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Abstract—We are in the process of building a biped robot
capable of highly dynamic maneuvers. Implementing such ma-
neuvers in real-time entails heuristic controllers founded on a
grasp of the dynamics. We present here an analysis of the
mechanics of biped running and a control strategy for stable

running. By expounding on the direction of the ground-reaction
forces and utilizing an impulse representation of the contact
phase, we present a tractable model of the mechanics. This model
motivates the control strategy and provides a basis for extending
the strategy to more general systems. The control strategy consists
of a simple set of three rules, where the key rule considers the
leg-length upon liftoff. This rule offers a simple control for both
steady-state and accelerated running. We present the equilibrium
running index as a characterization of biped running. It relates
the parameters affecting running and has broad applicability to
biological and robotic systems. The control strategy was verified
in simulation and the results are presented.

I. INTRODUCTION

Raibert introduced his pioneering work in dynamic legged

locomotion in the early 1980’s with his series of hopping,

telescoping legged robots [1]. He was able to achieve his

breakthrough by way of a control strategy noteworthy for its

simplicity; it controlled the forward velocity, hopping height,

and body posture with simple, independent rules. This strategy

was gleaned from the dynamics of the Spring Loaded Inverted

Pendulum (SLIP) model that served as the basis for both his

design and control. The SLIP model consists of a massless,

spring-operated leg connected to the center of mass (CM) of

the body. It has been widely utilized in the study of both

biological and robotic systems [2]–[4]. Twenty years later,

Raibert’s robots still set the standard in dynamic motion for

bipeds.

Others have also achieved running gaits in their robots.

The trio of QRIO, ASIMO, and HRP, are the most advanced

existing robots and have reported successful running [5], [6].

Their running stability, however, are all of the ZMP-type in

which the center of pressure is maintained in the interior of

the foot. In other words, they run with flat feet. Achieving

a flight phase, a common definition for running, is possible

with the ZMP criteria; however, the range of dynamics is

constrained [7]. Fully dynamic motion cannot be constrained

from gaining the unactuated degree of freedom represented by

the foot tipping on a point or edge.

Two other robots and their strategies have targeted this fully-

dynamic, underactuated running. The Iguana robot runs with

sinusoidal inputs to the hip; however, it has effectively no body

inertia thus allowing for such a simple controller [8]. Rabbit,

on the other hand, is to our knowledge the only significant

robot with articulated legs that has achieved fully dynamic

running. Rabbit has point feet and implements a model-based

hybrid controller [9].

The key to Raibert’s success lies in his exploitation of the

SLIP dynamics with his simple algorithm. A broader study of

the mechanics of running offers the potential for a similarly

simple strategy with wider applicability.

Our aim is to present a physical model of running and a

simple control strategy that can allow for real-time, highly-

dynamic motion on a real system unconstrained by the SLIP

model. We are seeking a heuristic controller embodied in a

set of simple rules that are inspired by the physics and exploit

the dynamics of the system. The strategy should extend to a

wider range of systems in which the legs are articulated, the

CM does not coincide with the hip, and the actuation is varied.

We will investigate the mechanics of biped running inde-

pendent of any control algorithm, and present principles and

measures for equilibrium running. We then introduce a control

strategy that achieves stable running. The system was studied

extensively in simulation on a seven degree of freedom (DOF)

planar model with telescoping legs. These results are presented

here. It was further studied on a more general, articulated sys-

tem with multiple actuation schemes—indicating its robustness

and potential for physical implementation. This study is part of

our on-going work to build a robotic biped that can implement

highly-dynamic maneuvers.

II. THE DYNAMICS OF THE GRF

The GRF for each leg upon impact is heavily influenced

by the dynamics of the multi-body system. Determining an a-

priori relation for the magnitude or direction of the GRF would

offer a great tool for deriving a simplified control strategy. Fig.

1 shows the free-body diagram of the leg system upon impact.

The dynamic equation for the leg at impact follows. We

assume that the ground contact is a point contact imparting
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Fig. 1. The free-body diagram for a general leg system. External contact
forces are applied at the hip and ground contact.

no moments.

