
Trajectory Generation for Rendezvous of Unmanned Aerial Vehicles with
Kinematic Constraints

Jin-Wook Lee and H. Jin Kim
Institute of Advanced Aerospace Technology

School of Mechanical and Aerospace Engineering
Seoul National University

Seoul, 151–741 Korea
Email: leepc12@snu.ac.kr, hjinkim@snu.ac.kr

Abstract— In this paper, we present an efficient method
for finding collision-free trajectory for multiple unmanned
aerial vehicles (UAVs) with kinematic constraints and for their
rendezvous to form a formation. First, we construct a visibility
graph that supports a minimum turning radius constraint when
constructing the graph, so that additional smoothing process is
not necessary. Second, we modify the standard A* to consider
velocity conditions for rendezvous and collision avoidance with
obstacles or other UAVs. Permitting velocity decrease only when
it is required that the robot slow down the speed, unnecessary
node expansions are avoided. This multi-vehicle problem is
solved in a decoupled manner. In order to show the effectiveness
of this approach, we present simulation results of rendezvous
and independent flight for multiple UAVs.

I. INTRODUCTION

Path planning has been extensively studied in robotics
and automation [1], [2]. In roadmap methods based on cell
decomposition (CD), search space is reduced to a finite
dimension, but generated paths are not smooth unless robot
dynamics is explicitly considered during CD, so it needs
an additional smoothing process to meet constraints such
as minimum turning radius of fixed wing UAVs. Voronoi
diagram generates a safe route by maximizing the clearance
between a robot and obstacles. However, it is also difficult to
obtain a smooth trajectory without additional smoothing [3].

There are a variety of algorithms based on a potential
function (PF) [4]. It is well known that PF is fast but suffers
from local minima. Alternatively, a navigation function with-
out local minima can be constructed, but this requires heavy
computation not suitable in online applications. Methods
using prediction [5] can alleviate the issue of local minima,
but optimization such as sequential quadratic programming
will be necessary for the shortest path computation.

In this paper, we consider a problem of efficiently finding
safe trajectories for multiple UAVs involving rendezvous
and collision avoidance, in a two-dimensional environment
with polygonal obstacles (Fig. 1). The standard approaches
mentioned above might not be suitable for this problem due
to kinematic constraints and the size of search space.

In fact, the problem of computing a shortest path in a
two-dimensional polygonal environment has been widely
studied, and for example, there is an algorithm [6] that
can solve the optimal problem in the sense of Lp norm
in time of O(n log n), where n is the total number of

qi(t0)

=qi
init

qi(t1)
qi(t2)

Obstacle1

Obstacle2

Rmin

qi(t5)=qi
goal

qi(t4)

qi(t3)

Leader

Followers

Fig. 1. UAV’s motion and roadmap graph as a combination of lines and
arcs: Example of a trajectory from the starting point qinit

i
to the destination

q
goal
i

, which is comprised of lines and arcs of the radius of curvature Rmin.

vertices of the polygonal obstacles. However, this planning
problem becomes challenging for constrained multi-robot
systems. For example, cooperative planning of individually
computed robot paths in [7] are not compatible with velocity-
constrained UAV models.

We adopt concepts from visibility graphs (VG) to compute
trajectories composed of straight lines and arcs obeying
kinematic constraints. When using VG to trajectory genera-
tion, many planners first generate paths composed of lines
or waypoints without considering the constraints, and then
apply smoothing methods such as Bezier curve [8], Cubic
spline [9] or Dubins sets [10], [11], [12] to them. However,
this two-step approach may lose optimality and safety of the
path after smoothing. Whereas sampling-based approaches
to deal with differential kinematic constraints [13] have been
developed, it still involves time-discretization and state-space
partitioning, which we prefer to avoid. Instead, we modified
the VG to consider constraints at the time of construction,
so that the achievable trajectories without large loss of flight
time can be obtained without additional smoothing.

