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Abstract— With our proposed decomposition into layers, a
generic framework leading to the reuse of previously produced
software and the extraction of useful portions can be achieved.
The presented transition function based formalism can be
applied to specifying programming frameworks for robot con-
trollers executing very diverse tasks. Formalization introduces
rigor into the discussion of the structure of embodied agent
controllers. The paper deals with systems consisting of multiple
agents executing jobs by: influencing the environment through
effectors, gathering information from the environment through
sensors and communicating with the other agents through
communication channels. A paradigm shift is proposed: from
building systems executing jobs, to agents acquiring resources
(effectors and receptors) so that they can execute the jobs
assigned to them. A supervisory controller coordinates the
adequate sequencing of jobs and resolves contentions.

I. INTRODUCTION

Robots will be ubiquitous with their complexity masked
behind a user interface [2][11]. The underlying engine of
such a system takes root from a programming architec-
ture stemming from the experience (tacit knowledge) of a
roboticist. However, if the previously produced software does
not have a structure facilitating its reuse, it is usually very
difficult to extract the useful portions. Moreover, any modi-
fication or extension of the old software might be hindered
by its inadequate structure. This is especially true for robot
control software. It is relatively easy to produce code for a
specific device and a specific task, but when those change,
it is sometimes easier to start coding from scratch than try
to reuse the old pieces [9]. The motivation of our work
thus lies in the formalization of a generic robot program-
ming framework which utilizes a matrix-based supervisory
controller as its engine. Issues that will be tackled in this
paper, however, address a programming methodology taking
into account that a task requires resources for its execution.
A coexisting problem handling the matter of resources is
evident in grid computing [3][4].

The remainder of the article is organized as follows:
Section II proposes a paradigm shift in the perception of
a job. Section III describes a method for job coordination.
Both of these sections present the transition function based
formalism. Details of the coordination method are discussed
in Section IV with the issues of exception handling in Section
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C. Zieliński is with the Faculty of Electronics and Infor-
mation Technology, Warsaw University of Technology, Poland
C.Zielinski@ia.pw.edu.pl

S.Y. Lim is with the Singapore Institute of Manufacturing Technology,
Singapore sylim@SIMTech.a-star.edu.sg

Fig. 1. An embodied agent – an agent that acquired the necessary resources
(effectors and receptors) for the execution of its job

V. Section VI briefly discusses an application example while
Section VII concludes.

II. JOBS AS AGENTS

In a strictly conventional sense, a resource, which needs to
be controlled, is assigned to carry out a job. Departing from
the orthodoxies, a paradigm shift has been proposed such that
instead of assigning a job to a resource, the job now acquires
resources to execute itself. The controller is now associated
with the job which embodies itself on a resource(s). This
suggests that the job is now a virtual agent.

A system consisting of na job-agents (Fig. 1) is con-
sidered. The state of the control system of the agent aj ,
j = 1, .., na, at time instant i, is:

ci
j = 〈ci

cj
, xci

ej
, xci

Vj
, xci

Tj
, yci

ej
, yci

Vj
, yci

Tj
〉, (1)

where
xcej

– input from the effectors,

xcVj
– input from the virtual sensors (aggregated

readings from receptors – hardware sensors Rjk
, k =

1, . . . , nR),
xcTj

– input from the inter-agent transmission (infor-
mation obtained from other agents),
ycej

– control of the effectors,
ycVj

– commands to the virtual sensors,
ycTj

– output to the inter-agent transmission (informa-
tion transmitted to other agents),
ccj

– all the other relevant variables taking part in data
processing within the agent’s control subsystem.
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The agent uses the input (subscript x) and output (sub-
script y) buffers to communicate with its resources (effectors
and receptors) and the other agents – in this paper we
consider only the communication with the supervisor.

