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Abstract— Optical motion capturing systems are widely used
to acquire human beings’ motion patterns in humanoid imitation
learning research. However, optical motion capturing systems
have a restricted movable area. This paper proposes the HMM
based mimesis scheme using a monocular camera mounted on a
humanoid. This scheme releases the restriction of movable area
and enables imitation in daily life environments. Also, natural
human-robot-interaction is expected during imitation. From
two-dimensional image sequences of the demonstrator’s motion,
the demonstrator’s pose and motion is estimated and recognized
through the mimesis model and the humanoid generates its joint
motor commands for imitation in 3D space. The feasibility of
the proposed scheme is demonstrated by simulation.

Index Terms— monocular vision, mimesis model, proto-
symbol, partial observations, Multidimensional scaling

I. INTRODUCTION

Imitation skills for humanoids have received a great deal
of attention because the imitation function is the most prim-
itive and fundamental factor of intelligence. Neuroscience
based evidence of motor primitives and mirror neurons [1]
inspired the development of corresponding forms of robot
imitation learning. Bentivegna and Atkeson [2] used the idea
of primitives for motor learning. Billard and Mataric [3]
used connectionist-based approaches to represent movements.
Inamura et al. [4] proposed the mimesis model which inte-
grates a bidirectional framework of motion recognition and
motion generation through embedded symbols of whole body
dynamics.

Motion capturing systems are widely used [4] [5] [6] [7]
to acquire reference motion patterns, such as human beings’
motion patterns in research on humanoid imitation learning.
Most motion capturing systems use optical devices, consisting
of passive optical markers and multiple cameras [8]. However,
they are inconvenient in daily life environments because of
the restrictions on the movable area. Some imitation research
[7] adopts wearable motion capturing systems. The wearable
types solve the problem of movable area restriction. However,
since human robot interaction is greatly important in imita-
tion, in order to achieve natural human robot interaction, a
mimesis model using a simple vision system on the humanoid
is needed.

Fig. 1. mimesis with a monocular vision system

This paper proposes the HMM based mimesis model which
uses only a camera on a humanoid, instead of optical or
wearable motion capture systems (Fig. 1). From 2D image
sequences (especially labeled markers on the demonstrator
body) of the demonstrator’s motion, the humanoid recognizes
the observed motion and imitates the motion in 3D space by
generating joint motor commands through embedded sym-
bols.

With this strategy, the following advantages are achieved.
(1) Imitation learning becomes possible in daily life envi-
ronments without restrictions on the movable area. (2) Since
the monocular or binocular vision systems are built into
most humanoid robots, the proposed method does not require
extra systems like an optical motion capturing system [8] or
a wearable motion capturing system [7]. (3) By using the
humanoid onboard vision system, human robot interaction
becomes more natural during imitation.

Comparing with the conventional optical motion capturing
systems, onboard monocular or binocular vision systems do
not provide enough depth information. Among the research
dealing with incomplete data, Ghahramani and Jordan [9]
proposed using the expectation-maximization (EM) algorithm
to fill in missing feature values of examples when learning
from incomplete data by assuming a mixture model. The
authors proposed a imitation method of whole body motion
from partial observations in [5]. However, these methods [5]
[9] are limited to dealing with incomplete data in the same
space. Since general mimesis from partial observations is a
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nonlinear problem, this paper proposes a nonlinear mimesis
solution, especially for the case that the partial observations
are perspective projected observations of a single camera.
In the proposed scheme, the positions and postures of a
demonstrator are not known a-priori but are estimated by
adopting the multidimensional scaling method [10].

Among a number of works on human pose estimation
[11] [12][13] using vision systems, Agarwal and Triggs [13]
propose a method of 3D human pose recovery from 2D
images, using silhouettes, but the experimental results are
limited to pose estimation during walking. Comparing with
this work [13], our method covers various human motions
and recognizes motions as well as human poses.

Before proceeding to the algorithm description, coordi-
nates’ terms are introduced. baseospace denotes that the ob-
servation o is represented in the coordinates whose base is
base and whose description type is space. There are three
types of bases: {C}, {I} and {D} indicate “Camera origin”,
“camera’s projected Image” and “Demonstrator’s base body”.
For the space, θ, x, and φ denote “joint angle space”,
“cartesian space”, and “spherical space.” The coordinates
are named as “base space coordinates”. For example, Doθ,
Coφ, and Iox denote observation in the “demonstrator joint
coordinates”, “camera spherical coordinates”, and “image
cartesian coordinates” respectively.