Problems of intercepting objects travelling along pre-
dictable trajectories [14] have been studied often using some
variation of proportional-navigation guidance (PNG) [15],
which tries to reduce the angular velocity of the line-of-
sight angle. They are usually based on assumptions that
closing velocity is constant, and the intercept is close to
collision course, and it is numerically difficult to support
hard constraints. Other approaches involve optimization [16]

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeC12.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1056

that is difficult to be done on the fly.
For the rendezvous and collision-avoidance problem, we

used the ideas of velocity tuning(path coordination) [1]
not after generating waypoints but during searching on the
modified visibility graph. The visibility graph is extended
by assigning a set of subnodes with velocity information
to vertices possibly involved in collision. In order to avoid
explosion in the search space, this extended graph is searched
by selectively expanding subnodes.

Section II describes the multi-vehicle path planning prob-
lem we consider, and Section III explains the proposed algo-
rithm. Section IV presents simulation results, and Section V
contains concluding remarks.

II. PROBLEM STATEMENT
This section describes the multi-vehicle trajectory gener-

ation problem we consider.

A. Multiple UAVs Trajectories

For simplicity, we assume that the position of UAVi
at time t can be described by its x,y position qi(t) =
(xi(t), yi(t)). We are interested in computing the trajectories
γi, i = 1, · · · , Nuav such that qi(0) = qinit

i , qi(Ti) = qgoal
i ,

and constraints and collision or rendezvous conditions to be
described in Section II-B, II-C, and II-D are satisfied, where
Ti denotes the time of completion of flight for UAVi.

B. Kinematic Constraints

The trajectory γi for the each vehicle UAVi should satisfy
the velocity and turning radius constraints as shown in Fig. 1:

1) velocity of the UAVi vi(t) , ||(ẋi(t), ẏi(t))||, should
satisfy (1):

vmin ≤ vi(t) ≤ vmax, ∀t ∈ [0, Ti] (1)

2) radius of turning of the UAVi should satisfy (2):

Ri(t) ,

∣

∣

∣

∣

ẋi(t)ÿi(t)− ẏi(t)ẍi(t)

(ẋ2
i (t) + ẏ2

i (t))3/2

∣

∣

∣

∣

≥ Rmin, ∀t ∈ [0, Ti] (2)

C. Collision

We distinguish collision as two types: 1) collision with
static obstacles, 2) collision among UAVs. let Dobs denote
the safe separation distance from obstacles, and Duav between
UAVs.

For 1) avoiding collision with the total of Nobs static
obstacles, we define the distance between UAVi and the
obstacle Bk (k = 1, · · · , Nobs) as

d(qi(t), Bk) = min
b∈Bk

||b− qi(t)||

Then, the condition under which UAVi does not collide with
Bk is given by (3):

d(qi(t), Bk) ≥ Dobs, ∀t ∈ [0, Ti] (3)

for ∀i ∈ {1, · · · , Nuav} and ∀k ∈ {1, · · · , Nobs}.
For 2) avoiding inter-vehicle collision, we require (4):

d(qi(t), qj(t)) ≥ Duav, ∀t ∈ [0,min(Ti, Tj)] . (4)

for i 6= j, ∀i, j ∈ {1, · · · , Nuav}.

A) valid

d) invalid

b) invalid

q
L
(t

0
)

a) invalid

q
L
(t

1
)

q
L
(t

2
)

q
L
(t

3
)

q
L
(t

4
)

q
L
(t

5
)

c) invalid

B) valid

Leader (L)

Leader’s path

Follower (F)

q
F
(t

F
)

C) valid D) valid q
L
(t

6
)

q
F
(t

F
)

q
F
(t

F
) q

F
(t

F
) q

F
(t

F
)

q
F
(t

F
)

q
F
(t

F
)

q
F
(t

F
)

Fig. 2. Example of a leader’s trajectory and corresponding rendezvous
conditions for followers.

