
Gaussian Processes and Reinforcement Learning for Identification and

Control of an Autonomous Blimp

Jonathan Ko∗

∗ Dept. of Computer Science & Engineering,

University of Washington,

Seattle, WA

Daniel J. Klein†

† Dept. of Aeronautics & Astronautics,

University of Washington,

Seattle, WA

Dieter Fox∗ Dirk Haehnel‡

‡ Intel Research Seattle,

Seattle, WA

Abstract— Blimps are a promising platform for aerial
robotics and have been studied extensively for this purpose.
Unlike other aerial vehicles, blimps are relatively safe and also
possess the ability to loiter for long periods. These advantages,
however, have been difficult to exploit because blimp dynamics
are complex and inherently non-linear. The classical approach
to system modeling represents the system as an ordinary
differential equation (ODE) based on Newtonian principles. A
more recent modeling approach is based on representing state
transitions as a Gaussian process (GP). In this paper, we present
a general technique for system identification that combines
these two modeling approaches into a single formulation. This is
done by training a Gaussian process on the residual between the
non-linear model and ground truth training data. The result is
a GP-enhanced model that provides an estimate of uncertainty
in addition to giving better state predictions than either ODE
or GP alone. We show how the GP-enhanced model can be
used in conjunction with reinforcement learning to generate a
blimp controller that is superior to those learned with ODE or
GP models alone.

I. INTRODUCTION AND MOTIVATION

Unmanned aerial vehicles (UAVs) have become a helpful

component for many applications where human operation

is considered unnecessary or too dangerous. Blimps effec-

tively combine the capabilities of airplanes with those of

hot air balloons into one aircraft. This unique combination

of maneuverability and the ability to float with relatively

low power requirements makes a blimp an ideal research

platform for sensor and control technology. Blimps have

been studied in various contexts. So far, blimp controllers

are mainly based on PID controllers [14], [15], [16] or non-

linear dynamic models [1], [2], [3], [5].

System identification is the first step towards designing a

controller for an autonomous blimp, and dynamical systems

in general. A system model describes how the state changes

from one instant to the next. The quality of a model can

be measured by how well it predicts the next state given the

current state and control input. A higher fidelity model results

in improved state estimation and controller performance.

The result of classical dynamic modeling is an ordinary

differential equation which describes the evolution of the

state. The model can be formulated without collecting any

training data, however extensive human knowledge is re-

quired. Another disadvantage of this approach is that the

system noise is generally difficult to model. Gaussian process

(GP) regression models have recently been applied to the

Fig. 1. The left image shows the blimp used in our test environment
equipped with a motion capture system. It has a customized gondola (right
images) that includes an XScale based computer with sensors, two ducted
fans that can be rotated by 360 degrees, and a webcam.

problem of learning dynamic models from training data [4],

[6]. GPs have several key properties that make them ideally

suited to our problem. They are non-parametric, which lets

them model a wide range of dynamical systems. Further-

more, they can automatically learn the smoothness and noise

levels of the underlying system. Finally, they provide a notion

of uncertainty about the learned process. This uncertainty can

be very valuable when learning a controller.

However, standard GPs assume that the process underlying

the data is zero-mean, which is clearly not the case when

learning a model of blimp dynamics. In order to overcome

this problem, we combine dynamical and data-driven model-

ing to form a single GP-enhanced model. The GP-enhanced

model begins with a classical non-linear dynamical model

created by a human expert. The parameters of this blimp

model are learned using ground truth data. Then a Gaussian

process is used to model the residual between the prediction

of the dynamical model and ground truth data. Experiments

with an indoor blimp show that the GP-enhanced model

outperforms both the classical non-linear approach and the

pure GP-based approach. The GP-enhanced model is then

used in reinforcement learning to learn a controller for the

blimp.

This paper is organized as follows. The blimp hardware

testbed used in the experiments is described in Section II. In

Section III, the non-linear dynamics of the blimp are derived.