II. MIMESIS FROM PERSPECTIVE PROJECTED
OBSERVATIONS OF A MONOCULAR CAMERA

A. Problem Statement

The target problem is the nonlinear form of complete
mimesis from incomplete observations: imitating similar mo-
tion patterns in the 3D space from observing 2D camera im-
ages of target motion patterns. In other words, after watching
2D pixel information of labeled markers attached to a human,
a humanoid produces the motion.

Mimesis Model: The HMM based mimesis model [4] is
adopted. HMM based mimesis model consists of three func-
tions: learning, recognition and generation. Hidden Markov
Model (HMM) is used as the mathematical backbone for such
integration. Learning means the emergence of a proto-symbol
which represents the dynamics of motion sequences. Recog-
nition finds the most likely proto-symbol for observation. The
generation function decodes motion patterns from the proto-
symbol.

Proto-symbols: A proto-symbol is defined as the param-
eters of a Hidden Markov Model λ = {A,B, π}, where A
is the state transition probability matrix and π is the initial
state probabilities vector. The observation symbol probability
distribution B is represented with a mixtur of Gaussian
distributions B = {c, µ,Σ}, where c is the weight of the
mixture component, µ is the mean vector, and Σ is the
covariance matrix. Proto-symbols are learned from motion
patterns, which are represented in the joint angle space λθ =

{Aθ, πθ, cθ, µθ,Σθ}, by the EM algorithm. Thus, the size of
the vector µθ ∈ RM and matrix Σθ ∈ RM×M is the number
of joint angles.

Observations: The observed motion patterns Iox are rep-
resented as pixel positions of labeled markers, which are
attached on fixed positions of a demonstrator body, on the
camera image. The observation is the 2D Cartesian value of
the visible markers from a monocular camera Iox ∈ R2N ,
where N is the number of visible markers. For generality,
the observations are based on perspective projection and all
the markers are not always visible. However, it is assumed
that the labels of markers are known.

To summarize, the dimensions of the vector Iox and that of
vector µθ and matrix Σθ are different. Iox and λθ are based
in the image cartesian coordinates and in the joint coordinates
respectively. Also, the position and posture of the humanoid
and the demonstrator are not given. It is assumed that in-
ternal camera parameters are known but external parameters
are unknown. Under such conditions, in order to solve the
mimesis of complete motion patterns from image sequences
of a single camera, the following two strategies are proposed.

B. Strategy I

(I) Proto-symbols are converted as Dλθ → Dλx → Cλx

→ Iλx. Proto-symbols in the demonstrator joint coordinates
are converted into the demonstrator cartesian coordinates, into
the camera cartesian coordinates, and into the image cartesian
coordinates.

Dλθ → Dλx: The conversion from “demonstrator joint
coordinates” into the “demonstrator cartesian coordinates”
by kinematics is given in section III-A. Proto-symbols are
converted by the nonlinear kinematics function via Monte
Carlo method (section IV).

Dλx → Cλx: The transformation matrix between the
camera coordinates and the demonstrator coordinates is found
by applying the multidimensional scaling algorithm (section
V-A). Then, Dλx is transformed into the camera coordinates
Cλx by the transformation matrix. (section V-B)

Cλx → Iλx: Perspective projection of a marker in three-
dimensional space into the camera image is summarized in the
section III-B. Because this perspective projection considering
camera distortion is a nonlinear conversion, conversion of
proto-symbols are carried out in a similar way to section IV.

(II) Recognition and generation: Finally, both proto-
symbols Iλx and observations Iox are represented in the 2D
image Cartesian coordinates. When all the markers are not
visible, linear mimesis problem from partial observations are
carried out as described in section VI. The details can be
found in [5].

C. Strategy II

(I) Proto-symbols are converted as Dλθ → Dλx → Cλx

→ Cλφ.
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Cλx → Cλφ: Conversion of a vector from cartesian coor-
dinates to spherical coordinates is summarized in the section
III-D. Since this conversion is nonlinear, proto-symbols are
converted in the same way as in section IV.