D. Rendezvous

Rendezvous means that each follower UAVF joins to the
leader trajectory to form a formation. Suppose that the leader
position at time tL ∈ (0, TL] will be qL(tL) according to the
γL that has been already generated. Then rendezvous of the
follower onto γL is possible if (6) holds for some tF < tL.

vrendezvous = s(l(qL(tL),qF (tF)))
tL−tF

(5)
vmin ≤ vrendezvous ≤ vmax (6)

where l(·, ·) denotes the link connecting two vetices, whose
length is s(l(·, ·)). In addition, we require that the leader and
followers approach in the same direction at time tL.

Fig. 2 shows examples of valid and invalid rendezvous
situations. The cases A), B), C), and D) are valid, whereas
a), b), c), and d) are not valid. A), B), C), D), a), b), c), and
d) all satisfy (6), but a), b), and c) violate the line-of-sight
requirement for the leader and follower. And d) causes the
violation of the minimum turning radius constraint (2).

III. ALGORITHM

This section describes our algorithm to solve the problem
described in Section II.

A. Outline

The goal of this research is to construct a modified
visibility graph (MVG), with the consideration of the mini-
mum turning radius and the minimum separation, and use
it to compute the UAV trajectories. Trajectory for each
vehicle is computed in sequence. When computing the
trajectory for UAVi, possible collision with i − 1 vehicles
UAV1, · · · , UAVi−1 is taken into account.

The proposed path planning approach will be explained in
the rest of this section. Section III-B describes the process of
considering (3) and (4) and constructing a modified visibility
graph (MVG) from a visibility graph. Section III-C explains
the leader trajectory computation on the MVG, and the MVG
will be extended to accommodate rendezvous in Section III-
D. Section III-E presents an algorithm to detect the collision
of two robots, Section III-F describes the velocity tuning
during the visibility graph search. Section III-G describes
how these ideas are combined to generate the follower
trajectory.

WeC12.4

1057

����������	
���������������

������	
��������������� ����������	
���������������

��������	
���������������

�
����

�� ��

�
	
�

�
	
�

Fig. 3. Path generated by VG, GVG and MVG.

f)

B2B1

qinit

qgoal

Rmin-Dobstacle

Rmin-Dobstacle
Dobstacle

a) b) c)

e)

B1 B1 B1

B1

B1

d)

Fig. 4. Procedure of constructing MVG.

B. Constructing a modified visibility graph (MVG)

Various methods for constructing a visibility graph are
compared in Fig. 3. For example, the path shown in Fig. 3(a),
constructed using a conventional VG, does not satisfy the
radius constraint (2), and does not meet the separation
condition (3) from obstacles, either.

One might think of constructing a generalized polygon that
includes the separation by Dobs from obstacles, and then a
generalized visibility graph (GVG) that accommodates arc-
type links, as shown in Fig. 3(b)[1]. However, this approach
cannot satisfy the turning radius constraint (2) when Rmin >
Dobs (In fact, the MVG will yield the same result as GVG
when Rmin ≤ Dobs). Alternatively, as shown in Fig. 3(c), one
might decide to construct a generalized polygon by padding
obstacles with rather Rmin than Dobs. But this scheme will
lead to the unnecessary increase in the path length, as can be
seen in the comparison with Fig. 3(d). Furthermore, when the
distance between obstacles is less than 2Rmin, proper links
can get removed in order to comply with the heavily padded
generalized polygon.

Now, we will describe the MVG approach illustrated
in Fig. 3(d), which can overcome shortcomings discussed
above. Fig. 4 shows the MVG construction process. Fig. 4(a)
shows the initial obstacle configuration, and the roadmap
graph MVG(V,L) is empty at this stage. Fig. 4(b) represents
a generalized polygon that includes the separation of Dobs
from each obstacle.

