
An Inevitable Collision State-Checker

for a Car-Like Vehicle

Rishikesh Parthasarathi & Thierry Fraichard

Inria Rhône-Alpes & LIG-CNRS Lab., Grenoble (FR)

Abstract— An Inevitable Collision State (ICS) for a robotic
system is a state for which, no matter what the future trajectory
followed by the system is, a collision with an obstacle eventually
occurs [1]. The ICS concept takes into account both the dynam-
ics of the robotic system and the future motion of the moving
objects of the environment. For obvious safety reasons, a robotic
system should never ever end up in an ICS hence the interest of
the ICS concept when it comes to safely drive robotic systems
in dynamic environments. In theory, determining whether a
given state is an ICS requires to check for collision all possible
future trajectories of infinite duration that the robotic system can
follow from this particular state! In practise, it is fortunately
possible to build a conservative approximation of the ICS set
by considering only a finite subset of the whole set of possible
future trajectories. The primary contribution of the paper is a
general principle to select the subset of trajectories based upon
the concept of imitating manoeuvres, ie trajectories leading the
robotic system to duplicate the behaviour of the environment
objects (fixed or moving), it is shown how a good approximation
of the ICS set can be obtained. The second contribution of the
paper is an ICS-Checker for a car-like vehicle moving in a
dynamic environment. This ICS-Checker integrates the above-
mentioned selection principle. It is efficient and could be used
in practise to compute truly safe motions for a car-like vehicle
amidst moving objects.

Keywords— Collision avoidance, dynamic environment

I. INTRODUCTION

A. Background and Motivation

Today, mobile robotic systems are leaving the research

laboratories. They are trying to operate in the real world

and are also increasingly interacting with human beings. The

characteristic feature of most real-world environments, irre-

spective of whether they are natural or man-made, structured

or unstructured, hostile or friendly, is that they are dynamic,

they feature moving objects (human beings, animals, vehi-

cles, other robotic systems, etc). This raises an important

question concerning the safety of the robotic systems and

the environments in which these interact: how safe are these

systems in dynamic environments? what guarantee is there

that collisions will not happen? As soon as the size and

dynamics of a robotic system makes it potentially harmful for

itself or its environment, motion safety is critical (especially

with human beings around).

Motion autonomy is a long standing issue in mobile

robotics. Since Shakey’s pioneering attempts at navigating

around autonomously in the late sixties [2], the number

and variety of autonomous navigation schemes that have

been proposed is huge (cf [3]). From the motion deter-

mination perspective, these navigation architectures can be

broadly classified into deliberative (aka motion planning-

based) versus reactive approaches: deliberative approaches

aim at computing a complete motion all the way to the

goal using motion planning techniques, whereas reactive

approaches determine the motion to execute during the

next time-step only1. Deliberative approaches have to solve

a motion planning problem [8]: they require a model of

the environment as complete as possible and their intrinsic

complexity is such that it may preclude their application in

dynamic environments2. Reactive approaches on the other

hand can operate on-line using local sensor information: they

can be used in any kind of environment whether unknown,

changing or dynamic. This accounts for the large number

of reactive approaches that have been developed over the

years, eg [9], [10], [11], [12], [13], [14], [15], etc. Most of

today’s reactive approaches however face a major challenge:

as shown in [16], motion safety in dynamic environments is

not guaranteed (in the sense that these robotic systems may

end up in a situation where a collision inevitably occurs at

some point in the future). Ref. [16] reaches this conclusion

after introducing three motion safety criteria and establishing

that all the autonomous navigation approaches currently used

in real-world applications fail to satisfy them all (hence the

collision risk). Ref. [16] also establishes that the concept

of Inevitable Collision States (ICS) introduced in [1] does

satisfy all three criteria.

An ICS for a robotic system is a state for which, no

matter what the future trajectory followed by the system

is, a collision with an object eventually occurs. For obvious

safety reasons, a robotic system should never ever end up

in an ICS. The ICS concept has already been used in a

number of applications. The first one concerns the safe

motion of a mobile robot subject to sensing constraints, ie

a limited field of view, and moving in a partially known

static environment [1]. The second one concerns a car-like

vehicle moving in a roadway-like environment [7]. In both

cases, the future motion of the robotic system at hand is

guaranteed never to take the system in an ICS. To that end,

an ICS-Checker is used: as the name suggests, it determines

whether a given state is an ICS or not.

