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Abstract— This paper presents a robust adaptive control
methodology for piezoelectric actuation systems to track speci-
fied motion trajectories. This methodology is proposed to deal
with the control problems of unknown or uncertain system
parameters, non-linearities including the hysteresis effect, and
external disturbances in the piezoelectric actuation systems,
without any form of feed-forward compensation. In this paper,
a special class of positive definite functions is employed to
formulate the control methodology such that the closed-loop
system stability can be guaranteed. The control formulation
as well as the stability analysis is detailed. Furthermore, an
experimental investigation is also conducted. Implementation of
the control methodology is practical as only a knowledge of the
estimated system parameters is required. In the experimental
study, a promising tracking ability in following a specified
motion trajectory is demonstrated. With the capability of mo-
tion tracking under the aforementioned conditions, the robust
adaptive control methodology is very attractive in realising high
performance control applications in the field of micro/nano
manipulation.

I. INTRODUCTION

Piezoelectric actuators have been recognised as the most
popular device for accomplishing high-precision motion
tasks in the field of micro/nano manipulation [1]. However,
when these actuators are used, there exists a highly nonlinear
relationship between the input (applied) voltage and the out-
put displacement. This prevents the actuators from providing
the desired high-precision motion resolution and accuracy. A
considerable amount of research studies have therefore been
performed to resolve this nonlinear behaviour in piezoelectric
actuation systems. One area of research has been performed
to model and compensate for the non-linearities, particularly
for the hysteresis effect. Other areas of studies have been
focused on the enhancement of positioning performance by
proposing closed-loop control of the piezoelectric actuation
systems.

A number of modelling techniques have been studied.
These include a voltage-input electromechanical model [2], a
charge steering model [3], and a model of physical hysteresis
[4]. Other approaches to the modelling have been based on
the established mathematical formulations to approximate the
input/output behaviour due to the hysteresis. The examples
include the Maxwell slip model [2], Duhem model [5], [6],
and Preisach model [7], [8]. However, the hysteresis effect is
very complex. It is difficult to obtain an accurate model and

the model parameters are difficult to quantify in practice.
Therefore, positioning accuracy cannot be guaranteed with
hysteresis compensation in an open-loop system.

On the other hand, appropriate closed-loop control strate-
gies have been formulated to achieve high-precision position-
ing of the piezoelectric actuation systems. Recent examples
include a combination of a feed-forward model in a feedback
control with an input shaper [9], an adaptive back-stepping
approach [10], a tracking control of a piezo-ceramic actuator
with hysteresis compensation [11], and a new mathematical
model for improving the positioning accuracy of piezoelec-
tric actuators [12]. In most of these studies, a complex
hysteresis model has been adopted to compensate for the
hysteresis effect.

In this paper, a number of ideas are gathered for the control
of micro/nano manipulators, particularly for the piezoelectric
actuation systems. First, a special class of positive definite
functions is identified [13] for the purpose of control for-
mulation. Second, a robust adaptive control methodology is
established without any form of feed-forward compensation.
Compared to our previous study [14], this approach does not
require a prior information about the bounds of the unknown
or uncertain system parameters. Third, a control objective of
tracking a desired motion trajectory in position, velocity, and
acceleration is proposed for the closed-loop control of the
systems.

The proposed robust adaptive methodology is formulated
to adjust the control signal for accommodating the unknown
or uncertain system parameters, non-linearities including the
hysteresis effect, and external disturbances in the piezoelec-
tric actuation systems. The stability of the control systems is
analysed. Both the position and velocity tracking errors are
proved to be converging to zero in tracking of a desired mo-
tion trajectory. Implementation of the control methodology
is appropriate as only the control gains and estimated system
parameters are required. Furthermore, a promising tracking
performance is demonstrated in the experimental study.

This paper is organised as follows. The model of a
piezoelectric actuation system is introduced in Section II.
Section III describes a special positive definite function for
the purpose of control formulation. The proposed robust
adaptive control methodology is formulated in Section IV
followed by the stability analysis in Section V. The exper-
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imental study is detailed in Section VI and the results are
presented and discussed in Section VII. Finally, conclusions
are drawn in Section VIII.