As shown in Fig. 4(c), two circles of radius Rmin are

q2

q1

q3
q4

q5 q6

Fig. 5. Arc links corresponding to
vertices on a Rmin circle.

q

Fig. 6. Rmin circles and links for
a non-convex obstacle

drawn, which are centered at Rmin − Dobs away from the
obstacle node along the directions orthogonal to the two
neighboring edges of the obstacle. This step is repeated until
two circles are added to each obstacle node, so that the total
number of added circles is twice the number of the overall
polygon vertices (Fig. 4(d)).

Fig. 4(e) illustrates that common tangents between any two
circles on a single obstacle are added to L. Then as shown
in Fig. 4(f), common tangents are drawn between circles
corresponding to different obstacles, and added to L as line
links. And tangents to the circle from the intial and goal
vertices of the UAVs will also be added to L. Among these
tangent lines, any that intersects with the obstacle region
get thrown away without being added to L. And all tangent
vertices on each circle will be added to V .

Finally, as shown in Fig. 5, vertices on a circle are
connected serially (clockwise or counterclockwise) as q1 ∼
q2, q2 ∼ q3, . . . , qn−1 ∼ qn, qn ∼ q1, and these links are
added to L. This ensures that any of two adjacent links on
MVG are connected to each other smoothly such that the
case d) illustrated in Fig.2 is excluded from MVG.

Non-convex obstacles can be handled by not generating
Rmin circles on non-convex vertices as illustrated in Fig. 6.

In this context, the MVG support Dobs and Rmin con-
straints. However, it is impossible to decide whether each
link on the MVG satisfies (4) or not without considering
the time information. The conditions (4) and (1) will be
considered when searching MVG – this will be explained
in detail in Section III-D and III-F.
C. Generation of Leader Trajectory

Once MVG(V, L) is generated, A* algorithm can be
applied to compute the trajectory of leader UAVL on MVG.
If possible, each UAV does not change speed on a given link,
and we let v(q′) be its speed when moving on the link l(q, q′)
from q to q′. For UAVL, collision with other moving UAVs
does not need to be considered in our sequential setting, and
we will fix the velocity of leader v(q′) = vleader at some
value between vmin and vmax. MVGL is searched from qinit

L

to qgoal
L using A* with the cost function is defined as

f(q) = g(q) + h(q) (7)

where g(q) given in (8) denotes the traveling time taken for
the UAVL from qinit

L to q, and h(q) in (9) represents expected
traveling time for the UAVL from q to qgoal

L .

g(q) =

g(P (q)) q 6= qinit
L

.+ s(l(P (q), q))/vleader
0 q = qinit

L

(8)

WeC12.4

1058

h(q) = ||q − qgoal
L ||/vleader (9)

Here, P (q) denotes the parent vertex of q in MVG(V,L)
and s(·) represents the length of a link or a curve.

D. Expanding MVG for Rendezvous

In this step, the MVG is extended so that following
vehicles can rendezvous onto the leader’s trajectory.

q
1 q

2

s(l(q
1
,q
2
))

Fig. 7. Splitting line link on leader’s trajectory by M when M=3

As illustrated in Fig. 7, denote the number of desired
rendezvous locations on some link of the leader trajectory
by M . Each line link on leader trajectory is split into M +1
sections, and then we generate two Rmin circles which are
tangent to the link at each newly generated vertex. Common
tangents between each new circle and all other circles on
MVG(V, L) are added to L, and tangents to each new circle
from the initial and goal vertices of the UAVs are also added
to L. As in Section III-B, links intersecting with the obstacle
region are thrown away without being added to L, and then
arc links are generated. We call this expanded version of
MVG a modified visibility graph for rendezvous (MVGR).