R + F = mlaG − mlg (1)

rGR × R + rGF × F = d
dt

HG − τ hip (2)

R and F are the reaction forces at the ground and hip

respectively. τhip is the torque applied at the hip. ml is the

mass of the leg. aG is the acceleration of the CM of the leg, G.

g is the acceleration of gravity. HG is the angular momentum

about the CM. And the position vectors from G to the point

of action of force i are represented by rGi.

Often, researchers assume massless legs in the dynamic

analysis of legged systems. The validity of this assumption

is questionable, particularly in biped systems where each leg

carries an even greater proportion of the total inertia. During

impact in high-stress maneuvers, however, this assumption

gains accuracy. Running is one such maneuver. At that instant,

the impact forces become much greater than the inertia and

gravity terms. If the hip torque is reduced, the leg system has

the potential to approximate a static two-force member, where

R and F become equal and opposite, and coaxial.

A human generates peak impact forces during running of

2-3 times the total body weight [10]–[12], and robotic systems

generate forces around 3-5 times the body weight [13]. Using

anthropomorphic proportions, the total mass is about six times

the mass of one leg. This indicates an impact force around 20

times greater than the gravitational force. Similarly, even if

the leg acceleration reaches values as high as 2g, the inertial

force would still be 10 times less than the impact force. We can

thus expect the net gravitational and inertial forces to represent

merely 5-10% of the impact force.

Under such conditions, we can safely neglect the inertia,

gravity, and torque terms—approximating a static two-force

member. Hence, the ground reaction force R acts principally

along the axis of the leg.

This assumption will prove very useful in designing a

control strategy to achieve running. Data on animal running

supports this assertion and has been displayed on a wide vari-

ety of animals from bipeds to quadrapeds and even hexapeds
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Fig. 2. The Biped Running Model is a simplified model of a general biped
suited for running analysis. It is the simplest structure that still captures the
mechanics of running for a general biped. The configuration variables are
shown to the right. All positive angles are counter-clockwise.

[14]–[17]. Although this behavior has been well known in

animals, its source has not been understood or addressed [4].

We show here that it is dominated by the inherent dynamics

of the system rather than active control.

This behavior can be employed in a robotic system by

recognizing the following principles. First, it is primarily

a product of the dynamics of running. Second, it can be

enhanced by both reducing the hip torques and restraining the

internal motion of the leg.

III. THE BIPED RUNNING MODEL

Based on this assumption of axial thrusts, we will work

with a simplified model of a biped with telescoping legs.

The analysis of the previous section characterizes the external

physics of the leg. Thus, we will deal with this two DOF

virtual leg in lieu of a general articulated system to simplify

the internal kinematics and dynamics of the leg.

We will refer to this model as the Biped Running Model,

shown in Fig. 2. It consists of three rigid bodies, representing

the torso and two legs, connected by a revolute joint at the hip.

The CM’s of the bodies are at fixed displacements from the

hip. The feet are point-masses connected by prismatic joints

to the legs. G represents the CM of the entire system.

We will assume the leg DOF are fully active, and thus R can

be arbitrarily set. We assume that the GRF profile is symmetric

about the middle of the stance. In this study here, we will

chose to apply a constant magnitude R.

Actuating the desired R in this model is quite simple;

it becomes more of a challenge in an articulated system.

The desired R will be actuated by setting the prismatic

actuator force of the contact leg equal to R. This is a good

approximation since the unsprung mass that is the foot is

negligible.
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Fig. 3. Steady-state running has the CM mirror a conservative ball which
rebounds from the ground impact with the linear momentum reflected about
the horizontal.

IV. STEADY-STATE RUNNING

Equilibrium here is achieved over the cycle of a single step.

Each step includes a contact phase and the subsequent flight

phase.