II. MODEL OF PIEZOELECTRIC ACTUATION SYSTEM

An electromechanical model of a piezoelectric actuator
has been identified based on recent studies [2], [3]. For
control purposes, this piezoelectric actuator model [14] can
be expressed as

m ẍ + b ẋ + k x + vh + fe = vin, (1)

where m, b, and k are the effective mass, damping, and
stiffness, respectively, x is the actuator output displacement,
vh is the voltage due to the hysteresis, fe is related to the
force imposed by the external mechanical load, and v in is
the applied (input) voltage. Furthermore, it is understood that
the nonlinear hysteresis effect is bounded, i.e. | vh | ≤ δvh,
where δvh is a constant number.

In a practical environment, external disturbances have to
be considered for the operation of the piezoelectric actuator.
The piezoelectric actuator model (1) is therefore extended to
include these additional effects,

m ẍ + b ẋ + k x + vh + fe + vdc + vdn = vin , (2)

where vdc and vdn are the constant time-invariant and non-
linear time-varying external disturbances, respectively. Both
terms vdc and vdn are assumed to be bounded.

The model (2) can be extended to describe a piezoelectric
actuation system. With this established model, an advanced
control methodology can be formulated to effectively control
the piezoelectric actuation system.

III. SPECIAL POSITIVE DEFINITE FUNCTION

A class of positive definite functions plays an important
role in formulating an advanced control strategy. In this class,
a special function, which is twice continuously differentiable,
gives rise to a saturation function and a strictly positive
function in its first and second derivatives, respectively. With
these characteristics, the saturation function can be used to
derive the control strategy and the stability of the closed-
loop system can be guaranteed. For example, in a control
formulation, the special function, namely ρ, can be written
as

ρ (ep) =
√

ε2 + ep
2 − | ε | , (3)

where ρ is positive definite expressed as the function of a
position tracking error ep and an arbitrary constant ε. It must
be noted that the value of the position tracking error e p is
bounded and the arbitrary constant ε is chosen in such a way
that its absolute value | ε | > 0. The saturation function s(ep)
is derived from the first derivative of the special function (3)
and it is expressed as

s(ep) =
dρ(ep)
dep

=
ep√

ε2 + ep
2

. (4)

The second derivative �(ep) of (3) is obtained as

�(ep) =
ds(ep)
dep

=
ε2

√
(ε2 + ep

2)3
. (5)

Furthermore, the time derivative of the saturation function
s(ep) described by (4) can be written as

ṡ(ep) = �(ep)ėp =
ε2 ėp√

(ε2 + ep
2)3

, (6)

where �(ep) is given by (5).
The saturation function (4) will be employed in the

following section to formulate the robust adaptive control
methodology. The special positive function described by (3)
and its properties given by (4) and (6) will be used in the
stability analysis of the proposed control system.

IV. ROBUST ADAPTIVE CONTROL METHODOLOGY

For the piezoelectric actuation system described by (2),
a robust adaptive control methodology can be formulated
for the purpose of tracking a desired motion trajectory
xd(t). Under the proposed control approach, the physical
parameters of the system in (2) are assumed to be unknown
or uncertain. Furthermore, there exist bounded nonlinear
effects and external disturbances within the system. The
xd(t) is assumed to be twice continuously differentiable and
both ẋd(t) and ẍd(t) are bounded and uniformly continuous
in t ∈ [0, ∞). A combination of an adaptive scheme and a
robust technique is used to realise the control methodology
such that the closed-loop system will follow the required
motion trajectory.

For the convenience of control formulation, the piezoelec-
tric actuation system (2) is rewritten as

xT ϕ + fe + meq ẍ + vhd = vin , (7)

where

x = [ẍ, ẋ, x, 1]T , (8)

ϕ = [m∗, b, k, vdc]T , (9)

m∗ = m − meq , (10)

vhd = vh + vdn , (11)

and meq is a strictly positive scalar, i.e. meq > 0.
An adaptive scheme is established in dealing with the

unknown system parameters. A set of estimated parameters
ϕ̂ of ϕ is defined as

ϕ̂ = [m̂∗, b̂, k̂, v̂dc]T . (12)

An adaptive scheme [15] is employed to continuously update
the control system through

˙̂ϕ = −K−1 xd σ , (13)

where K is a 4 × 4 constant positive definite diagonal
matrix, xd is the desired motion expressed as xd =
[ẍd, ẋd, xd, 1]T , and the error function σ is defined as

σ = ėp + α s(ep) , (14)
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where ep(t) = x(t)−xd(t), α is a strictly positive scalar, and
s(ep) is the saturation function defined in (4). An adaptive
signal v̂in is therefore introduced as

v̂in = xd
T ϕ̂ . (15)