E. Collision Detection

Suppose that γ(t), λ(t) ∈ R
m are two smooth curves

defined on a time interval [t0 ≤ t ≤ t1], and to detect
collision between these two curves, we want to estimate their
minimum distance dmin

∗ within an error denoted by ε:

dmin
∗
, min

t∈[t0,t1]
||γ(t)− λ(t)|| . (10)

In order to compute (10) exactly, we need to keep track of
positions of two UAVs as a function of time at all instants on
the interval [t0, t1]. So instead, we compute the following:

dmin , min
a∈γ(t0,t1),b∈λ(t0,t1)

||a− b|| . (11)

The idea is to analyze two curves γ(t0, t1) and λ(t0, t1)
by recursive bisection as shown in Fig. 8. This bisection will
be repeated until all the divided curves satisfy dmin ≥ D or
until the count of division reaches the maximum required
number of division denoted by N .

Proposition. The maximum number of bisection is
bounded by N ≤ log2((s(γ(t0, t1)) + s(λ(t0, t1)))/ε),
and the maximum required number of calculating mini-
mum distance between two curves n is bounded by n ≤
(s(γ(t0, t1)) + s(λ(t0, t1)))/2ε− 1.

Proof. Let
d0 , ||γ(t0)− λ(t0)|| ,

then the following inequality holds:

d0 ≥ dmin
∗ ≥ dmin . (12)

Suppose that the calculation confirms dmin < D, but
actually dmin

∗ ≥ D. This means the error in the distance

D
uav q

1
(t

0
)

q
1
(t

1/2
)

q
2
(t

1/2
)

q
2
(t

0
)

q
1
(t

1/2
)

q
1
(t

0
)

q
2
(t

0
)

q
2
(t

1/2
)

q
2
(t

1
)

q
1
(t

1
)

q
2
(t

1/2
)

q
2
(t

1
)

q
1
(t

1
)

D
ua

v

D
uav

a) b) c)

q
1
(t

1/2
)

Fig. 8. Detecting collision by bisection of two original curves

arbitrary

curve γ

arbitrary

curve λ

γ(t
0
) λ(t

0
)

γ(t
1
)

λ(t
1
)

a) arbitrary curves

s(γ(t
0
,t
1
)) D

lineγ lineλ
γ(t
0
) λ(t

0
)

γ(t
1
) λ(t

1
)

b) line curves (worst case)

s(λ(t
0
,t
1
))

Fig. 9. Examples of position and shape of two curves

estimation is ε = dmin
∗ − D. As illustrated in Fig. 9, it

is clear that if D + s(γ(t0, t1)) + s(λ(t0, t1)) ≤ d0, then
dmin ≥ D. As a contraposition of this, if dmin < D then
D + s(γ(t0, t1)) + s(λ(t0, t1)) > d0 regardless of shape of
curves (See the worst case in Fig. 9(b)). Thus (12) leads to

D + s(γ(t0, t1)) + s(λ(t0, t1)) ≥ d0 ≥ dmin
∗ ≥ D > dmin ,

i.e.,

s(γ(t0, t1)) + s(λ(t0, t1)) ≥ dmin
∗ −D = ε ≥ 0 (13)

If we repeatedly bisect each curve γ, λ, N times, then the
total number of twin curve segments after the bisection is
n = 1 + 21 + . . . + 2N = 2N−1 − 1 and N = log2(n +
1) + 1. Because (13) can be applied to any divided curve
segments, the error is ε ≤ (s(γ(t0, t1))+s(λ(t0, t1)))/2N at
the end of bisection. Thus, if we designate the value of error
ε, maximum required number of calculation N is bounded:

N ≤ log2((s(γ(t0, t1)) + s(λ(t0, t1)))/ε) .

By substituting N for log2(n + 1) + 1, we can also prove
n ≤ (s(γ(t0, t1)) + s(λ(t0, t1)))/2ε− 1. ¥

We applied this method with ε = Duav/2 in the simulations
presented in Section IV. In most cases of two UAVs position,
when they are separated from each other farther than Duav,
distinguishing collision between two UAVs links needs the
computation of minimum distance only once, i.e. N =
0, n = 1. Due to bisection, exponential decaying of link
length to inspect collision will also help decrease the number
of calculation. In addition, since all links in MVGR(V, L)
are lines or arcs, we can use simple methods of calculating
minimum distance between two lines, between two arcs, and
between an arc and a line.