The agent can be in any of the following four general states
W – Waiting (actively idle), R – Running (executing itself),
F – Finished (executed itself) and E – Error (unsuccessfully
finished). Within the structure ccj

, a component that holds
the current general state of the agent is singled out – let that
component be sccj

.
sccj

∈ {W, R, F, E} (2)

The agent (job) aj acquires its effectors ej and its virtual
sensors Vj (and thus its receptors Rj) in the state W –
gradually embodying itself. Once all the resources have been
acquired it can run. Upon completion of the job (state F ) or
in the event of an error that cannot be remedied (state E) the
resources are returned and thus the agent disembodies itself.
However, throughout the lifetime of the agent, i.e., in all of
its general states, it retains its ability to communicate with
other agents through cTj

.
If i denotes the current instant, the next considered instant

is denoted by i + 1. The agent uses

xci
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〉, (3)

to produce
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and hence the transition functions are defined as:
ci+1
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(5)

or more compactly,

yc
i+1

j = mfcj
(xci

j), (6)

where mfcj
are the functions defining the primitive be-

haviour of the agent within each general state (e.g., W ,
R). As within each state many such functions may be used,
hence the superscript m, m = 1, . . . , nm, where nm is the
number of such functions (the problem of switching between
those functions is dealt with in [13][14]). Depending on the
information obtained, conditions embedded within the agent
will trigger the changing of those states (e.g., W to R, F to
W ) (Fig. 2). An elaborate primitive behaviour can be realized
by the composition of transition functions.

While the job-agent is in the waiting state (and hence has
not procured the resources), the control subsystem uses only

xci
j = 〈ci

cj
, •, •, xci

Tj
〉, (7)

to produce
yci+1

j = 〈ci+1
cj

, •, •, yc
i+1

Tj
〉, (8)

where • represents a missing (or illegal) argument. In this
case the job-agent leads a virtual life in which it can do only
computations and talk to other agents.

Fig. 2. Job-agent

III. COORDINATION

Given a situation with a number of job-agents, it is only
natural that each agent will strive to procure a resource
to execute itself. This competition escalates when agents
that require the same resources are present. Who (or what)
decides which agent gets to procure first? Our proposal is
to produce a high level job coordinator a0 employing a
supervisory matrix-based approach (Section IV).

A. High Level Job Coordinator (HLJC)

The system now assumes a star topography with the
supervisor a0 at the center and the job-agents aj surrounding
it. The supervisor HLJC, like a job, is a virtual agent a0 that
senses the environment through its virtual sensors, whereby
the information obtained will trigger a set of conditions
which in turn will start the task. The relevant job-agents aj

are then alerted via the transmission buffers. The agent a0

is virtual, because it does not acquire effectors – the only
resources that it might require are the receptors, so it might
lead a disembodied life, hence its virtuality. However it can
be in any of the general states that the other agents can be in.
The life of the system is initiated by first creating the agent
a0, so if the resources are at hand it is sure to acquire them
(other agents do not yet exist). However, if the necessary
resources are not available the agent a0 goes into an error
state E and the task cannot be accomplished.

The control system of the agent a0, in its running state R,
uses

xci
0 = 〈ci

c0
, •, xci

V0
, xci

T0
〉, (9)

to produce

yci+1
0 = 〈ci+1

c0
, •, yc

i+1

V0
, yc

i+1

T0
〉, (10)

where the components xcV0
and xcT0

provide the information
about:

rc – resource availability,

ac – completed job-agents,
u – job input signals and
uD – priority of a job.

The transition function governing the execution of the task
is:

yci+1

0 = fc0
(xci

0), (11)

Depending on the information obtained, conditions embed-
ded within the function fc0

will trigger the changing of the
agents’ general states (e.g., W to R, F to E). The structure
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of the function (11) is governed by the equations defined in
Section IV, i.e., (12)–(17).

IV. MATRIX-BASED APPROACH

This matrix model was first introduced in [10]; applied
to manufacturing systems [1] and more recently to wireless
sensor networks [5]. Our development of the matrix model
however, is novel to that of the initial idea with its introduc-
tion as an aid to robot programming [6][7].