We will control the global CM of the system, G, using the

impulse-momentum relationship. The two legs are maintained

in opposition during both the contact and flight phases. This

counters the pitch moments during swinging. It also stabilizes

the position of G. With this rule, G will be approximately fixed

in position relative to the bodies; it will shift only slightly up

and down the center line.

The external impulse needed to maintain the periodic mo-

tion and counter the vertical impulse of gravity can only be

applied during the contact phase. If the biped enters the contact

phase with a CM velocity vi, then steady-state is maintained

by:

1) Keeping the horizontal velocity constant (vxf = vxi).

2) Reversing the vertical velocity (vzf = −vzi).

This is akin to a ball bouncing conservatively as shown in

Fig. 3. The subscript i refers to the initial instant of ground

contact, i.e. touchdown. The subscript f refers to the final

instant of contact, i.e. liftoff. Note that we are not modelling

the system as a lumped-mass; rather, we are considering the

CM and regulating its relative position using the internal

configuration of the system.

If iR is the net impulse from R over the contact phase, the

desired net impulse at each stance is,

iRx = 0 (3)

iRz = 2mvzi. (4)

The subscripts x and z represent the horizontal and vertical

components respectively.

Given a profile for R, a solution can be found for the initial

and final angle needed to achieve the desired impulse iR. The

assumption that R will be actuated as a constant has already

been stated. The next step is to determine its magnitude.

We will now propose a control strategy to achieve steady-

state, constant velocity running. The equilibrium state pro-

duced by this strategy will be analyzed. Then we will turn to

the strategy for accelerated running.

V. THE CONTROL STRATEGY

The proposed control strategy for the contact phase consists

of the following three rules.

1) Maintain an upright torso: qa = 0.

motion

x

z

vxivxi

vzi

vzi

vx,min

R

θo

iR

Fig. 4. Equilibrium running results in a symmetric condition for the contact
phase. The symmetry is reflected in the velocities, configuration, and contact
forces. The velocity of the hip is approximately equal to the velocity of the
CM during contact since the torso motion is regulated. The CM shown here
is for the entire system (G).

R

l0

θoθo

iR

Fig. 5. The symmetric contact for equilibrium running is shown here in
the body reference frame. The distribution of contact forces results in a net
impulse that is vertical and points through the global CM. In this paper, we
will be actuating a constant ground reaction force.

2) Operate the swing leg in opposition to the contact leg:

qc = −qb.

3) Sweep the contact leg through an equal leg-length:

lbf = lbi.

Rule 3 entails measuring the leg-length upon touchdown and

releasing from the ground once the length reaches that initial,

touchdown length. This rule is the key to the stability of the

system. At equilibrium running, this strategy will produce a

symmetrical condition for the contact phase.

Under the right conditions, the leg will reach the initial

length at an equal angle to the initial angle, sweeping a

symmetrical range of 2θo. The angle of the leg with respect to
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the vertical is represented by θ, and θo is the initial angle. Fig.

4 shows this equilibrium state and its symmetry. G is shown

lying on the line of symmetry of the biped. The leg starts at

the length lo and releases when the length reaches lo again.

This strategy aims to create a vertical impulse that points

through G. Fig. 5 shows the distribution of the forces over

the contact phase in the reference frame of the body. The

strategy regulates G by holding it vertically above the hip. It

then swings the leg through a symmetrical span to create a

vertical net impulse pointing through the hip and hence G.

As a result of the symmetry, the resultant impulse iR is

purely vertical. The constant magnitude of R can then be set to

achieve the desired vertical impulse. The next section derives

a relation that solves for this desired magnitude.

The result here bears a resemblance to Raibert’s strategy

and his utilization of symmetry and the neutral point. The

difference is that this strategy is based on an analysis of the

external forces and CM motion, rather than the SLIP model.

This impulse-momentum analysis offers it the potential for

wider applicability.

VI. THE EQUILIBRIUM RUNNING INDEX (ERI)

A. Derivation of the Index

We will now solve for the value of R needed for this

equilibrium state. First, we will determine the contact time by

considering the vertical motion. The force-balance equation

for the vertical direction is,

R cos(θ) − mg = maz (5)

where az is the vertical acceleration of G.