Our approach to using Gaussian Processes for learning pre-

dictive models is described in Section IV. A blimp controller

is built using reinforcement learning in Section V. Finally,

experimental results illustrating the advantages of the GP-

enhanced model are presented in Section VI.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeB12.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 742

II. HARDWARE TESTBED

The blimp used in the experiments (see Fig. 1) is based on

a commercial 5.5 foot (1.7 meter) blimp envelope [8] with a

custom built gondola. The gondola includes a small XScale

PXA271 based computer running Linux with Bluetooth,

miniSD, and several sensors. The computer is connected to

a servo controller, a motor controller, and a webcam. The

motor controller board is used to control the speed of the

tail motor in both the forward and reverse directions. The

servo controller steers the two servos that rotate the gondola

motors up to 360 degrees. The gondola motors, two ducted

fans (GWS EDF-50), are controlled by two standard ESCs

(Electronic Speed Controller) attached to the servo controller.

The system is powered by two batteries. A 3.7V/200mAh

lithium ion battery supplies the computer and the controllers.

A bigger 7.4V/1200mAh lithium polymer battery drives the

ducted fans, the tail motor, and the servos. The total weight

of the blimp is about 350 grams. Neither the sensors nor the

webcam were used in our experiments.

All experiments are carried out in a room equipped with a

VICON motion capture system. Seven markers were attached

in order to track the blimp in our test environment (see left

image in Fig. 1). The mean measurement error of markers

in the system is about 1cm. The maximum capture rate of

the system is 120Hz, however, jitter on this system is rather

high. The frame rate deviates from the ideal 120Hz with a

standard deviation of 12Hz. The system outputs positions of

the markers only. These marker position values are converted

to blimp states by the proper transformations. Velocities for

the states are obtained by a smoothed calculation of the slope

between sample points.

III. NONLINEAR BLIMP DYNAMICS

The non-linear deterministic model of the blimp derived

in this section is based on standard dynamic and aeronautic

principles. The objective is to create an autonomous non-

linear plant model of the form,

ṡ(t) = fγ(s(t),u(t)), (1)

were s(t) is the state, u(t) is the control, and γ is a vector

of constants that includes the added mass and inertia, drag

coefficients, center of mass, and volume. The state vector,

s =
[

pT , ξT ,vT ,ωT
]T
, (2)

consists of position pT = [x, y, z], orientation ξT = [φ, θ, ψ]
parametrized by roll φ, pitch θ, and yaw ψ, translational

velocity vT = [U, V,W], and angular velocity ωT =
[P,Q,R]. A forward-right-down body-fixed reference frame

is attached to the center of buoyancy of the blimp as shown

in Fig. 2. The state is measured with respect to a traditional

North-East-up inertial reference frame, however the velocity

components are expressed in the body-fixed frame because

the mass and inertia matrices are constant with respect to this

frame. Note that these matrices are not necessarily diagonal

due to added mass effects, which account for accelerating

the surrounding air.

Fig. 2. Body fixed frame of reference for the blimp. Forwards is body X
(red), right is body Y (green), and down is body Z (blue).

The gondola motors share a common shaft and thus always

point at the same angle, µ. Further, the blimp is set up so

that both gondola motors receive the same motor command.

Appropriately, the blimp has a total of three control inputs,

u =
[

ut, ug, uµ

]T
, (3)

which are the commands sent to each respective motor.

A detailed derivation of the rigid body dynamics of blimp-

like vehicles can be found in [3], [13]. The resulting model

has the form,

ṡ =
d

dt

p

ξ

v

ω

=

Re
bv

H(ξ)
M−1 (

∑

Forces − ω ×Mv)
J−1 (

∑

Torques − ω × Jω)

. (4)

Here, Re
b is the rotation matrix from body-fixed to inertial

reference, and H is the Euler kinematical matrix.

The sum of forces acting on the blimp system in (4) is

evaluated in the body frame and consists of terms for each

motor, gravity, buoyancy, and aerodynamics. The gravity and

buoyancy forces can be computed directly,

Forcegravity = (Re
b)

T [0, 0,−mg]T (5)

Forcebuoyancy = (Re
b)

T [0, 0,mVρair]
T , (6)

where m and V are the mass and volume of the blimp,

respectively, ρair is the density of air, and g is the gravi-

tational constant. Following typical engineering practice, the

remaining force terms are modeled parametrically:

Forceaero drag = −Cd‖v‖v (7)

Forcegondola motors = fg(ug)[cos(µ), 0,− sin(µ)]T (8)

Forcetail motor = ft(ut)[0,−1, 0]T . (9)

A quadratic model was used for the mapping from the motor

command to the resulting force for the gondola motors, fg,

and the tail motor, ft.