The task can be described by:

x̄ = (Σ⊕Qa)⊗āc⊕(Σ⊕Qr)⊗r̄c⊕Qu⊗ū⊕QD⊗ūD (12)

Table I shows the variable definitions for (12). The condition
(x) represents the state of the task and the equations show
how it evolves over time. The equations used in the matrix
model are logical equations, standard matrix multiplication
and addition are replaced by AND/OR algebra and all vectors
and matrices are binary. ⊗ represents an AND operation, ⊕
an OR operation and Σ⊕ a logical OR summation. The over
bar is a logical negation and is defined as follows: For any
component zk of a natural number vector z

z̄k = 0 if zk > 0, z̄k = 1 if zk ≤ 0

Each of the matrices are explained as follows:
• Qa determines which relevant job-agent should be com-

pleted before condition x is satisfied. When ajc
= 1, a

job-agent is said to be complete.
• Qr determines which relevant resources should be

present before condition x is satisfied. When rjc
= 1,

a resource is said to be currently available.
• Qu determines which relevant input signal should be

present before condition x is satisfied. When uj = 1,
an input signal is said to be present.

• QD determines which relevant dispatch signal should be
present before condition x is satisfied. When uDj

= 1,
a dispatch signal is said to be present. This matrix is

TABLE I
VARIABLE DEFINITIONS FOR (12)

Variables Dimensions Definitions
x nx x 1 nx number of conditions
a na x 1 na number of job-agents
r nr x 1 nr number of resources
u nu x 1 nu number of input signals

uD nuD
x 1 nuD

number of dispatch controls
Qa nx x na Job-agent sequencing matrix
Qr nx x nr Resource requirements matrix
Qu nx x nu Parts input matrix
QD nx x nuD

Dispatching matrix

used to determine the priority of the operations when
resources are shared.

The state of each condition is dependent on the input
received from the environment in terms of job-agent comple-
tion, resource availability, input signals and dispatch control.
Upon successful condition satisfaction, a job and a resource
will be triggered to start (Job-Agent Start Equation) and
released (Resource Release Equation) respectively. Catering
to the job-agent centric nature, two major components in (12)
are briefly discussed in IV-A and IV-B.

A. Resources

With the manifestation of the job-agent, a method describ-
ing the selection of resource procurement in (12) is:

x̄ = (Σ⊕Qr) ⊗ r̄c

→ x̄ = (Qr1 ⊗ r̄c) ⊕ (Qr2 ⊗ r̄c) ⊕ ... ⊕ (Qrn ⊗ r̄c),
(13)

where Qrk , k = 1, .., n are individual matrices of size nx x
nr (Table I) that allow the assignment of a combination of
n possible resources that can be acquired by a job-agent. In
the event where multiple resources are available at the same
instant, the job-agent decides (either independently or via the
HLJC) which to procure.

B. Completed Job-Agents

The state equation (12) is also dependent on a vector of
completed job-agents a:

x̄ = (Σ⊕Qa) ⊗ āc

→ x̄ = (Qa1
⊗ āc) ⊕ (Qa2

⊗ āc) ⊕ ... ⊕ (Qan
⊗ āc),

(14)
where Qak

, k = 1, .., n are individual matrices of size nx

x na (Table I) that allow the assignment of n possible job-
agents that can be completed before a condition is satisfied.

C. Job-Agent Start Equation

The start of a job-agent is indicated by the following
equation:

ās = Sa ⊗ x̄⊕Ua ⊗ āc, (15)

where Sa is a job-agent start matrix (na x nx dimensions)
and Ua is a job-agent dependency matrix (na x na dimen-
sions. Job-agent aj, j = 1, .., na starts when ajs

= 1.
Equation (15) can be read as follows: Job-agent aj will
start iff the relevant conditions (determined by Sa) are
satisfied and the job-agent dependencies (determined by Ua)
is/are complete. This general representation can be used
for concurrent and dependent operations and is bridged by
Ua. From a broader perspective, (15) provides a means to
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synchronize local and external subsystems in terms of job-
agents.

D. Resource Release Equation

Before a job-agent can procure a resource, a resource first
has to be released. The equation indicating the release of a
resource is:

r̄s = Sr ⊗ x̄⊕Ur ⊗ r̄c, (16)

where Sr is a resource release matrix (nr x nx dimensions)
and Ur is a resource dependency matrix (nr x nr dimen-
sions). Resource rj, j = 1, .., nr is released when rjs

= 1.
Equation (16) can be read as follows: Resource rj can only
be released iff the relevant conditions (determined by Sr) are
satisfied and the resource dependencies (determined by Ur)
is/are currently available. Similarly, (16) provides a means
to synchronize local and external subsystems in terms of
resources.