The leg will reach angles θ of at most 20◦ − 30◦ during

running, making the assumption of a constant vertical acceler-

ation valid. Let cos(θ) = 1, introducing average errors of less

than 5%. The resulting acceleration is,

az =
R

m
− g. (6)

The vertical velocity starts at vzi and reverses direction at

the endpoint as shown in Fig. 4. Since a constant acceleration

has been assumed, the contact time tc can be determined as

follows.

tc =
2vzi

az

tc =
2mvzi

R − mg
(7)

Now we will solve for the same contact time considering the

horizontal motion instead. The horizontal velocity vx follows

a periodic curve with only minor deviations from its mean.

Remaining constant during flight, the speed drops slightly

during contact only to return to the same initial value. The

velocity vx can thus be replaced safely with its average, ηvxi.

η is a positive constant of slight variation across conditions;

it can be shown that a good approximation is η = 0.9.

The vertical distance covered is 2lo sin(θo), resulting in a

contact time of,

tc =
2lo sin(θo)

ηvxi

. (8)

Solving for (7) and (8) produces the following equilibrium

relationship between the GRF, the leg-angle, and the touch-

down velocities of the CM.

(R − mg) lo sin(θo) = ηmvxivzi (9)

The relation can be simplified with the small-angle approxi-

mation, sin(θo) = θo. This introduces errors of less than 5%

for the angles of interest.

loθo (R − mg) = ηmvxivzi (10)

We will now define the equilibrium running index, e, as

a measure of this equilibrium condition.

e = η
mvxivzi

loθo (R − mg)
(11)

A measure of e = 1 indicates the equilibrium state. It will

prove to be a great tool for characterizing the running behavior,

studying the stability of the gait, and deriving design criteria

for running performance.

Koechling follows a similar analysis to reach (7) and (8)

[18]. He does not, however, combine them for a single measure

as shown here.

B. Relevance of the Index

The ERI is essentially a ratio of the contact times in the

horizontal and vertical directions when symmetry is fulfilled.

It expresses the parameters and their dependencies for main-

taining equilibrium. For example, if you wish to run at a higher

speed vxi, you will need to increase the impact force R, open

the leg wider with θo, or increase the leg-length lo.

The equilibrium index has wider applicability. Specifically,

it applies to all systems with similar symmetry in the contact

phase, such as spring-loaded systems. More generally, it ap-

plies to all ballistic legged-systems that model the conservative

bounce of Fig. 3. In the general case, R represents the average

GRF and the index is less numerically accurate; however, the

parameters and their functionality as expressed are still valid.

This result is verifed in both biological and robotic systems,

where the index consistently predicts the parameters and rules

for running. It has been shown in many animals, including

humans, that they accommodate higher speeds (vx) by in-

creasing their leg angles (θo) [3], [19]. Farley shows that when

humans run with a constant forward velocity, a decrease in leg-

stiffness (which translates into R) necessitates an increase in

leg-angle (θo) [12]. Weyand, et. al show that at higher speeds

(vx), running humans need to increase their GRF [11]. Fig. 6

displays some of these behaviors in biological running.

McMahon and Cheng conducted numerical studies of the

SLIP model for running and verified their results in biological

systems [3]. They found that the peak GRF is proportional to

both the forward velocity (vxi) and the vertical velocity (vzi).

They also found that the peak GRF is inversely proportional
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Fig. 6. Animal running behavior is consistent with the equilibrium index.
In the first plot, Weyand, et. al analyze human running and plot the average
GRF for various speeds [11]. They show that the average GRF grows in direct
proportion to speed. In the second plot, McMahon and Cheng analyze multiple
biological runners [3]. They show that the runners increase their leg-angles
to accommodate higher speeds.
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Fig. 7. Koechling tested his planar biped robot with various leg-lengths [18].
He demonstrated that longer legs allowed the robot to reach higher top speeds
while still maintaining stability. This result is predicted by the equilibrium
index.

to the leg-angle, and that the vertical and horizontal velocities

are inversely proportional to each other.