Each of the above forces causes a torque about the center

of buoyancy, about which the sum of torques is evaluated.

Thus, each force term creates a corresponding torque term of

the form Torquei = ri ×Forcei. Here ri is a vector from the

center of buoyancy to the application point of the ith force.

The only new term is the rotational drag, which is modeled

as a pure moment,

Torqueaero rot = −Crω, (10)

WeB12.4

743

where Cr is a drag coefficient. The unknown parameter

vector, γ, includes all coefficients and vectors that cannot

be measured directly. These parameters were learned by

minimizing point-wise differences between simulated states

and ground truth data from the motion capture system.

IV. LEARNING PREDICTIVE MODELS USING GAUSSIAN

PROCESSES

A. Preliminaries

Gaussian processes (GP) are a powerful, non-parametric

tool for regression in high dimensional spaces. Key advan-

tages of GPs are their ability to provide uncertainty estimates

and to learn the noise and smoothness parameters from train-

ing data. More information can be found in [12]. A GP can be

thought of as a “Gaussian over functions”. More precisely,

a GP describes a stochastic process in which the random

variables, in this case the outputs of the modeled function,

are jointly Gaussian distributed. A Gaussian process is fully

described by its mean and covariance functions.

The training set D = {(x1, y1), (x2, y2), ..., (xn, yn)} is

assumed to be drawn from the noisy process

yi = f(xi) + ǫ , (11)

where xi is an input vector in R
d and yi is a scalar output

in R (extension to multiple outputs is possible). The noise

term ǫ is drawn from N (0, σ2). For convenience, the inputs

are aggregated into a matrix X = [x1,x2, ...,xn]. The

outputs are likewise aggregated, y = [y1, y2, ..., yn]. The

joint distribution over the noisy outputs y given inputs X
is a zero-mean Gaussian, and has the form,

p(y|X) = N (0,K(X,X) + σ2

nI), (12)

where K(X,X) is the kernel matrix with elements Kij =
k(xi,xj). The kernel function, k(x,x′), is a measure of the

“closeness” between inputs. The term σ2

nI introduces the

Gaussian noise and plays a similar role to that of ǫ in (11).

The squared exponential is a commonly used kernel func-

tion and will be used in this paper. It is,

k(x,x′) = σ2

f exp((−
1

2
(x − x′)W (x − x′)T)), (13)

where σ2

f is the signal variance. The diagonal matrix W
contains the length scales for each input dimension. The

value of Wii is inversely proportional to the importance of

the i-th input dimension. Learning the matrix W can thus be

used for automatic relevance determination (ARD) [9].

Given a set of test inputs X∗, one would like to find the

predictive outputs f∗. The noisy training outputs y and the

test output f∗ are jointly Gaussian:

p(f∗,y|X∗, X) = N

(

0,

[

K(X∗, X∗) K(X∗, X)
K(X,X∗) K(X,X) + σ2

nI

])

(14)

Since y is known, this Gaussian can be conditioned on y to

obtain the predictive distribution for X∗

p(f∗|y, X∗, X) = N (µ,Σ), (15)

where

µ = K(X∗, X)[K(X,X) + σ2

nI]
−1y (16)

Σ = K(X∗, X∗)

−K(X∗, X) [K(X,X) + σnI]
−1K(X,X∗). (17)

These equations show that the mean function is a linear

combination of the training output y, and the weight of each

output is directly related to the correlation between X∗ and

the training input.

The parameters of the kernel function (13), θ =
[W,σf , σn], are called the hyperparameters of the Gaussian

process. These hyperparameters can be learned by maximiz-

ing the log likelihood of the training outputs given the inputs,

θmax = argmax
θ

{log(p(y|X,θ))} . (18)

The log term in (18) can be expressed as

log(p(y|X) = −
1

2
yT (K(X,X) + σ2

nI)
−1y

−
1

2
log |K(X,X) + σ2

nI| −
n

2
log 2π.

(19)

B. GP Modeling of Discrete Time Dynamic Processes

A discrete time dynamic process can be thought of as a

series of states indexed by time and can be written as

s(k + 1) = s(k) + g(s(k),u(k)), (20)

where k is the time index and g is a function which describes

the dynamics of the system given the current state s and

control inputs u. A Gaussian process can be used to model

this system by learning the function g based on training data

consisting of a sequence of observed states and controls:

xk = [s(k),u(k)] (21)

yk = g(s(k),u(k)) ≡ s(k + 1) − s(k). (22)

As a results, the GP learns to predict the delta between two

consecutive states conditioned on the previous state and the

control input.