E. Task Output Equation

Sy (nT x nx dimensions where nT is the number of tasks)
determines the set of conditions that need to be satisfied
before the task ends:

ȳ = Sy ⊗ x̄ (17)

Fig. 3 depicts the matrix model. The cylinder keeps a
history of the completed job-agents, ajc cc0

, a list of the job-
agents that have started, ajs cc0

, the released resources, rjs cc0
,

and the resources that are currently available, rjc cc0
. Based

on the system’s current state and the environs, the Q matrices
are used to obtain the next set of conditions which in turn
will be used by the S and U matrices to release the resources
required for the starting of a job-agent. Once a job-agent is
complete, the Q matrices are once again used to obtain the
next set of conditions. The process is iterative.

The HLJC can learn about the available resources by two
means: its own sensors xcV0

and by receiving information
from the other agents through xcT0

. The information about

Fig. 3. HLJC with Matrix-based Supervisory Controller

the completion of job-agents usually is received directly
from the agents through a ycTj

→ xcT0
transmission.

The information about which job-agent should be currently
started is dispatched through ycT0

and received by the agent
aj through xcTj

. The matrix equations define the structure of
the transition functions, as they are used in the computation
of their arguments.

V. EXCEPTION HANDLING

Given the occurrence of some condition that changes
the normal flow of execution, a mechanism designed to
handle this exception ought to be present. Depending on
the situation, the handler may later resume the execution at
the original location using the saved information to restore
the original state. Errors (which require handling), however,
are abundant in nature and cannot be catered to entirely.
Therefore, it is apt to encompass these errors in differentiated
classes [12]:

• non-fatal (caused by computational problems or wrong
arguments of commands)

• fatal (caused by malfunction of the resources)
• system (caused by control system disintegration – the

system is rendered useless)
By defining these error classes, the intricacy of exception

handling is somewhat reduced.

A. Error Transmission

With an error state present in each job-agent (Fig. 2) and
the introduction of the error classes, the domain of this state
can now be defined as

Eccj
∈ {ENF , EF , ES , ENE}, (18)

where NF = Non-Fatal, F = Fatal, S = System and NE = No
Error.

Upon triggering an error condition, the current global state
of the job-agent will change to that of the error state which
should contain the class of error that is produced. The job-
agent’s immediate task, given the next time instant, would be
to transmit this information to the HLJC. The control system
of an agent ak, in its error state E, uses

xci
k = 〈ci

ck
, xci

ek
, xci

Vk
, xci

Tk
〉, (19)

to produce

yci+1

k = 〈ci+1
ck

, yci+1
ek

, yci+1

Vk
, yc

i+1

Tk
〉, (20)

where the components: xcek
, xcVk

and xcTk
provide infor-

mation about Ecck
. The HLJC then instructs the job-agent

of its next step.
There are a few standard methods of treating error recov-

ery depending on the error class
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• retrying the action that failed,
• retrying the action that failed, but with a different set

of parameter values,
• trying another action
It should be noted that the classes of errors pertain to the

ability of the system to retain its own composure and not
the ability to correct them. For instance, a non-fatal error
detected as a computational error (e.g., negative argument
of a sqrt function within inverse kinematic procedure), but
resulting from an object that is to be grasped being out
of the workspace, cannot be corrected by the system (the
object is simply too far), but the system should retain such
a state that it will be able to execute other actions. The
ability of correcting fatal errors depends on the redundancy
of the system, e.g., malfunction of the manipulator in a single
robot system cannot be remedied, but in a multi-robot one,
it can sometimes be corrected. Thus, whether errors can be
handled depends also on the overall structure of the system.
Nevertheless, after a fatal error, the system should be left in
such a state that at least it is able to inform the operator about
the reason for its malfunction - it should not disintegrate.
System errors cannot be dealt with by the above described
methods. They are caused by the disintegration of the control
system itself, so it is not realistic to assume that the inter
process communication will be intact at that moment.

VI. AN APPLICATION

As an initial test-bed for the framework, a simple applica-
tion involving a single mobile manipulator (MM) was carried
out. The mobile manipulator consists of a PA-10 mounted on
a mobile base (Fig. 4) which was designed and assembled
as a collaborative project between the National University
of Singapore and the Singapore Institute of Manufacturing
Technology.