B. Contribution and Paper Outline

Although the ICS concept offers a theoretical answer to

the motion safety issue, using it in practise raises a major

1In a few approaches, the motion is computed for a number, fixed or
arbitrary, of time-steps [4], [5], [6], [7].

2Arguments about this issue can be found in [5] and [7].

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThD10.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3068

problem: that of the characterisation of the set of ICS for

a given robotic system. In theory, determining whether a

given state is an ICS or not requires to check for collision

all possible future trajectories of infinite duration that the

robotic system can follow from this particular state!

In practise, it is fortunately possible to use the approxi-

mation property established in [1]. This property says that a

conservative approximation of the ICS set of a given robotic

system can be obtained by considering only a finite subset

of the whole set of possible future trajectories (this property

was used in [1] and [7]). What the approximation property

does not say is how to select this subset. This is unfortunate

because the quality of the approximation largely depends on

the subset considered. If the approximation is too coarse, one

might end up with most states being labelled as ICS (when

in fact they are not).

The primary contribution of the paper is a general principle

to select the subset of trajectories that can be used to

determine whether a state is an ICS or not. By introducing

the concept of imitating manoeuvres, ie trajectories leading

the robotic system to duplicate the behaviour of the envi-

ronment objects (fixed or moving), it is shown how a good

approximation of the ICS set can be obtained.

The second contribution of the paper is an ICS-Checker

for a car-like vehicle moving in a dynamic environment. It

is an extension of the algorithm used in [1] that considered

static environments only. This ICS-Checker integrates the

above-mentioned selection principle. It is efficient (it has

a polynomial complexity) and could be used in practise to

compute truly safe motions for a car-like vehicle amidst

moving objects.

The paper is organised as follows: first, section II recalls

the definition and the properties fundamental to the ICS

characterisation. Then, section III introduces the concept

of imitating manoeuvres. Afterwards, section IV presents

ICS-Checker in its general form. The instantiation of ICS-

Checker to the case of a car-like vehicle moving in a dynamic

environment is finally presented in section V.

II. INEVITABLE COLLISION STATES

The concept of Inevitable Collision State (ICS) was laid

down and explored in [1]. This section merely recalls the

definition of an ICS and its main characterising properties.

The reader is referred to [1] for more details.

A. ICS Definition

Let A denote a robotic system. It is assumed that its

dynamics can be described by a differential equation such

as: ṡ = f(s, u) where s ∈ S is the state of A, ṡ its

time derivative and u ∈ U a control. S and U respectively

denote the state space and the control space of A. Let

φ : [0,∞[−→ U denote a control input, ie a time-sequence

of controls. Starting from an initial state s0 (at time 0) and

under the action of a control input φ, the state of A at

time t is denoted by φ(s, t). φ equivalently represents a

trajectory for A. The set of possible control inputs is denoted

by Φ, it represents the set of future trajectories that A can

follow. Similarly, φ−1(s0, t) denotes the state s such that

φ(s, t) = s0.

Let ST denote the state-time space of A, ie its state space

augmented of the time dimension [17]. A fixed or moving

object in the workspace W of A yield a set of collision

state-times denoted by B. If (s, t) ∈ B, it means that at time

t a collision takes place between A and the corresponding

object. Henceforth B(t) denotes the t-slice of B, ie the state-

times whose time coordinate is t.
Let us now recall the definition of an ICS and of its

companion concept, the Inevitable Collision Obstacle (ICO):

Def. 1 (Inevitable Collision State): s is an ICS iff ∀φ ∈
Φ,∃t, φ(s, t) is a collision state at time t.

Def. 2 (Inevitable Collision Obstacle): Given a set of

forbidden state-times B,

ICO(B) = {s ∈ S|∀φ,∃t, φ(s, t) ∈ B}

B. ICS Properties

Three properties established in [1] are now recalled:

Property 1 (Control Input Intersection):

ICO(B) =
⋂

Φ

ICO(B, φ)

Assuming now that B =
⋃

i Bi,

Property 2 (Obstacles Union):

ICO(
⋃

i

Bi, φ) =
⋃

i

ICO(Bi, φ)

Finally,

Property 3 (ICO Characterisation):

ICO(B) =
⋂

Φ

⋃

i

ICO(Bi, φ)

ICO(B) can obviously be derived from ICO(B, φ) for

every possible control input φ. In general, complex systems

have an infinite number of control inputs and hence the

approximation property was introduced. This property is of

practical interest since it permits to compute a conservative

approximation of ICO(B) by using a subset only of the

whole set of possible control inputs.