(II) Observation is converted as Iox → Cox → Coφ.
Iox → Cox: From a projected marker position, the real

position in three-dimension is estimated by the section III-C.
(III) Recognition and generation: Then, both proto-symbols

Cλφ and observations Coφ are represented in the camera
spherical coordinates. Because a monocular camera does not
provide depth information, this becomes the linear mimesis
problem of complete motion pattern from incomplete obser-
vations. Recognition and generation of motions is carried out
by the method in the section VI.

III. BASIC CONVERSION TYPES

A. Forward Kinematics

The kinematic model of the humanoid is given in Fig. 2
and eq. (1). In Fig. 2, the left figure shows 20 joint angles oθ

and the right figure shows the 16 markers’ cartesian position
(x, y, z) ox.

ox = f(oθ) (1)

where ox ∈ R48, oθ ∈ R20.

x

z

y

{D}

Fig. 2. Humanoid configuration (left: Joint angle (oθ ∈ R20), right:
Markers’ Cartesian coordinates (ox ∈ R48))

marker

projected marker

{I}U

(u,v)

V
{C}

X

Y
Z

(x,y,z)

Camera Coordinates
Image Coordinates

Fig. 3. Perspective Projection

B. Perspective Projection - from 3D to 2D

Based on perspective projection (Fig. 3), a positional vector
(x, y, z) in 3-dimensional camera coordinates is projected into
a 2D pixel positional vector (u, v) on the projected image
coordinates as follows, by considering image distortion.

A scaling factor k is calculated as k = z
α , where α is the

camera focal length, the distance between camera origin and
the projection plane.

(dx, dy, dz) =
1
k

(x, y, z) = (
x

k
,
y

k
, α) (2)

u =
2dx

su(1 +
√

1− 4κ(dx2 + dy2))
+ cu (3)

v =
2dy

sv(1 +
√

1− 4κ(dx2 + dy2))
+ cv (4)

where, (cu, cv) is the center pixel position on the image and
su and sv are the size of a pixel in the u and v direction. κ
is the camera distortion parameter.

C. Perspective Projection - from 2D to 3D

In the opposite direction, a 2D pixel positional vector (u, v)
on the projected image coordinates can be converted into a
3D vector (x, y, z) in camera cartesian coordinates.

(ũ, ṽ, α) = (su(u− cu), sv(v − cv), α) (5)

(dx, dy, α) = (
ũ

1 + κ(ũ2 + ṽ2)
,

ṽ

1 + κ(ũ2 + ṽ2)
, α) (6)

(x, y, z) = k(dx, dy, α) (7)

where the scaling factor k is arbitrary.

D. Spherical Coordinate

Spherical coordinates are also called 3D polar coordinates.
A vector (x, y, z) in cartesian coordinates becomes (ρ, θ, φ)
into spherical coordinates where the radius is 0 ≤ ρ, colati-
tude is 0 ≤ φ ≤ π, and longitude is 0 ≤ θ ≤ 2π.

(ρ, θ, φ) = (
√

x2 + y2 + z2, tan−1(
y

x
), tan−1(

√
x2 + y2

z
)

(8)

IV. PROTO-SYMBOL CONVERSION BY KINEMATICS

This section considers how to convert a proto-symbol λ
from the joint space λθ = {Aθ, πθ, Bθ} to the Cartesian
space λx = {Ax, πx, Bx} by forward kinematics (section
III-A). Here it is assumed that after converting mixture
gaussian distributions Bθ = {cθ, µθ,Σθ} to the Cartesian
space, the converted motion output probability distributions
Bx = {cx, µx,Σx} are still a gaussian distribution.

Since the main difference between λθ and λx is the
representation of motion patterns, A, π, and c parameters,
which are not directly related to the observations, do not need
to be changed. Ax = Aθ. πx = πθ. cx = cθ.
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A. Conversion of µ and Σ, When Covariance is Small

When the forward kinematic model is given by eq. (1) and
the covariance is small, the mean vector µx is calculated from
µθ by eq. (9). The covariance matrix is converted by eq. (10),
by using the Jacobian matrix of the forward kinematics. In
particular, the Jacobian matrix of the mean vector is applied.