C. Sampling Trajectories from a Gaussian Process

Once the parameters of a GP are learned from training

data, the GP can be used to simulate the evolution of the

dynamic process. This is done by sequentially sampling

states from the predictive distribution.

To see, assume that we have training data X and y

generated according to (21) and (22), and an initial state

and control input giving x̂0 = [̂s(0),u(0)]. The state at

time 1 is then given by ŝ(1) = ŝ(0) + ŷ0, where ŷ0 is the

GP prediction based on the training data and initial state.

The predictive distribution p(ŷ0|y, x̂0, X) is Gaussian with

mean and variance given by (16) and (17), respectively (with

X∗ replaced by x̂0). Sampling an instance of ŷ0 from this

distribution provides the information needed to generate the

state ŝ(1). A new control input u(1) along with ŝ(1) can

then used to generate ŝ(2) in a similar way.

This process can be iterated until a complete trajectory is

sampled. However, care has to be taken that the correlation

between consecutive data points is considered. To do so, one

needs to condition future points on the points sampled so far.

WeB12.4

744

This can be done elegantly by adding already sampled points

to the training data X and y, thereby growing the kernel

matrices and vectors used in the predictive distributions

specified by (16) and (17). As a result, if enough trajectories

are sampled from a particular state, the distribution of

endpoints of these trajectories will properly represent the real

distribution of endpoints.

D. Model Enhancement using the Deterministic Model

So far, the evolution of the dynamic system is represented

by the Gaussian process alone. There are some drawbacks

to this technique. Because there is a zero mean assumption

in the GP, test states that are far away from the training

states will have outputs that tend towards zero. This makes

the choice of training data for the GP very important.

However, the deterministic model developed in Section III

has prediction quality which is independent of the location of

the training data. The deterministic model can be combined

with the GP model to give more accurate state predictions.

The dynamic system equation then becomes,

s(k + 1) = s(k) + f(s(k),u(k)) + g(s(k),u(k)), (23)

where f describes the change in state given by the determin-

istic model. The function g, which is modeled with a GP, is

now only responsible for describing the residual between the

ground truth data and the deterministic non-linear model. To

generate training data for the GP, we again use a sequence

of observed states and controls. This sequence is first used

to learn the parameters of the non-linear function f . The

training data for the GP is then given by xk = [s(k),u(k)]
and yk = s(k + 1) − s(k) − f(s(k),u(k)).

V. AUTONOMOUS BLIMP CONTROL USING

REINFORCEMENT LEARNING

Reinforcement learning based on policy search is fre-

quently used in conjunction with a simulator to circumvent

collecting large amounts of empirical data [10]. Simulator ac-

curacy and speed as well as clever controller parametrization

are the main factors in successful reinforcement learning.

The controller must be flexible enough to learn complicated

behavior, yet be simple enough to learn in a reasonable

amount of time. In this section, we propose a parametrized

yaw controller for the blimp. The objective of this controller

is to steer the blimp from any yaw and yaw rate to a goal

yaw, ψ∗, with zero yaw rate. While more complicated tasks

could have been considered, this task was chosen to highlight

the improvement offered by the GP-enhanced model.

Artificial Neural Networks (ANNs) are often chosen as a

basis for controller design [11]. In this setting, the parameters

of the controller are the weights of the neural network. If the

desired controller behavior is well understood, however, then

a more specific controller model can be easier to learn than

a very general ANN model. With this in mind, the approach

to controller parametrization taken here is based on linear

time-optimal control theory and common sense. The optimal

−135 −90 −45 0 45 90 135

−45

−30

−15

0

15

30

45

Yaw (deg)

Y
a

w
 R

a
te

 (
d

e
g

/s
e

c
)

Goalt=0

t=3
t=6

k=1

k=4

k=16

k=18

u=−1

u=0

u=1
Continuous time

Discrete time

Fig. 3. Yaw rate vs. yaw is shown for continuous and discrete time
simulations of the dynamics (1) using the continuous time optimal controller
(with a zero order hold in the discrete time case). A time step of dt = 0.8s

was chosen to exaggerate the overshooting problem.