Property 4 (ICO Approximation): Let I denote a subset

of the set of possible control inputs Φ,

ICO(B) ⊂
⋂

I

ICO(B, φ)

C. Control Input Selection

The approximation property raises an important issue:

what type of control inputs should be considered for the

subset I? This issue is important because the quality of the

approximation largely depends on the subset considered. If

the approximation is too coarse, one might end up with most

states being labelled as ICS (when in fact they are not).

ThD10.2

3069

There is an intuitive answer to that problem: as per Def. 1,

it appears that what characterise a state that is not an ICS

is the existence of at least one control input yielding a

collision-free trajectory. In this respect, the control inputs that

are important should correspond to evasive manoeuvres, ie

trajectories seeking to avoid collisions with the objects of the

workspace. It is this principle that guided the determination

of I in [1]. It considered a car-like vehicle subject to

sensing constraints, ie a limited field of view, and moving

in a partially known static environment. In this case, a

straightforward evasive manoeuvre is to brake down and

stop (while possibly steering to the left or to the right).

Accordingly, I featured braking manoeuvres.

Now, in the presence of moving objects, what constitutes

a good evasive manoeuvre? There is no straightforward

answer to that question. However, the next section proposes

a solution to this problem that turns out to be a logical

extension to braking manoeuvres.

III. EVASIVE MANOEUVRES AND MOVING OBJECTS

A. Zero-Relative Velocity Paradigm

In a static environment, if A can perform a braking

manoeuvre without any collision, its safety is guaranteed

forever. It is argued that a braking manoeuvre is nothing

but a control input that tries to achieve and maintain a zero-

relative velocity wrt the static obstacles. It is obvious that

two objects with zero-relative velocity will never collide in

the future unless they are already in collision.

In a dynamic environment, braking manoeuvres are not

so good from the safety point of view. Even if A can

stop safely, it still can be hit by a moving object. This

leads to the following question: what is the easiest way

to escape a dynamic object? The solution to this question

proposed herein lies in the extension of the idea of braking

manoeuvres. A robotic system can escape a dynamic object

if it can achieve and maintain a zero relative velocity wrt

the object. This type of manoeuvre are called imitating

manoeuvres as the system tries to imitate the moving object’s

behaviour. They are presented in the next section.

B. Imitating Manoeuvres

Given a moving object, the corresponding imitating ma-

noeuvre (IM) is the control input leading A to imitate the

moving object’s future motion (in the workspace) so as to

maintain a zero-relative velocity between them. IM exists

provided that the dynamic properties of A and the moving

object are similar. Henceforth it is assumed that they are

equal.

Let us consider a moving object whose future motion

is determined by the control input φmo : [0,∞[−→ U .

Henceforth B is used both to denote the moving object and

the corresponding set of collision state-times.

Let us assume first that A is in a state with zero-relative

velocity wrt B. In this case, it can start imitating (in the

workspace) the future motion of B right away (Fig.1-left). IM

is exactly φmo and the following property can be established:

A

B

W

A

B

W

Fig. 1. A imitates B’s behaviour: A can imitate right away (left); A must
first “catch-up” (red part of the motion) before imitating (right).

Property 5: ICO(B, φmo) = B(0)

where ICO(B, φmo) denote the set of ICS obtained when

considering the control input φmo alone. This property estab-

lishes the fact that, unless A and B are already in collision

at time 0, they will never collide provided that A executes

the trajectory corresponding to φmo.

Proof:

ICO(B, φmo)
2
=

⋃

t

ICO(B(t), φmo)

2
=

⋃

t

⋃

B

ICO(b(t), φmo)

=
⋃

t

⋃

B

φ−1

mo(b(t), t)

=
⋃

t

⋃

B

b(0) = B(0)

In general, A will not be in a state with zero-relative

velocity wrt B. Accordingly, A cannot start imitating B right

away (for instance, it does not have the proper orientation or

the proper velocity). In such a situation, IM comprises two

parts (Fig.1-right):

• The “catch-up” part at the end of which A achieves a

zero-relative velocity with B.

• The “follow” part during which A duplicates B’s control

input.