A robust control technique is utilised to accommodate
the non-linearities in the system. It must be noted that the
nonlinear effects vhd given by (11) are bounded and there
exists an upper bound δvhd such that

| vhd | ≤ δvhd . (16)

In the robust control approach, a switching function is
specified, which is the same as the error function σ given
by (14). The time derivative of the switching function (14)
is expressed as

σ̇ = ëp + α ṡ(ep) , (17)

where the term ṡ(ep) is defined in (6).
For the piezoelectric actuation system described by (2), a

robust adaptive control methodology is proposed, which is
given as

vin = −kp ep − kv ėp + v̂in + fe +

meq ẍeq − ks σ − d
σ

|σ | , (18)

ẍeq = ẍd − α ṡ(ep) , (19)

d ≥ δvhd + ε , (20)

where kp and kv are the proportional and derivative gains,
respectively, and ks and ε are any strictly positive scalars.
Furthermore, the term σ

|σ | � 0 for σ = 0.

V. STABILITY ANALYSIS

The closed-loop behaviour of the proposed control system
must be carefully examined in the study of the system
stability. In this investigation, the closed-loop dynamics will
be derived for the stability analysis.

To find the closed-loop dynamics of the system, the control
input (18) is substituted into the piezoelectric actuation
system (7),

xT ϕ − xd
T ϕ̂ + kp ep + kv ėp +

meq(ẍ − ẍeq) + ks σ + d
σ

|σ | + vhd = 0 , (21)

with the term v̂in in (18) replaced by (15). Multiplying both
sides of (21) by the error function σ defined in (14), the
closed-loop dynamics is rewritten as

y + meq(ẍ − ẍeq)σ + ks σ2 + d |σ | + vhd σ = 0 , (22)

where

y = (xT ϕ − xd
T ϕ̂ + kp ep + kv ėp)σ . (23)

Due to the deviation of the estimated parameters from the
actual values, an estimated adaptive error ∆v can be obtained
as

∆v = xd
T ∆ϕ , (24)

where ∆ϕ = ϕ̂ − ϕ, and ϕ̂ and ϕ are given by (12) and
(9), respectively. The estimated adaptive error (24) can also
be written as

xT ϕ − xd
T ϕ̂ = xe

T ϕ − ∆v , (25)

where xe = x−xd = [ëp, ėp, ep, 0]T . The term y described
by (23) is then modified by (25) and (14),

y = (xe
T ϕ + kp ep + kv ėp)[ėp + α s(ep)] − ∆v σ . (26)

Expanding the right-hand side of (26) gives

y = m∗ ëp ėp + (b + kv) ėp
2 + (k + kp) ep ėp +

[m∗ ëp + (b + kv) ėp + (k + kp) ep] α s(ep) − ∆v σ ,

= u̇1 + w − ∆v σ , (27)

and

u1 =
1
2

m∗ ėp
2 + α (b + kv) ρ(ep) +

1
2

(k + kp) ep
2 +

α m∗ s(ep) ėp , (28)

w = (b + kv) ėp
2 + α (k + kp) ep s(ep) −

α m∗ ṡ(ep) ėp , (29)

where ρ(ep) is given by (3) and its time derivative is
expressed as ρ̇(ep) = s(ep) ėp. The term u1 in (28) can
be rewritten as

u1 =
1
4

[ėp + 2α s(ep)] m∗ [ėp + 2α s(ep)] +
1
4

m∗ ėp
2 −

α2 m∗ s2(ep) + α (b + kv) ρ(ep) +
1
2

(k + kp) ep
2 . (30)

The term s2(ep) in (30) can be replaced by using (4),

u1 =
1
4

m∗ [ėp + 2α s(ep)]2 +
1
4

m∗ ėp
2 +

[
k + kp

2
− α2 m∗

ε2 + ep
2

] ep
2 +

α (b + kv) ρ(ep) . (31)

As 1/ε2 ≥ 1/(ε2 + ep
2), u1 will be positive definite if the

control gains kp and kv in (31) are chosen as

kp >
2 α2 m∗

ε2
− k ,

kv > −b . (32)

The terms s(ep) and ṡ(ep) in (29) can be replaced by using
(4) and (6), respectively,

w =
α (k + kp)√

ε2 + ep
2

ep
2 + [ b+ kv − α m∗ ε2

√
(ε2 + ep

2)3
] ėp

2 . (33)