µx = f(µθ) (9)
Σx = J(µθ)ΣθJ(µθ)T (10)

where
J(θ) =

∂f(θ)
∂θ

(11)

Although the kinematic model is a nonlinear function, if
the covariance is small enough, it can be approximated as
a linear function. Our experimental data shows that most of
the covariance matrix elements Σθij of proto-symbols λθ are
0.015. Therefore, the standard deviation is 0.122 rad (7 deg).
This can be roughly considered as a linear function.

B. Conversion of µ and Σ, When Covariance is Large

When the covariance is large, the mean vector µx and
covariance matrix Σx are calculated by Monte Carlo method.
The Monte Carlo method estimates the continuous probability
distribution function by using discrete particles. Particles oθi

of oθ are generated from the Bθ = {cθ, µθ,Σθ}. oθi ∈ R20

denotes the i-th particle of oθ, where i = 1, ..., nS and nS is
the number of particles. Each particle is converted from the
joint space to the Cartesian space by kinematics.

oxi = f(oθi) (12)

oxi ∈ R48 denotes the i-th particle of ox. Then, the converted
mean vector and covariance matrix are calculated.

µx =
1

nS

∑
i

oxi (13)

Σx =
1

nS

∑
i

(oxi − µx)(oxi − µx)T (14)

Calculation via Monte Carlo method is simpler because the
Jacobian matrix is not necessary. Its computational cost is
proportional to the desired accuracy.

V. PROTO-SYMBOL CONVERSION BY TRANSFORMATION
MATRIX

A. Transformation Matrix Search

Position and rotation of camera coordinates {C} and
demonstrator coordinates {D} are not specified a-priori. In
the given kinematic model (Fig. 2), six markers on the waist,
chest, left shoulder, right shoulder, left hip and right hip are
static with respect to the demonstrator’s coordinates {D}. The
six markers are displayed with bold red circles in Fig. 2. By
using three markers’ positions, the transformation matrix D

C T
can be calculated. Here, three position vectors p0 (waist), p1

(left hip), p2 (chest) are used, as shown in Fig. 4.

{I}U

(u0,v0)

V

{C}

X

Y
Z

Camera Coordinates
Image Coordinates

X

Y
Z

{D} Demonstrator 
Coordinatesp0

p1

p2

(u2,v2)

Fig. 4. Transformation Matrix Search

The i-th marker position pi = (xi, yi, zi) for i = 0, 1, 2
is estimated from its projected 2-dimensional pixel position
(ui, vi) on the image. The projected point (ui, vi) on the
image is represented as (dxi, dyi, α) with respect to camera
coordinates (eq. (6)), where α is the camera focal distance.
A real marker position pi = (xi, yi, zi) is on the line
which connects the camera origin and the projected point
(dxi, dyi, α) on the projection plane.

pi = (xi, yi, zi) = ki(dxi, dyi, α) (15)

First, a rough scaling factor k is defined as

k = min
D(pim, pjm)

D(pi, pj)
(16)

, where D(pim, pjm) is the Euclidean distance between
marker i and j in the model and D(pi, pj) is the calculated
Euclidean distance between marker i and j. Every scaling
factor ki is set as the rough scaling factor. ki = k. pi is
updated as pi = ki(dxi, dyi, α).

Second, a precise scaling factor of i-th marker ki is updated
by the multidimensional scaling method. The evaluation func-
tion is defined.

W (h) =
∑

j

(D(hpi, pj)2 −D(pim, pjm)2)2 (17)

The value of h which minimizes the evaluation function
W (h) is found via the successive over relaxation (SOR)
method. The scaling factor ki is updated by the following
equation.

ki ← hki (18)

The real 3D marker position is estimated as pi =
ki(dxi, dyi, α). For other relative static markers, their optimal
scaling factors are founded and 3D marker positions are
estimated in the same way.

Last, the transformation matrix is estimated: The translation
is the waist position p0. The unit vectors of p1 − p0 and
p2 − p0 are corresponding to the Y axis and Z axis of {D}
coordinates. By cross product, the unit vector of X axis is
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known.