F. Modification of A* with n-selective expansion

If the standard A* is used for computing a shortest path
for a multirobot system, a high-dimensional search space
is often a serious problem. One method to avoid such a
dimensional complexity is velocity tuning [1]. First this
method generates paths without considering time and inter-
robot collision, and then it tunes velocity of each robot.

WeC12.4

1059

This method does not increase search dimension, but it
can lead to failure in environments with narrow routes and
strict velocity constraints. To overcome this shortcoming,
we adopt the notion of ‘tuning on searching time’, i.e.
tuning robots velocity not after generating path but during
searching on a graph. Because a vertex in MVG has position
information only, so we assign Nv discretized velocities for
each vertex, by generating Nv subnodes that contains not
only the position information but also the velocity.

Let us discretize the velocity interval by ∆v = (vmax −
vmin)/(Nv − 1), and associate each vertex q with Nv subn-
odes whose velocities are set to vmax, vmax − ∆v, vmax −
2∆v, . . . , vmin. We denote this set of Nv subnodes of q
by SUBNODES(q) = {n1(q), n2(q), . . . , nNv (q)}. Now
robot’s movement is defined not between two vertices but
between two subnodes. If we allow a robot to move freely
from a subnode to a subnode, the size of search space
increases exponentially with Nv . We will call this type of
search as A* with n-all expansion. However, if we restrict
movements by fixing robot’s velocity as vmax and permit
decreasing velocity only when delaying conditions described
in Section III-G occur, most unnecessary node expansion will
be avoided and it will save great computation time. We call
this algorithm as A* with n-selective expansion.

To implement A* with n-selective expansion, we first
define robot’s movement from a subnode to another subnode,
with the velocity indicated by the destination subnode. For
example, if a robot is moving from n1(q1) on vertex q1 to
n1(q2) on vertex q2 and the designated velocity at n1(q2)
is vmax, it would move from vertex q1 onto vertex q2 with
velocity of vmax on the graph. Now we define how to
reduce robot’s velocity when delaying conditions occur. In an
extension to the example mentioned above, if n1(q2) meets a
delaying condition the algorithm tries to look for other nodes
in SUBNODES(q2) except n1(q2), and choose the next
subnode n2(q2). If there remains no subnode to expand in
SUBNODES(q2), it gives up expanding subnodes in the q2

level and tries to look up subnodes in q1 which is the origin
of q2. This procedure is repeated until the algorithm finds
proper subnodes to expand or it reaches qinit, which means
the failure of the search. Except such subnode expansion
rule, all features used are same as standard A*.

G. Generation of Follower Trajectories
In order to generate trajectory for following vehicles with

the prescribed methods, we define the notion of 1) delaying
condition, 2) cost function, and 3) velocity adaptation for
rendezvous condition.

1) There are two types of delaying conditions: possible
collision with other UAVs, and possibility of a follower UAV
arriving at a vertex on leader trajectory before the leader
arrives. This is based on simple heuristic that it can avoid the
collision and/or accomplish the rendezvous with the leader
by slowing down the speed.

2) Cost function in (7) is redefined as follows to replace
a vertex by a subnode:

f(n) = g(n) + k(g(n), n) .

Let V TX(n) denote the vertex to which the node n belongs
on the graph, P (n) the parent subnode of n, and V EL(n)
the velocity that n indicates. Then for UAVi, g(n) is

g(n) =

g(P (n)) + s(l(V TX(P (n)),V TX(n)))
V EL(n)

0............if V TX(n) 6= qinit
i

0............if V TX(n) = qinit
i .

(14)

The term g(n) is the cumulative flight time of UAVi from
the initial subnode to n, and when UAVi reaches at g(n) the
leader would locate at qL(g(n)). The term

k(g(n), n) = ||V TX(n)− qL(g(n))||/vmax

replaces h(q) of (9) to promote closing toward the leader
location, and vmax is for admissibility of the search algorithm.