To ensure a positive definite w, the control gains in (33) must
be selected in such a way that

kp > −k ,

kv >
α m∗

| ε | − b . (34)
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It is possible that the term ∆v σ in (27) is related to a positive
definite function u2 given as

u2 =
1
2

∆ϕT K ∆ϕ . (35)

Differentiating u2 given by (35) with respect to time yields

u̇2 = ∆ϕT K ∆ϕ̇ . (36)

Due to the fact that the parameters ϕ given by (9) are time-
invariant, i.e. ϕ̇ = 0,

∆ϕ̇ = ˙̂ϕ − ϕ̇ = ˙̂ϕ , (37)

where the term ˙̂ϕ is given by (13). The term ∆ϕ̇ in (36) is
therefore replaced by (13),

u̇2 = ∆ϕT K [−K−1 xd σ] ,
= −[xd

T ∆ϕ]T σ ,

= −∆v σ , (38)

where the scalar ∆v is defined in (24).
Theorem 1: For the piezoelectric actuation system de-

scribed by (2), the robust adaptive control law (18) as-
sures the convergence of the motion trajectory tracking with
ep(t) → 0 and ėp(t) → 0 as t → ∞ under the conditions of
(32) and (34).

Proof: It must be noted that for the system described by
(2) with the proposed control law (18), the functions, u 1, u2,
and w, from (31), (35), and (33), respectively, are positive
definite in all possible values of ep(t) and ėp(t) under the
conditions of (32) and (34).

A Lyapunov function u3 is proposed for the closed-loop
system,

u3 =
1
2

meq σ2 , (39)

which is continuous and non-negative. Differentiating u 3

with respect to time yields

u̇3 = meq σ σ̇ . (40)

The term σ̇ in (40) can be derived from (17) and (19),

σ̇ = ẍ − ẍeq , (41)

and (40) is rewritten as

u̇3 = meq (ẍ − ẍeq)σ . (42)

With the closed-loop dynamics (22), the time derivative of
the Lyapunov function (42) becomes

u̇3 = −y − ks σ2 − d |σ | − vhd σ . (43)

Replacing the term y in (43) by using (27) and (38), and
considering (16) and (20), yields

u̇3 = −u̇1 − w − u̇2 − ks σ2 − d |σ | − vhd σ ,

u̇ = −w − ks σ2 − d |σ | − vhd σ ,

≤ −w − ks σ2 − d |σ | + δvhd |σ | ,
≤ −w − ks σ2 − ε |σ | , (44)

where u = u1 +u2 +u3 is a Lyapunov function. This shows
that u → 0 and implies ep(t) → 0 and ėp(t) → 0 as t →

Fig. 1. Piezoelectric actuation experimental research facility

∞. Both the system stability and tracking convergence are
guaranteed by the control law (18) driving the system (2)
closely tracking the desired motion trajectory.

Remark 1: In the implementation of the control law (18),
the discontinuous function σ

|σ | will give rise to control chat-
tering due to imperfect switching in the computer control.
This is undesirable, as un-modelled high frequency dynamics
might be excited. To eliminate this effect, the concept of
boundary layer technique [16] is applied to smooth the
control signal. In a small neighbourhood of the sliding
surface (σ = 0), the discontinuous function is replaced by a
boundary saturation function which is defined as

sat(
σ

∆
) =




−1 : σ < −∆,

σ/∆ : −∆ ≤ σ ≤ ∆,

+1 : σ > ∆,

(45)

where ∆ is the boundary layer thickness, and the robust
adaptive control law (18) becomes

vin = −kp ep − kv ėp + v̂in + fe +

meq ẍeq − ks σ − d sat(
σ

∆
) . (46)

VI. EXPERIMENTAL STUDY

In order to investigate the proposed robust adaptive control
methodology, an experimental research facility has been
established as shown in Fig. 1. The architecture of the
experimental set-up is detailed in the block diagram as shown
in Fig. 2. It consists of a piezoelectric actuator together
with an inbuilt position sensor, an amplifier module, a signal
processing unit, and a control PC comprising a digital-to-
analogue (D/A) board and an analog-to-digital (A/D) board.