control problem is formulated for the second order linear

approximation of the yaw dynamics,

d

dt

[

ψ

ψ̇

]

=

[

0 1
0 −Kdrag

] [

ψ

ψ̇

]

+

[

0
Kpos

u

]

upos
t +

[

0
Kneg

u

]

uneg
t , (24)

where ψ is the yaw error (the goal yaw, ψ∗, is taken to be

zero without loss of generality) and ψ̇ is the yaw rate. This

model is a decent approximation for small pitch and roll

angles. All gains are positive and two gains are needed for

the tail motor because it is stronger in one direction than the

other. If the tail command, ut, is positive then upos
t = ut

and uneg
t = 0 (and vice versa). The tail motor command is

limited to ut ∈ [−1, 1].
The cost functional in the optimal control formulation,

J(T, u) =

∫ T

0

ψ(τ, u(τ))2 + wψ̇(τ, u(τ))2dτ, (25)

is minimal when the control drives yaw error and yaw rate

to zero as fast as possible. The behavior can be adjusted

by the scaling parameter w. The final time, T , is chosen

to ensure the integrand can go to zero before T for realistic

initial conditions. Linear optimal control theory suggests that

with limited control authority, the tail motor should be run

at full strength in a direction that depends on which side of

a switching curve the state lies. An analytical expression for

the switching curve can be found by solving the ODE (24)

backwards in time from the origin with either full left or right

control. The resulting controller is shown in the shading of

Fig. 3.

This “optimal” controller works well on a continuous time

system, however, it does a poor job of controlling yaw on

the real blimp. One primary reason for this is that the blimp

controller runs in 1/4sec discrete time. The blimp state

tends to drift far across the switching curve before actually

switching the control, resulting in overshooting. This can

be seen in the comparison of continuous and discrete time

simulations overlaid on Fig. 3. A second reason for poor

performance is that the linear model does not account for

non-linearity or noise.

The parametrized controller inspired by the continuous

time optimal controller has a total of four parameters.

WeB12.4

745

TABLE I

PREDICTION QUALITY (RMS ERROR)

Propagation p(mm) ξ(deg) v(mm/s) ω(deg/s) Time(s)
method

RK 7.6 0.55 25.1 2.18 0.025
ODE 7.6 0.55 25.3 2.11 0.289
RKGP 1.0 0.10 4.2 0.38 0.036
ODEGP 1.0 0.10 4.2 0.36 0.338
GPonly 1.3 0.15 5.3 0.81 0.012

The first three parameters are the gains in (24). The final

parameter determines the smoothness of the controller near

the switching curve. A smooth transition can alleviate the

overshooting problem, see Fig. 3, caused by discrete time.

Smoothing is achieved via a hyperbolic tangent function

whose slope is determined by the fourth parameter.

Reinforcement learning based on policy search is used to

find a locally stationary parameter set. Learning is initialized

with hand selected parameters. Each set of parameters is

evaluated by summing the integrand of the cost functional

(25) along simulated trajectories. Note that multiple trajec-

tories are often needed because the initial conditions are not

fixed and because the simulation may include noise. When

the model does include noise, the seed of the random number

generator is fixed in accordance with PEGASUS [10].

VI. RESULTS

To test various aspects of our approach, the blimp is flown

in the motion capture lab described in Section II. To learn

predictive models of the blimp that are independent of the

blimp’s location and yaw in the lab, we removed all absolute

coordinates from the blimp states and learn prediction models

solely based on pitch, roll, and velocities represented in the

blimp’s coordinate frame.

Gaussian process calculations were done using Lawer-

ence’s FGPLVM package for Matlab [7]. The hyperparamters

of the Gaussian process were optimized using a conjugate

gradient optimization. We use the full Gaussian process with

no approximations. Outputs from the Gaussian process are

multivariate in that a single Gaussian process is used for

calculating all output dimensions of the predictive model.

All experiments use a discretization period of 1/4sec.

A. Comparing Prediction Quality

This experiment is designed to test the prediction quality

of the various models. The blimp is first flown to collect

training data. This data is used to learn optimal parameters

for the non-linear model. Additionally, the GP was used

to learn residuals between the predictions of the non-linear

model and the ground truth. A total of ∼ 1000 training points

are used here.