3) Velocity adaptation facilitates the follower’s arrival
at a vertex qL on the leader trajectory at the same time
with the leader. Because of discretized velocity, it is very
hard for them to arrive at qL simultaneously in reality, and
this situation would be recognized as a delaying condition.
Although this could be delegated to a low-level controller in
robotic systems and ignored in path planning, we tuned the
follower velocity by considering (1) and the length of final
link to qL in cases of A)–D) shown in Fig. 2.

IV. SIMULATION AND DISCUSSION

We present simulation results for both rendezvous and
independent flights, using the two methods described in
Section III-F, i.e. A* with n-selective expansion and A* of
n-all expansion for each vertex. The algorithm parameters for
a 1000x1000 simulation space with 8 obstacles were set as
Nuav = 6, Nobs = 8, Duav = 80, Dobs = 15, Rmin = 35,
vmax = 10, vmin = 3, vleader = 6, M = 4, n = 15,
and ε = Duav/2 = 40. Computation was performed on a
Pentium-M 1.8GHz with 1GB RAM machine. We compare
their performance using 1) computation time and 2) total
flight time taken for all UAVs to arrive at their goal. The
initial and goal vertex of each UAV are displayed with
the UAV icon matching with the corresponding trajectory,
and the rank of each UAV is indicated in each circle of
the radius Duav/2 to visualize inter-vehicle collision. All
obtained trajectories are collision-free.

A. Rendezvous

With qinit
L = (0, 0) and qgoal

L = (1000, 1000), Fig. 10 shows
the result of 1) A* with n-selective expansion and 2) A* with
n-all expansion. The identical trajectories were generated. As
shown in Table I, the algorithm 1) is much more efficient
than algorithm 2) in terms of computation time as expected.
By comparing the number of collision inspection, we infer
that A* with n-selective expansion reduces a great portion
of unnecessary node expansion.

B. Independent Flight

We generated the following three sets of trajectories for in-
dependent flight: 1) trajectories without considering collision
among UAVs, 2) collision-free trajectories with collision-
avoidance by using A* with n-selective expansion, and 3)

WeC12.4

1060

Fig. 10. Simulation result for ren-
dezvous with collision avoidance us-
ing A* with n-selective expansion

Fig. 11. Simulation result for inde-
pendent flight with collision avoid-
ance using A* with n-selective ex-
pansion

collision-free trajectories by using A* with n-all expansion.
Fig.11 shows the trajectories obtained by A* with n-selective
expansion, and A* with n-all expansion yielded the almost
same trajectories As shown in Table II, similar to the result
in Table I, n-selective expansion outperforms n-all expansion
in terms of the computation time and the number of checking
collision, with a negligibly longer total flight time.

In this paper, we proposed MVG for global planning.
However, when applying MVG to local planning in an envi-
ronment with uncertain or limited information, we can first
construct MVG with current information and then expand or
shrink it according to the additional or wrong information.
For example, if we find a new obstacleBnew, we can generate
circles with radius Rmin and then draw tangent line links
between circles of Bnew and circles of other obstacles as
shown in Fig. 4 such that the original MVG is expanded
to consider Bnew. In addition, if instantanteous turning is
required during traveling on a certain link, we can add two
circles that are centered Rmin away from the position of the
UAV along the directions orthogonal to the UAV’s heading,
and then expand the MVG.

V. CONCLUSION

This paper suggests a path planning approach that can
generate optimal rendezvous trajectories for multiple UAVs.
First we constructed a modified visibility graph (MVG) to
consider minimum turning radius and to avoid collision
with polygonal obstacles including non-convex ones, and
expanded it to a modified visibility graph for rendezvous
(MVGR) so that follower UAVs can easily accomplish ren-
dezvous onto the leader trajectory. We also presented a fast
method to detect collision between two trajectory curves on
visibility graphs. In order to search valid rendezvous trajec-
tories on MVGR without increasing search dimension, we
modified the standard A* to A* with n-selective expansion
that adopts the notion of velocity tuning. The effectiveness
of this approach was shown in simulation of rendezvous and
independent flight for multiple UAVs.