Koechling and Raibert exhibited many of these relations on

their running biped [18]. They showed that the top speed of

their robot can be increased by increasing the leg-length (lo),

increasing the leg-stiffness (R), or increasing the leg-angle

(θo). Figures 7 and 8 display some of these results.

All of these parameters and rules for biped running are

predicted by the ERI. This is the strength of the measure.

It combines these parameters and their interdependencies and

expresses it in a simple relation.

C. Stability of the System

The gait exhibits a dynamic stability where the system

converges to the equilibrium state as determined by the ERI.

This stability covers a considerable range of dynamics and

is limited primarily by extraneous factors. It can be shown

that the stable region about equilibrium is limited not by the

inherent dynamics and control strategy, but by the ground
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Fig. 8. Koechling increased the speed of his biped robot while maintaining a
constant air-pressure in the pneumatic, telescoping leg [18]. The experiments
were conducted at three different air-pressures. Greater air-pressures translate
directly into greater GRF’s. Shown here are the best least-squares fit to the
data. This data verifies two results predicted by the equilibrium index. First,
when R is constant, greater leg-angles are needed for higher speeds. Second,
at a constant speed, increasing the GRF necessitates decreasing the leg-angle.

R

l0

θo

l + l0 D

iR

Fig. 9. The results of the accelerated control strategy are shown here.
The release leg-length is extended to produce a net impulse with a forward
component to provide the desired acceleration. The GRF’s are shown here in
the body reference frame.

clearance and swing frequency of the non-support leg. This

result was verified in simulation, and the system was shown

to converge to equilibrium within an impressive range of 25%
change in R.

VII. THE STRATEGY FOR ACCELERATED RUNNING

We will now consider the control strategy to produce a net

forward thrust in the contact phase. This need arises in many

situations, particularly when a change in speed is desired.

Other instances include when the robot faces drag, uphill

running, or running on soft terrain [20].

In this case, we want the contact leg to sweep an asymmetric

angle that extends further back. This would produce a positive

forward component in the net impulse as shown in Fig. 9.

The main mechanism for inducing this asymmetry will be

the control of the release leg-length. To accelerate, we will

allow the leg to reach a longer final length (compared to the

initial length lo). This extended contact results in a positive
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TABLE I
MODEL PARAMETERS

distance from mass inertia

hip to CM (m) (kg) (kg m2)

torso 0.34 48.3 8.12
leg 0.384 11.5 1.03
foot 0.8 (nominal) 1.0 0

forward component in the ground impulse. To decelerate we

would invoke the opposite pattern, releasing at a shorter length.

The control strategy for acceleration employs the same rules

as steady-state running, with the exception of the change to

the final leg-length. The rules follow.

1) Maintain an upright torso: qa = 0.

2) Operate the swing leg in opposition to the contact leg:

qc = −qb.

3) Sweep the contact leg through an extended leg-length:

lbf = lbi + ∆l.

The leg-extension ∆l offers a mechanism for accelerating

and decelerating. It also offers a mechanism for error handling.

Our assumptions of the negligible leg inertia and negligible

hip torques introduce errors in the direction of the GRF. It

is usually easy to introduce a slight leg-extension ∆l that

counters the errors and achieves equilibrium. In our simulation

runs, any small ∆l of around 1 cm was sufficient to allow

the system to achieve steady-state running (compared to a leg

length of 80 cm).

VIII. SIMULATION RESULTS

A. Dynamic Model

A fully dynamic simulation of the Biped Running Model

shown in Fig. 2 was created. The foot-ground contact was

modelled as a rigid, inelastic contact using motion constraints.

Friction was assumed sufficient to avoid slip. The equations of

motion were generated in AutolevTM, a symbolic manipulator

for dynamics applications [21]. A C program was developed

to determine the appropriate constraint equations, solve for

the equations of motion, and perform the integration using a

variable-step integrator. The subsequent results were animated

in an OpenGL interface. The biped modelled an average

human being with the parameters shown in Table I.