The MM was engaged to move to a specified location
upon which a token will be passed to it. Once the token is
received, the MM navigates through some obstacles using
the SICK laser sensor. After completing obstacle avoidance,
the MM then moves to another specified location allowing
the insertion of the token into a slot. Upon successful entry, a

Fig. 4. PA-10 on a mobile base

user then attaches a spraying mechanism to the MM’s gripper
after which a star will be sprayed at a designated location.

A. Task Sequence

Goal based decomposition of the task implies a descrip-
tion of the job-agents, which consists of a composition of
transition functions. The job-agents are:

1) MM at Location 1, Invert arm, open gripper
2) MM at Location 2, Procure token
3) Token received, Begin obstacle avoidance
4) MM at Location 3, Slot the token
5) MM at Location 4, Procure spraying mechanism
6) MM at Location 5, Draw the star

In the event that a job-agent cannot execute itself, the ex-
ception handling module will come forth. Upon unsuccessful
handling, a user will be prompted to intervene.

B. Resource Assignment

For the task at hand, three resources are available for
procurement:

• mobile manipulator (MM)
• a token
• a spraying mechanism
The MM is assigned to each of the six job-agents signi-

fying the allowable resource it can procure to execute itself.
In addition to the MM, job-agents 2 and 4 are also allowed
to procure the token and spraying mechanism respectively.
The issue of when a resource is procured is decided by the
matrix model in the HLJC.

C. Matrix Model

For the sake of brevity, the equation depicting the task (12)
will not be discussed (for a theoretical insight, see [8]).A
detailed mathematical form (15) of job-agent execution will
instead be shown:
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ā4s
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(21)
where

• aks
, k = 1, .., 6 represents each of the job-agents that

has yet to execute
• xp, p = 1, .., 7 represents each of the conditions that

has to be satisfied in (12). The number of conditions
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is always larger than the number of job-agents by one
with the last condition signifying task completion.

• akc
represents the completed job-agents

Say for example that condition x2 = 1 (satisfied) and
job-agent a1c

= 0 (incomplete). The components of the
conditions are found in (12). From (21), and considering
only row ā2s

followed by De Morgan’s law,

ā2s
= x̄2 ⊕ ā1c

a2s
= x2 ⊗ a1c

= 0
(22)

Since a2s
= 0, job-agent a2 cannot start. Job-agent a2

can only start when condition x2 = 1 and job-agent a1 is
complete (a1c

= 1). Via iteration, the conditions and job-
agent completions will be satisfied stepwise leading to the
completion of the task.

VII. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

The general structure of an agent (Fig. 1) does not change
with a differing task. However, the class of tasks that
can be executed by the agent is limited by the resources
available. The resources influence the specific structure of
the components of cj as defined by (1). Those components
do not change with the modification of the task within a
class (as defined by the resources needed). Here only the
transition functions (5) change their form. All this shows us
the extent to which software implementation of the agent
will have to be modified with the change of the task. New
resources require a change in the definition of components
of (1). If the resources remain unchanged, the structure of
components of (1) remain unaltered and only the definitions
of transition functions (5) undergo modification – usually
this is the case, because hardware of the system changes
infrequently. Moreover, the presented formalism decomposes
the system thus facilitating modularization of the software
and that promotes its reuse.

Viewing a job as an agent introduces a paradigm shift from
the conventional perception of a job. By imparting some level
of intelligence in terms of the resources it can procure, jobs,
in their abstract form, become fairly autonomous neverthe-
less still coordinated with the presence of a high level job
coordinator (matrix-based supervisory controller).

The overall framework deals with systems consisting
of multiple embodied agents, influencing the environment
through effectors, gathering information from the environ-
ment through sensors and communicating with other agents
through communication channels.

Formalization introduces rigor into the discussion of the
structure of embodied agent controllers. This structures the
implementation of a programming framework, and that in

turn makes the coding of specific controllers much easier,
from the point of view of specific tasks that has to be
executed.

B. Future Works

Given the task at hand, the authors recognize that the
framework cannot be fully appreciated due to the limited
number of available resources. This task, however, is merely
a proof of concept. In order to test the generality of the
proposed framework, its application to multi-robot systems
with the intent of executing parallel multiple tasks will be
pursued.
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