CpDorg = p0 (19)

ey =
p1 − p0

|p1 − p0| , ez =
p2 − p0

|p2 − p0| , ex = ey × ez (20)

C
DR = [ ex ey ez ] (21)

C
DT =

[
C
DR CpDorg

0 1

]
(22)

This algorithm works even when all the markers are not
visible, such as when the demonstrator’s back is totally not
visible and his front is visible in the 2D space. Because the
transformation matrix is founded with only three markers,
the minimum working condition is that three static markers
in {D} coordinates are partially visible.

Also, as long as the ratio of body structure is same, the
method can be applied to other subjects with a variety of
height. This is because the scaling factors ki are adjusted
with respect to the body size and the distance between the
camera and demonstrator.

B. Conversion Symbols with Transformation Matrix

With the obtained transformation matrix, proto-symbols
Dλx = {DAx,D πx,D Bx}, which is estimated in section
IV, in the demonstrator cartesian coordinates is converted
into those Cλx = {CAx,C πx,C Bx} in the camera cartesian
coordinates. As with the conversion of λθ to λx in section
IV, A, π, and c parameters are not changed. CAx = DAx.
Cπx = Dπx. Ccx = Dcx.

Because coordinates transformation is a general linear
system, mean vector and covariance matrix are calculated as
follows. [

Coxi

1

]
= C

DT

[
Doxi

1

]
(23)

[
Cµxi

1

]
= C

DT

[
Dµxi

1

]
(24)

CΣxi = C
DRDΣxi

C
DR

T
(25)

where oxi ∈ R3, µxi ∈ R3 and Σxi ∈ R3×3 (i = 1, · · · , 16)
are the position vector, mean vector and covariance matrix
of the i-th marker’s 3D Cartesian coordinates. Because the
covariance matrix is not related to the translation vector, the
covariance matrix is calculated by considering the rotation
matrix C

DR.

VI. LINEAR MIMESIS PROBLEM FROM PARTIAL
OBSERVATIONS

A. Motion Recognition

The observed motion is recognized by searching the
most probable HMM for input observation sequences among
HMMs, by calculating the likelihood P (x|λ).

λ∗ = arg max
λ

P (x|λ) (26)

This section explains how to calculate the likelihood
P (x|λ) in the case that there are missing motion elements
{xk}t in input observation sequences xt. The likelihood that a
proto-symbol λ generates the observed motion x is computed
by the forward algorithm [14].

P (x|λ) =
N∑

i=1

αT (i) (27)

where αt+1(j) =
∑N

i=1 αt(i)aijbj(xt+1), whose initializa-
tion is α1(i) = πibi(x1). αt(i) is the forward variable, which
denotes the probability of the observation o1, o2, · · · ot and
i-th state at time t. bi(xt) is the probability density function
for the output of continuous vector xt at the i-th state node.
It is represented with a mixture of Gaussian distributions.

bi(xt) =
m∑

j=1

cijbij(xt) (28)

bij(xt) =
exp{− 1

2 (xt − µij)T Σ−1
ij (xt − µij)}√

(2π)M detΣij

(29)

For the missing motion elements, the following equation is
applied into eq. (29), {xk}t − µij = const, so that the
invisible motion elements do not affect the output probability
density function with any proto-symbols. In our simulations,
the constant value is set to zero.

B. Motion Generation

Motion patterns are decoded using the expectation operator
in the stochastic model. The motion generation is a two-stage
stochastic process: state transition and motion output.

(I) classical motion generation method: When generating
a motion pattern only based on the proto-symbol, eq. (30) is
used. State transition is generated by A and π. Motion output
is generated by B.

y = g(λ∗) (30)

(II) observation conditioned motion generation method:
When generating a similar motion pattern to the observed
motion pattern, eq. (31) is used.

y = g(λ∗, x) (31)

The state sequence is obtained by applying the Viterbi algo-
rithm [14], which finds the single best state sequence for the
given observation sequence. Thus, this optimal state transition
generation enables us to generate a motion pattern close to
the observed target motion pattern. Here also, for the invisible
motion elements, x−µ = const is applied. After the optimal
state sequence is obtained, the output observation sequence y
is calculated according to the output probability distribution
in state i, i.e., bi(x).
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VII. SIMULATIONS

This section shows the simulation results of the proposed
approach. The humanoid possesses following nine proto-
symbols: (1) walk, (2) raising two arms (raise arms), (3)
dance, (4) kick, (5) punch, (6) sumo stomp, (7) squat, (8)
throw, and (9) bending upper body forward (bend forward).
When learning the proto-symbols by the EM algorithm,
joint angular data (20 DOF) are used. For the continuous
Hidden Markov Model, the number of nodes is 20 and that
of mixture Gaussians is 3. For each proto-symbol, 13∼28
motion patterns are used as a training set where each motion
pattern is about 2 second motion.