B. Steady-state Run

The control strategy presented here for steady-state running

was applied to the model. The model was released with a

forward velocity of 3 m/s as an initial condition. During the

contact phase, a constant force of 1400 N was applied to the

prismatic actuator of the contact leg. With relative ease, the

system succesfully achieved a stable running gait as shown in

Fig. 10. After slight transience, the gait settled at equilibrium

with a forward velocity of 3 m/s. Fig. 11 contains plots of the

CM velocity and the ERI, displaying the periodic, equilibrium

motion. The ERI was calculated using a factor of η = 93%.

This simulation was actually run with a leg-extension of

∆l = 1 cm. It turned out that with no leg-extension the biped

slowed down over time. The leg-extension rule can thus be

Fig. 10. The control strategy was successfully implemented on the Biped
Running Model to produce a steady-state run of 3 m/s with a stable gait.
Snapshots of the simulation are shown here. The sphere in the lower torso
represents the CM of the system (G).
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Fig. 11. Plots for the steady-state run shown in Fig. 10. The gait settled
down at the steady-state velocity after some transience. The valleys in the
horizontal velocity vx represent the contact phase.

utilized to compensate for errors in the model approximations

and actuation.

Fig. 12 shows plots of the GRF direction. The direction of

the GRF closely follows the leg-angle, displaying the accuracy

of the axial thrusts assumption.

C. Accelerated Run

The control strategy for accelerated running was then ap-

plied to the robot to accelerate it from 3 to 4 m/s. At 4

7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9 9.2 9.4
−30

−20

−10
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Direction of the GRF and the Leg−angle
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leg B angle
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Fig. 12. The direction of the ground-reaction forces on leg B are shown for
the constant 3 m/s run. Note the accuracy of the axial thrusts assumption.
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Fig. 13. The control strategy for accelerating was applied to accelerate the
biped from 3-4 m/s. The leg-extension parameter was increased at 4s and
then reduced again at 18s. Note the robot accelerating in that range and then
settling at the new steady-state speed.

seconds into the run, the leg-extension was increased from

1 to 2 cm. At 18 seconds, the leg-extension was dropped

to 1.5 cm, and the system settled into equilibrium. As the

speed increased, we found it necessary to increase the actuated

force correspondingly. This is predicted by the equilibrium

index, where higher speeds require a higher GRF to maintain

equilibrium. Every 2s, the actuated force was increased by 5%.

Fig. 13 shows the system accelerating during that time range.

D. Beyond the Current Model

The strategy was further implemented with multiple actua-

tion schemes on a higher DOF, articulated model. The schemes

produced very different GRF profiles and some included pas-

sive elements. The variations were easily accommodated with

simple, intuitive changes to physical parameters—parameters

such as the desired torso pitch and the leg-extension.

These results offer promising conclusions for the physical

implementation of the strategy. First, they indicate the ro-

bustness of the algorithm to the GRF actuation. Second, they

demonstrate the flexibility for diverse actuation designs.

IX. CONCLUSION

We have presented a heuristic control strategy that achieves

stable biped running. The strength of this strategy lies in

its simplicity, with three basic rules that exploit the system

dynamics.

The mechanics model underlying the strategy provides

it with a basis for a broader applicability to bipeds. The

physical model is highlighted by two features that lend this

extendability. First, it deals with the actual CM of the system,

regulating its relative position using the internal posture.

Hence, it does not place limiting assumptions on the structure

or mass distribution of the body. Second, it abstracts the GRF’s

with physical principles and an impulse-based representation

that facilitates the accommodation of variance.

The model gives rise to the equilibrium running index,

providing an elegant tool for the analysis, design, and control

of biped runners. The index expresses the parameters effecting

running and their functionality, and carries relevence to both

biological and robotic bipeds.

In this paper, the strategy was applied to a telescoping

legged system. In upcoming work, we apply it to an articulated

system and discuss the issues presented by the articulation.
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