As per property 5, if A can perform the catch-up trajectory

without any collision, its safety wrt B is guaranteed forever.

In this respect, IM are good candidates for the subset I. Since

an imitating manoeuvre is defined wrt to a given moving

objects, there should be one imitating manoeuvre per moving

objects. Finally, it can be noticed that a braking manoeuvre

is just a special imitating manoeuvre: by braking down and

stopping, A is simply imitating the behaviour of a fixed

object (which is standing still). Unlike imitating manoeuvres,

braking manoeuvres are not object-dependent.

IV. ICS CHECKING ALGORITHM

Using the ICO characterisation and approximation prop-

erties along with the principle guiding the choice of the

ThD10.2

3070

evasive manoeuvres, it is possible to design ICS-Checker, ie

an generic algorithm whose purpose is to determine whether

a given state is an ICS or not. ICS-Checker is a boolean

function taking as input s, the state that is to be checked,

and the current model of the environment given as a list of

objects with corresponding future trajectories (null for fixed

objects). The environment model is used to determine, for

each object, the corresponding set of collision state-times,

Bi. The steps involved in determining if s is an ICS are:

1) To begin with, ICS-Checker determines the evasive

manoeuvres that will compose I, the set of evasive

manoeuvres, namely:

• A fixed number of braking manoeuvres.

• One imitating manoeuvre per moving object.

2) Compute ICO(Bi, φj) for every object Bi and every

evasive manoeuvre φj ∈ I.

3) Compute ICO(B, φj) =
⋃

i ICO(Bi, φj) for every

object Bi (property 2).

4) Compute ICO(B) =
⋂

j ICO(B, φj) for every evasive

manoeuvre φj ∈ I (property 1).

5) Determine whether s ∈ ICO(B). If so return True

otherwise return False.

The next section describes the instantiation of this algo-

rithm to the particular case of a car-like vehicle moving in

a dynamic environment.

V. CASE STUDY: CAR-LIKE VEHICLE

Ref. [1] gave a characterisation of the ICS for a car-like

vehicle moving among fixed objects only. The moving object

case is addressed here.

x

y

θ

ξ

v

b

Fig. 2. The car-like vehicle A (bicycle model).

A. Model of the Car-Like Vehicle

Let us consider a point robot A that moves like a car-

like vehicle and whose dynamics follows the bicycle model

(Fig. 2). A state of A is defined by the 4-tuple s = (x, y, θ, v)
where (x, y) are the coordinates of the rear wheel, θ is the

main orientation of A, and v is the linear velocity of the

front wheel. A control of A is defined by the couple (uξ, uv)

where uξ is the steering angle and uv the linear acceleration.

The motion of A is governed by the differential equations:

ẋ = v cos θ cos uξ

ẏ = v sin θ cos uξ

θ̇ = v sin uξ/b
v̇ = uv

(1)

with |uξ| ≤ ξmax and |uv| ≤ uv
max

. b is the wheelbase of A.

A moves on a planar workspace W cluttered up with fixed

and moving convex polygonal objects. It is assumed that the

moving objects move with a constant linear velocity.

B. ICS-Checker Particulars

The efficiency of the ICS checking algorithm presented

in [1] was obtained by computing the ICS corresponding to

two-dimensional slices of the four-dimensional state space

S of A (instead of attempting to perform computation

in the full four-dimensional space). The slices considered

were slices with fixed orientation and velocity. Should s =
(x, y, θ, v) be the state to be checked, ICS-Checker would

compute the ICS set of the θv-slice and then test if s belongs

to the ICS set obtained.

As shown in [1], this approach yield an efficient ICS-

Checker given that computing the ICS set of a θv-slice

only requires to perform operations on two-dimensional

generalised polygons (eg Minkowsky Sums, intersection and

unions), operations that can be performed efficiently.

The same principle applies here and the following sections

illustrates how to compute ICO(B, φj) for the different

combinations of object and evasive manoeuvre types (so as

to carry out step 3 of the ICS checking algorithm presented

in §IV). Due to lack of space, the following sections merely

outline how ICO(B, φj) is computed, the reader is referred

to [18] for more details.

C. ICO (Fixed Object, Braking Manoeuvre)

xx

yy
AA

B

B

ICO(B, φ) ICO(B, φ)

d(v)

Fig. 3. Computing ICO(B, φ) for a fixed object and a braking manoeuvre.