Input data for mimesis is the image sequences of 16
markers’ pixel positions on the image from an arbitrary view.
This is corresponding to perspective projected observation of
a single camera. Above nine motions are observed from three
different views. Each motion is recognized by strategy I and
strategy II. Proto-symbols are converted into an appropriate
coordinates. If necessary, the observation sequences are also
converted into the same coordinates. Finally, the linear mime-
sis problem from partial observation is carried out. The most
likely proto-symbol is found. The humanoid generates similar
motion to the target motion in the three-dimensional space.

In Fig. 5 and Fig. 6 show some mimesis results by strategy
I. Fig. 5 shows results of walk, raising two arms, and dance,
when the demonstrator’s pose (position and euler angles)
is (x, y, z, α, β, γ) = (0, 0.3, 1.0,−45, 0, 0) with respect to
camera coordinate. The units of position (x, y, z) and euler
angles (α, β, γ) are m and degree. Fig. 6 shows mimesis
results of kick, sumo stomp, and squat, when the demonstra-
tor’s pose is (x, y, z, α, β, γ) = (0, 0.3, 1.0, 90,−45, 0) with
respect to camera coordinate. Mimesis results by strategy
II are shown in Fig. 7. “throw” and “bend upper body
forward” motion image sequences are observed like (a) and
(c), when the demonstrator’s pose is (x, y, z, α, β, γ) =
(−0.2, 0.1, 1.1, 90, 53, 0) with respect to camera coordinate.
Corresponding generated motions are (b) and (d).

From simulation results, the averaged demonstrator pose
estimation error, mimesis error and motion recognition suc-
cess percentages are calculated and shown in Table I. Position
error is the error of demonstrator’s 3D position estimation
error. Yaw angle error is the demonstrator’s yaw value estima-
tion error. Joint angle error shows the averaged error per joint,
which is the difference between the observed and generated
joint angles. When an observed motion is recognized as a
correct proto-symbol, it is counted in for motion recognition
success.

VIII. CONCLUSION AND FUTURE WORK

In this paper, probabilistic mimesis from partial observation
is extended into a nonlinear problem; motion imitation in
the 3D space from image sequences of a monocular camera.
In order to solve this problem, important strategies are as
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Fig. 5. Mimesis by Strategy I: (a) “walk” 2D observation, (b) ”walk”
3D generated motion, (c) “raise arms” 2D observation, (d) ”raise arms” 3D
generated motion, (e) “dance” 2D observation, (f) ”dance” 3D generated
motion

TABLE I
POSE ESTIMATION ERROR AND IMITATION ERROR

error
position error 0.71 (mm)

yaw angle error 8.87 (deg)
joint angle error 5.42 (deg)

motion recognition success 96%

follows. (1) By applying conversion rules, proto-symbol and
observation are converted into the same coordinates. Typical
linear conversion of proto-symbols is addressed in section V.
Also, a case of nonlinear conversion is shown in section IV.
(2) The transformation matrix between the camera’s coordi-
nates and the demonstrator’s coordinates is estimated by the
multidimensional scaling method. (3) Motion recognition and
generation is carried out by the linear mimesis method from
partial observations.