Prediction quality is assessed on additional test trajecto-

ries. From these trajectories we randomly choose states and

predict the state one second into the future using different

methods. The predicted state is then compared to the true

state provided by the motion capture system. To perform

prediction based on the non-linear model, we use Runge-

Kutta (RK) and Matlab’s ode45 (ODE), which are different

Fig. 4. RKGP trajectory prediction is much closer to ground truth trajectory.

numerical integration methods. RK is an extremely fast

approximation, and ode45 is less efficient but offers high

accuracy using variable step sizes with tolerance checking.

RKGP and ODEGP are mean predictions using the GP-

enhanced approach to propagate the state of the blimp.

Finally, a Gaussian process (GPonly) is used to predict the

entire dynamics of the system - the non-linear model is not

used at all. The training output learned by the GP in this case

is the difference between successive ground truth states.

The results are summarized in Table I. The different

columns present the root mean squared error of different

components of the state, averaged over ∼ 250 one second

predictions. The first two rows show the accuracy using the

numeric integration methods. The results using ODE are very

similar to the results using RK only. The ODE predictor

however takes on average 10 times longer than RK. We thus

omit the ODE predictor from the other experiments. Results

for prediction incorporating the GP (rows 3 and 4) show

that learning residuals with the GP significantly improves

prediction quality. The GPonly result shows that the zero

mean Gaussian process does not fully extract all relevant

aspects of the dynamical system from the training data. A

likely source of error is also that the predictions of GPonly

go to zero for samples drawn further from the training data.

Longer term prediction quality is illustrated in Fig. 4,

which shows several sample turns of the blimp running the

same series of motor commands. The trajectory predicted by

RK deviates far from the real/ground truth trajectory whereas

the RKGP trajectory matches the ground truth very well.

B. Trajectory Sampling with Noise

By incorporating noise into the GP predictions, trajectories

can be sampled that have the same characteristics as real

trajectories. To evaluate this capability, the blimp is run

from extremely similar initial starting conditions (within

human error) with the same motor commands for twenty

trials. Using the starting condition and motor commands,

the same trajectories are simulated either with RKGP using

only the mean prediction, or with RKGP using both the

mean prediction and its accompanying correlated noise (see

Section IV-C). The distribution of the endpoints is then

compared to the ground truth, as summarized in Table II. As

expected, using the noise from the GP significantly increases

the similarity between real and predicted data. Ignoring noise

WeB12.4

746

TABLE II

ENDPOINTS OF TRAJECTORIES

Mean Yaw Mean Yaw σ Yaw σ Yaw
Simulator (deg) Vel (deg/s) (deg) Vel (deg/s)

RKGP with noise 5.6 2.5 7.37 2.95
RKGP no noise 5.1 2.5 3.81 1.83
Ground Truth 5.8 .82 8.18 2.73

TABLE III

OPEN LOOP TURN ERROR ON REAL BLIMP

Mean Yaw Mean Yaw σ Yaw σ Yaw
Simulator (deg) Vel (deg/s) (deg) Vel (deg/s)

RKGP 7.21 2.78 5.31 1.54
RK 31.1 13.2 5.58 1.44

results in underestimating the spread of the endpoints.

C. Reinforcement Learning for Blimp Control

Using the reinforcement learning techniques described in

Section V, policies are learned for a 90◦ left turn, using

both RK and RKGP for simulation. Each learned policy

generates a sequence of motor commands that is transmitted

to the blimp and executed. This is done in an open loop

manner with no tracking information being sent back to

the controller. The deviation from zero degree absolute yaw

and zero degree/sec yaw velocity is recorded after the last

command is sent. From Table III, the policy learned using

RKGP is shown to be superior to the policy learned with

RK alone. Several sample trajectories on the real blimp are

shown in Fig. 5.

VII. CONCLUSION

We showed how to model the dynamics of an autonomous

blimp using Gaussian process regression. GPs have several

properties that make them ideally suited to this problem.

They are non-parametric, which lets them model a wide

range of dynamical systems. Furthermore, they can automati-

cally learn the smoothness and noise levels of the underlying

process, and they provide a notion of prediction uncertainty.

We performed various experiments controlling and pre-

dicting the motion of a real blimp in a motion capture lab.

These experiments show that our GP model has significantly

better predictive capabilities than standard non-linear models.