ACKNOWLEDGMENT

This work was supported in part by the Korea Research
Foundation Grant (MOEHRD)(KRF-2005-204-D00002), and

TABLE I
PERFORMANCE COMPARISON FOR RENDEZVOUS

MVGR Searching Coll. Total
Algorithm (ms) (ms) Check Flight Time
n-selective 751 491 49950 665.85

n-all 751 1833 777448 665.85

TABLE II
PERFORMANCE COMPARISON FOR INDEPENDENT FLIGHT

MVG Searching Coll. Total
Algorithm (ms) (ms) Check Flight Time

no coll. cons. 461 180 0 744.20
n-selective 461 1402 325230 845.950

n-all 461 5038 1089895 840.620

the Smart Unmaned Aerial Vehicles Development Program
Center, funded by the Ministry of Commerce, Industry and
Energy.

REFERENCES

[1] J. Latombe, Robot Motion Planning. Boston, MA: Kluwer Academic
Publishers, 1991.

[2] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[3] R. W. Beard and T. W. McLain, “Multiple uav cooperative search un-
der collision avoidance and limited range communication constraints,”
in Proceedings of the 42nd IEEE Conference on Decision and Control,
Maui, Hawaii, December 2003.

[4] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” International Journal of Robotics Research, vol. 5, no. 1, pp.
90–98, 1986.

[5] H. Kim, D. Shim, and S. Sastry, “Nonlinear model predictive tracking
control for rotorcraft-based unmanned aerial vehicles,” in American
Control Conference, Anchorage, AK, May 2002.

[6] J. Hershberger and S. Suri, “An optimal algorithm for euclidean
shortest paths in the plane,” SIAM J. Comput., vol. 28, no. 6, pp.
2215–2256, 1999.

[7] S. Akella and S. Hutchinson, “Coordinating the motions of multiple
robots with specified trajectories,” in International Conference on
Robotics and Automation, Washington, DC, May 2002, pp. 624–631.

[8] J.-H. Hwang, R. C. Arkin, and D.-S. Kwon, “Mobile robots at your
fingertip: Bezier curve on-line trajectory generation for supervisory
control,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
IROS’03, October 2003.

[9] J. Thomas, A. Blair, and N. Barnes, “Towards an efficient optimal
trajectory planner for multiple mobile robots,” in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, IROS’03, October 2003.

[10] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” in American Journal of Mathematics, vol. 79, no. 3,
July 1957, pp. 497–516.

[11] T. Shima, S. Rasmussen, and D. Gross, “Assigning micro uavs to task
tours in an urban terrain,” in AIAA Guidance, Navigation, and Control
Conference.

[12] T. McGee, S. Spry, and K. Hedrick, “Optimal path planning in
a constant wind with a bounded turning rate,” in AIAA Guidance,
Navigation, and Control Conference.

[13] S. Lindemann and S. M. LaValle, “Multiresolution approach for
motion planning under differential constraints,” in IEEE International
Conference on Robotics and Automation, May 2006, pp. 133–138.

[14] E. Croft, R. Fenton, and B. Benhabib, “Optimal rendezvous-point
selection for robotic interception of moving objects,” IEEE, Trans. on
Systems, Man, and Cybernetics, Part B, vol. 28, no. 2, pp. 192–204,
1998.

[15] P. Yuan and J. Chern, “Ideal proportional navigation,” J. of Guidance,
Control and Dynamics, vol. 15, no. 5, pp. 1161–1165, 1992.

[16] F. Imado, T. Kurado, and S. Miwa, “Optimal midcourse guidance
for medium-range air-to-air missiles,” J. of Guidance, Control and
Dynamics, vol. 13, no. 4, pp. 603–608, 1990.

WeC12.4

1061