The combination considered here is that of a fixed object

and a braking manoeuvre. The set of braking manoeuvres

considered here and selected for I comprises a discrete

number of manoeuvres φb where A steers with a constant

steering angle uξ while braking down until it stops.

ThD10.2

3071

Let us consider a point object B first. In this case, A
eventually crashes into B iff it is on a collision course and

its distance to B is less than its braking distance denoted by

d(v). Accordingly, ICO(B, φb) is the circular arc of radius

b/ tan uξ and arc length d(v) starting from B in the −θ
direction (Fig. 3-left).

When B is a solid obstacle, property 2 is used.

ICO(B, φb) is the union of the ICO(Bi, φb) for every point

Bi of B, ie the Minkowsky Sum between B and the circular

arc computed earlier (Fig. 3-right).

D. ICO (Moving Object, Braking Manoeuvre)

xx

yy
AA

B

B

ICO(B, φ)ICO(B, φ)

d(v)

Fig. 4. Computing ICO(B, φ) for a moving object and a) a braking
manoeuvre (left); b) an imitating manoeuvre (right).

The combination considered here is that of a moving

object B and a braking manoeuvre φb. It is assumed that B
is moving with a constant linear velocity. In this case, should

A stops in the heading direction of B, it will eventually be

hit by it. Accordingly, ICO(B, φb) comprises two parts: a) a

preliminary part containing the states from which A reaches

a state occupied by B at the same time instant, and b) a

half-line running parallel to B’s path (Fig. 4-left).

E. ICO (Moving Object, Imitating Manoeuvre)

xx

yy
AA

BB

ICO(B, φ)

ICO(B, φ)

Fig. 5. Computing ICO(B, φ) for a) a moving object and an arbitrary
imitating manoeuvre (left); and b) a fixed object and an arbitrary imitating
manoeuvre (right).

The combination considered here is that of a moving

object B and the corresponding imitating manoeuvre φi.

As mentioned in §III, φ comprises two parts: a catch-up

and a follow part. The purpose of the catch-up part is to

change the orientation and the velocity of A so that they

match that of B. Once done, A move at constant linear

velocity (that of B). The catch-up part consists in turning

to the left or to the right (depending on the respective

orientations of A and B) with maximum steering angle and

with maximum acceleration/deceleration until A achieves

zero-relative velocity wrt B. Let us assume that A achieves

zero-relative velocity wrt B at time tc. As per property 5,

ICO(B, φi) reduces to (Fig. 4-right):

ICO(B, φi) =
⋃

t≤tc

φ−1

i (B(t), t).

That was for the case where the imitating manoeuvre was

the one corresponding to the moving object considered. Since

ICS-Checker has to compute the ICS set for every possible

pair of object and evasive manoeuvre, it is necessary to

consider the combination between a moving object B and

an arbitrary imitating manoeuvre φe. In this case, A never

achieves zero-relative velocity wrt B and ICO(B, φe) is an

infinite curve originating at B(0)(Fig. 5-left). It is defined as:

ICO(B, φe) =
⋃

t

φ−1

e (B(t), t).

F. ICO (Fixed Object, Imitating Manoeuvre)

The last combination to be considered is that of a fixed

object B and an arbitrary imitating manoeuvre φi. Computing

ICO(B, φi) is straightforward in this case (Fig. 5-right).

G. Software Implementation

A prototype version of the algorithm proposed in §IV

has been implemented in C++. Step 3 of the algorithm,

ie computing ICO(B, φj) for the different combinations of

object and evasive manoeuvre types, is carried out using the

techniques presented above. Step 4 reduces to computing

generalised polygon intersection. Fig. 6 depicts results of

the ICS checking software: each snapshot shows the ICS

set of a given (θ, v)-slice in two different environments: the

dark regions are the objects, either fixed or moving (with a

constant linear velocity).

VI. CONCLUSION

The concept of Inevitable Collision States (ICS) was

introduced in [1] to answer the problem of safe motions (in

dynamic environments in particular). In theory, determining

whether a given state is an ICS requires to check for collision

all possible future trajectories of infinite duration that the

robotic system can follow from this particular state! In

practise, it is fortunately possible to build a conservative

approximation of the ICS set by considering only a finite

subset of the whole set of possible future trajectories.