The piezoelectric actuator employed is a PI (Physik In-
strumente) multi-layer PZT stacked ceramic translator ca-
pable of displacement of up to 45 µm corresponding to a
range of operating voltage up to 100 V . The piezoelectric
actuator is preloaded 300 N by an internal spring and is
incorporated with a high-resolution strain gauge sensor for
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Fig. 3. Desired motion trajectory

position feedback. The PI amplifier module has a fixed
output gain of 10 providing voltage ranges from -20 to
+120 V . The signal processing unit is used to interface
with the actuator position sensor and is connected between
the position sensor and control PC. A standard desktop
computer is used as the control PC. It is equipped with
a Pentium 4 3.2 GHz processor running on an operating
system capable of hard real-time control. The D/A and A/D
boards within the control PC are of 16-bit resolution, and
they are used to generate the control signal and to acquire
the actuator position, respectively. In the experiments, the
sampling frequency of the control loop is set at 2.5 kHz.

The control experiments serve not only to validate the
theoretical formulation of the control algorithms but also to
examine the effectiveness of the proposed control method-
ology in a physical system. In the experimental study, the
closed-loop system is required to follow a desired motion
trajectory, which is shown in Fig. 3 for position, velocity,
and acceleration. The desired motion trajectory is formed by
segments of quintic polynomials [17] for the implementation
and analysis of the motion tracking and steady-state perfor-
mances of the control system.

For the piezoelectric actuation system described by (2), the
robust adaptive control law (46) is implemented in the control
PC as shown in Fig. 2. With the desired motion trajectory, the
tracking ability of the control system can be closely evaluated
experimentally in the presence of parametric uncertainties,
non-linearities, and external disturbances.

In the experimentation of the proposed control method-
ology, the initial estimate ϕ̂(0) for (13) is chosen to be

zero. The control gains, kp and kv , of (46) are tuned to
the values 5000 (V/m) and 200 (V s/m), respectively. The
diagonal constant matrix K in (13) is selected as K−1 =
6.5 × 105 diag{1, 1, 1, 1}, where the units are (V s4/m3),
(V s2/m3), (V/m3), and (V/m), respectively. The saturation
function s(ep) in (14) is implemented as given by (4). The
arbitrary constant ε in (4) and positive scalar α in (14) are
selected as 1 × 10−6 (m) and 1× 10−2 (m/s), respectively.
Furthermore, the term meq and the boundary layer thickness
∆ of (46) are chosen as 0.1 (V s2/m) and 0.16 (m/s),
respectively. The bound δvhd and positive scalar ε in (20) are
specified as 30 (V ) and 1 (V ), respectively. Lastly, the term
ks in the control law (46) is set to 150 (V s/m). It is assumed
that no external force is applied to the control system and
the term fe in (46) is ignored in the control experiments.

VII. RESULTS AND DISCUSSION

Given the desired motion trajectory as shown in Fig. 3, the
piezoelectric actuator was commanded to travel in a range of
30 µm with a maximum velocity and an acceleration reach-
ing 1.1 mm/s and 0.07 m/s2, respectively. The resulting
piezoelectric actuator positions and estimated velocities are
shown in Fig. 4. Despite parametric uncertainties, nonlinear
effects, and external disturbances in the system, the proposed
control law (46) showed a promising tracking ability. The
error or switching function σ, as shown in Fig. 5, indicates
that the system operated well within the specified boundary
layer thickness ∆, i.e. the system tracked the desired motion
trajectory closely with the error or switching function kept to
a minimum. The position tracking errors are also shown in
Fig. 5. The resulting position tracking errors indicate that
the control law had successfully accommodated the non-
linearities including the hysteresis effect in the control sys-
tem. Furthermore, it was observed that the position tracking
errors, as presented in Fig. 5, were confined within 0.5 µm
during motion and less than 0.03 µm at steady-state. The
control input is shown in Fig. 6. In addition, the effectiveness
of the proposed control methodology is also shown in Fig. 6
in the plot of actual against desired position.

In summary, the proposed robust adaptive control method-
ology for the piezoelectric actuation system is shown to be
stable, robust, and capable of following the desired motion
trajectory under unknown or uncertain system parameters,
non-linearities including the hysteresis effect, and external
disturbances. Implementation of the control methodology
is appropriate and practical as only the control gains and
estimated values of the system parameters are required.

VIII. CONCLUSIONS

A robust adaptive control methodology has been proposed
and investigated for piezoelectric actuation systems to track
specified motion trajectories. Without any form of feed-
forward compensation, this methodology is formulated to
accommodate parametric uncertainties, nonlinear effects, and
external disturbances.

Using the saturation function derived from a special pos-
itive definite function in formulating the robust adaptive
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control methodology, the stability of the closed-loop system
is guaranteed. Furthermore, a promising tracking ability has
been demonstrated in the experimental study.
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