This paper shows that a humanoid robot can understand
and imitate human motion in daily life by using only the
onboard vision system. However, some improvements are
required. Currently, our method is based on labeled markers
and this paper shows only simulation results. For the future

ThB5.1

2167



(a) 400 500 600

400

500

600

(b) -0.1

-0.1

0

0.1

x

y

z

0
0.1

0
0.1

0.2

(c) 300 400 500300

400

500

(d)

x

0
0.1

0.2

-0.1
0

0.1
y

-0.2

-0.1

0

z

(e) 300 400300

400

500

550

(f)

0
0.1

x

-0.1
0

0.1

y

-0.2

-0.1

0

0.1

z

Fig. 6. Mimesis by Strategy I: (a) “kick” 2D observation, (b) ”kick”
3D generated motion, (c) “sumo stomp” 2D observation, (d) ”sumo stomp”
3D generated motion, (e) “squat” 2D observation, (f) ”squat” 3D generated
motion

work, realtime mimesis experiments with a monocular camera
will be carried out. Also, marker’s positional uncertainties
which are caused by camera sensing errors and kinematics
modeling errors should be considered in the probabilistic
mimesis model. It is desirable not to use artificial markers.

ACKNOWLEDGMENT

This research was supported by Category S of Grant-in-
Aid for Scientist Research, Japan Society for the Promotion
of Science. The authors would like to thank professor Yamane
for his advice and support on motion capture systems.

REFERENCES

[1] G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi, “Premotor cortex
and the recognition of motor actions,” Cognitive Brain Research, vol. 3,
pp. 131–141, 1996.

[2] D. C. Bentivegna and C. G. Atkeson, “Using primitives in learning
from observation,” in First IEEE-RAS International Conference on
Humanoid Robots (Humanoids 2000), 2000.

[3] A. Billard and M. J. Mataric, “Learning human arm movements by im-
itation: Evaluation of biologically inspired connectionist architecture,”
Robotics and Autonomous Systems, vol. 37, pp. 145–160, 2001.

(a) 400 500 600

200

300

400

x

y

(b)

-0.1

0

0.1

z

0
0.1

0.2x

-0.1
0

0.1
0.2

y

(c) 400 500 600

200

300

400

x

y

(d) -0.1
0

0.1

-0.1

0

0.1

x

y

z

Fig. 7. Mimesis by Strategy II: (a) “throw” 2D observation, (b) “throw” 3D
generated motion, (c) “bend forward” 2D observation, (d) ”bend forward”
3D generated motion

[4] T. Inamura, Y. Nakamura, and I. Toshima, “Embodied symbol emer-
gence based on mimesis theory,” International Journal of Robotics
Research, vol. 23, no. 4, 2004.

[5] D. Lee and Y. Nakamura, “Mimesis from partial observations,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’05), Edmonton, Canada, August 2005, pp. 1911–1916.

[6] S. Nakaoka, A. Nakazawa, F. Kanahiro, K. Kaneko, M. Morisawa, and
K. Ikeuchi, “Task model of lower body motion for a biped humanoid
robot to imitate human dances,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’05), 2005, pp. 2769–2774.

[7] T. Inamura, N. Kojo, T. Sonoda, K. Sakamoto, K. Okada, and M. Inaba,
“Intent imitation using wearable motion capturing system with on-line
teaching of task attention,” in IEEE-RAS International Conference on
Humanoid Robots, Tsukuba, Japan, 2005, pp. 469–474.

[8] K. Kurihara, S. Hoshino, K. Yamane, and Y. Nakamura, “Optical
motion capture system with pan-tilt camera tracking and realtime
data processing,” in IEEE International Conference on Robotics and
Automation (ICRA’02), vol. 2, 2002, pp. 1241–1248.

[9] Z. Ghahramani and M. I. Jordan, “Supervised learning from incom-
plete data via an EM approach,” in Advances in Neural Information
Processing Systems, J. D. Cowan, G. Tesauro, and J. Alspector, Eds.,
vol. 6. Morgan Kaufmann Publishers, Inc., 1994, pp. 120–127.

[10] M. Cox and M. Cox, Multidimensional Scaling. Chapman and Hall,
2001.

[11] J. K. Aggarwal and Q. Cai, “Human motion analysis: A review,”
Computer Vision and Image Understanding: CVIU, vol. 73, no. 3, pp.
428–440, 1999.

[12] L. Ren, G. Shakhnarovich, J. Hodgins, P. Viola, and H. Pfister,
“Learning silhouette features for control of human motion,” 2004.

[13] A. Agarwal and B. Triggs, “Recovering 3d human pose from monocular
images,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 28, no. 1, pp. 44–58, January 2006.

[14] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proc. IEEE, pp. 257–286, 1989.

ThB5.1

2168