The experiments also showed that sampling noisy trajectories

from the GP model results in highly realistic simulations.

Finally, we demonstrated that blimp control policies can be

learned using reinforcement learning along with simulations

provided by the GP model.

The performance of the GP prediction can be further

improved by combining the GP with a non-linear model.

In this combination, the GP learns to model those parts

of the process dynamics that are not captured by the non-

linear model. The resulting technique combines the benefits

of both approaches: It incorporates prior knowledge about

the dynamic process via the non-linear model and applies

an extremely powerful regression model to learn improved

predictions and noise models.

In future work, we will investigate GPs in the context of

active experimentation, where the uncertainty of the GP is

−90 −45 0 45

0

10

20

30

Yaw (deg)

Y
a

w
 R

a
te

 (
d

e
g

/s
e

c
)

RKGP

RK

Fig. 5. Real runs with a policy learned using RKGP shows much higher
accuracy than the policy with RK alone The goal is at (0,0).

used to determine which type of control is needed to min-

imize the uncertainty in the predictive model. Furthermore,

we will incorporate the GP model into a Kalman filter to

track the blimp in a large-scale indoor environment.

ACKNOWLEDGMENT

This work was supported by the NSF under grant numbers

IIS-0093406 and BE-0313250, and by DARPA’s ASSIST and

CALO Programs (contract numbers: NBCH-C-05-0137, SRI

subcontract 27-000968).

REFERENCES

[1] Y. Bestaoui and S. Hima. Some insight in path planning of small
autonomous blimps. Archives of Control Sciences, Polish Academy of

Sciences, 11(3):21–49, 2001.
[2] T. Fukao, K. Fujitani, and T. Kanade. Image-based tracking control of

a blimp. Proc. of IEEE Conference on Decision and Control, 2003.
[3] SBV Gomes and JG Ramos Jr. Airship dynamic modeling for

autonomous operation. Proc. of the IEEE International Conference

on Robotics & Automation (ICRA), 4, 1998.
[4] D. Grimes, R. Chalodhorn, and R. Rao. Dynamic imitation in a

humanoid robot through nonparametric probabilistic inference. In
Proceedings of Robotics: Science and Systems, 2006.

[5] E. Hygounenc, I.K. Jung, P. Souères, and S. Lacroix. The Autonomous
Blimp Project of LAAS-CNRS: Achievements in Flight Control and
Terrain Mapping. The International Journal of Robotics Research,
23(4-5):473–511, 2004.

[6] J. Kocijan and R. Murray-Smith. Switching and Learning in Feedback

Systems, chapter Nonlinear Predictive Control with a Gaussian Process
Model. Lecture Notes in Computer Science. Springer Verlag, 2005.

[7] N.D. Lawrence. http://www.dcs.shef.ac.uk/˜neil/fgplvm/.
[8] RCGuys Radio Control Models. http://www.rcguys.com.
[9] R. M. Neal. Baysesian Learning for Neural Networks. Lecture Notes

in Statistics 118, New York, 1996.
[10] A. Y. Ng and M. Jordan. PEGASUS:A policy search method for large

MDPs and POMDPs. In Proc. of the Conference on Uncertainty in

Artificial Intelligence (UAI), pages 406–415, 2000.
[11] A.Y. Ng, H.J. Kim, M.I. Jordan, and S. Sastry. Autonomous helicopter

flight via reinforcement learning. Advances in Neural Information

Processing Systems (NIPS), 16, 2004.
[12] C.E. Rasmussen and C. Williams. Gaussian Processes for Machine

Learning. MIT Press, Cambirdge, Massachusetts, 2006.
[13] B.L. Stevens and F.L Lewis. Aircraft Control and Simulation. John

Wiley & Sons, Inc, New York, NY, 1992.
[14] S. van der Zwaan, A. Bernardino, and J. Santos-Victor. Vision based

station keeping and docking for an aerial blimp. Proc. of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2000.
[15] G.F. Wyeth and I. Barron. An Autonomous Blimp. Proc. IEEE Int

Conf. on Field and Service Robotics, pages 464–470, 1997.
[16] H. Zhang and JP Ostrowski. Visual servoing with dynamics: control

of an unmanned blimp. Proc. of the IEEE International Conference

on Robotics & Automation (ICRA), 1, 1999.

WeB12.4

747

