(V + E).

SONE can handle noisy data using the ability of gen-
eralization. Also, if the data are divided to parts, SONE
can learn these parts at different times, and can combine
these data through the ability of incremental learning.
Moreover, when the data include hidden states, temporal
sequence learning can be available. These results indicate
that supervised learning with SONE is very robust and
helpful for preparing a network before the activation of
a robot.

In addition, the evaluation value R can be calculated
for every element using this proposed supervised learning
procedure. So, the use of the evaluation value for rein-
forcement learning is anticipated.

In the future, the comparison to other learning meth-
ods should be done. Also, tasks involving longer temporal
sequences should be investigated. Moreover, creating
SONE with real numbered elements is a great challenge.
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Fig. 6. Tracking history (C&I-track)

(1) 0 step (5) 400 step

(2) 100 step (6) 500 step

(3) 200 step (7) 600 step

(4) 300 step (8) 772 step
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