The paper has presented a general principle to select this

subset of trajectories based upon the concept of imitating

manoeuvres, ie trajectories leading the robotic system to

duplicate the behaviour of the environment objects (fixed

or moving), it has shown how a good approximation of the

ICS set could be obtained. Then the paper has presented an

ThD10.2

3072

Fixed Object

Moving Object ICS Set

(θ, v) ICS Set (θ, v)

Fig. 6. Snapshots of the ICS checking software.

ICS-Checker for a car-like vehicle moving in a dynamic en-

vironment. This ICS-Checker integrates the above-mentioned

selection principle. It is efficient and could be used in practise

to compute truly safe motions for a car-like vehicle amidst

moving objects.

Future works include integrating the ICS-Checker within

the Partial Motion Planner navigation scheme of [7] and

testing it on a real vehicle (such as the Cycab3). Another

goal is to design an ICS-Checker for a more realistic car-

like vehicle model, ie a model wherein the controls are the

linear acceleration and the steering velocity (instead of the

steering angle). Designing an ICS-Checker both generic, ie

applicable to arbitrary robotic systems, and efficient remains

a challenge worth being pursued.

REFERENCES

[1] T. Fraichard and H. Asama, “Inevitable collision states - a step towards
safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–1024,
2004.

[2] N. J. Nilsson, “Shakey the robot,” AI Center, SRI International, Menlo
Park, CA (US), Technical note 323, Apr. 1984.

[3] I. R. Nourbaskhsh and R. Siegwart, Introduction to Autonomous

Mobile Robots. MIT Press, 2004.
[4] I. Ulrich and J. Borenstein, “VFH∗: Local obstacle avoidancd with

look-ahead verification,” in Proc. of the IEEE Int. Conf. on Robotics

and Automation, San Francisco, CA (US), Apr. 2000, pp. 2505–2511.
[5] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning

for agile autonomous vehicles,” AIAA Journal of Guidance, Control

and Dynamics, vol. 25, no. 1, pp. 116–129, 2002.

3http://www-lara.inria.fr/cycaba

[6] F. Large, C. Laugier, and Z. Shiller, “Navigation among moving
obstacles using the NLVO : Principles and applications to intelligent
vehicles,” Autonomous Robots Journal, vol. 19, no. 2, pp. 159–171,
Sept. 2005.

[7] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and

Systems, Edmonton, AB (CA), Aug. 2005.
[8] S. M. Lavalle, Planning Algorithms. Cambridge University Press,

2006.
[9] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” Int. Journal of Robotics Research, vol. 5, no. 1, 1986.
[10] J. Borenstein and Y. Korem, “The vector field histogram — fast

obstacle avoidance for mobile robts,” IEEE Trans. Robotics and

Automation, vol. 7, no. 3, pp. 278–288, June 1991.
[11] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to

collision avoidance,” IEEE Robotics and Automation Magazine, vol. 4,
no. 1, pp. 23–33, Mar. 1997.

[12] N. Y. Ko and R. Simmons, “The lane-curvature method for local
obstacle avoidance,” in Proc. of the IEEE-RSJ Int. Conf. on Intelligent

Robots and Systems, Victoria, BC (CA), Oct. 1998, pp. 1615–1621.
[13] O. Brock and O. Khatib, “High-speed navigation using the global

dynamic window approach,” in Proc. of the IEEE Int. Conf. on

Robotics and Automation, Detroit, MI (US), May 1999, pp. 341–346.
[14] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments

using velocity obstacles,” Int. Journal of Robotics Research, vol. 17,
no. 7, pp. 760–772, July 1998.

[15] J. Minguez and L. Montano, “Nearness diagram (ND) navigation: col-
lision avoidance in troublesome scenarios,” IEEE Trans. on Robotics

and Automation, vol. 20, no. 1, pp. 45–59, Feb. 2004.
[16] T. Fraichard, “A short paper about safety,” in Proc. of the IEEE Int.

Conf. on Robotics and Automation, Rome (IT), Apr. 2007.
[17] ——, “Trajectory planning in a dynamic workspace: a ‘state-time

space’ approach,” Advanced Robotics, vol. 13, no. 1, pp. 75–94, 1999.
[18] R. Parthasarathi, “Characterization of the inevitable collision states

for a car-like vehicle,” Master’s thesis, Inst. Nat. Polytechnique de
Grenoble, Grenoble (FR), June 2006.

ThD10.2

3073

