
Crowds of Moving Objects: Navigation Planning and Simulation

Julien Pettré, Helena Grillon and Daniel Thalmann

Abstract— This paper presents a solution to interactive nav-
igation planning and real-time simulation of a very large
number of entities moving in a virtual environment. From the
environment geometry analysis, we deduce a structure called
navigation graph, which is the base to our method. After the
description of this structure, we introduce a set of algorithms
dedicated to answer navigation queries with a set of various
solution paths and to execute the planned navigation in an
efficient manner. We equally demonstrate method performance
and robustness over several examples.

I. INTRODUCTION

Robotics has made great efforts to develop motion plan-
ning methods in order to allow mechanical systems to
navigate autonomously in their environment. Recently, the
application field of these methods significantly expanded,
such as to Biochemistry, Architecture, Ergonomics, and
Computer Graphics (CG). For CG applications, motion
planning increases the autonomy of digital actors, eases a
user’s navigation in a virtual world and solves user queries
from high level directives (e.g., commanding an army in a
video game) among other functionalities. A specificity of CG
applications is a frequent need for interactivity: performance
and robustness are main issues. We principally consider the
specific case of a large number of moving entities evolving
on the terrain of a given virtual environment. We have
developed an architecture able to solve users’ navigation
queries interactively, and to update the position of each entity
in real time.

A number of criteria and objectives have conditioned our
technical choices. First of all, performance: computer power
increase has doubtlessly improved computational times to
those of previous approaches. However, the complexity of
environments’ geometric models and the number of moving
entities in them has increased even more. Our method
allows the abstraction of environment geometries. Then,
transferability: our method is applicable to a large class of
environments and moving entities. It is based on simple
geometrical expressions and properties. It is thus easily
adaptable. Finally, scalability: our architecture is scalable. In
other words, the user can distribute the computing resources
locally in space and time during simulations, and focus them
where most needed.

J. Pettré performed this work at EPFL-VRlab, sponsored by Marie Curie
Action, grant ”RAGA” n.11166 FP6-2004-Mobility-5

J. Pettré is with IRISA-INRIA, Bunraku Team, Campus de Beaulieu,
F-35042 Rennes, France julien.pettre@irisa.fr

H. Grillon and D. Thalmann are with EPFL-VRlab,
CH-1015 Lausanne, Switzerland {helena.grillon,
daniel.thalmann}@epfl.ch

Our method’s contributions are, first, a cell-decomposition
method which captures the environment’s topology and ge-
ometry and is adapted to environments combining uneven
terrains and multi-layered surfaces. Second, it proposes a
data structure designed for both navigation planning and
simulation. Third, it offers a specific navigation planning
technique which searches for various solutions to a single
problem. Finally, it proposes a set of algorithms to respond
to user queries such as navigation, neighbor or visibility
requests.

II. RELATED WORK

Navigation planning is a specific case of motion planning,
[1], [2], [3], which is mainly studied by the Robotics commu-
nity. However, we will once again focus on their application
or development by the CG community [4]. Basically, three
main classes of solutions to the motion planning problem
can be distinguished: local approaches, probabilistic ones and
deterministic ones.

Local approaches fit the problem of collision avoidance
between two moving entities: the potential fields method
[5] is very popular and has inspired many solutions [6].
However, when used for global path planning, they generate
many problems: parameters tuning (naturalness vs. collision
freeness), goal conflicts and local minima. Probabilistic
approaches randomly explore the free configuration space
[7] of a given problem, while capturing its connectivity into
a roadmap. Multi-query (PRM) [8] or single query (RRT) [9]
solutions exist, as well as many variants. These have been
successfully applied to computer animation problems such as
to the locomotion of human-like characters [10], [11], [12],
[13]. Such approaches fit high-dimensional problems, with
systems having numerous degrees of freedom, whilst the nav-
igation problem is frequently lowered to a 3 or 4-dimensional
problem (position and orientation of the system). Paths syn-
thesized by PRMs require optimization which dramatically
increases the solution’s computational cost. Moreover, when
dealing with multiple moving entities, PRM solutions tend
to always produce similar paths (the ones captured by the
roadmap), which increases the potential number of collisions
between entities and may have an impact on path naturalness.
Deterministic approaches use an exact and continuous repre-
sentation of the space and of the considered system mobility.
This generally results in a very complex system, making
them unenforceable. Environments are therefore discretized
to overpass these limitations. The use of a grid laying on
the floor to capture obstacle position and navigable space
is the most frequent solution. A* or Dijkstra’s algorithms
are used to search for solution paths [14], [15]. To optimize

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThD10.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3062

Fig. 1. left: Geometric representation of a NG in a 2D academic
environment. right: NG itself for the same example.

search times, multi-resolution or hierarchical grids can be
used [16], [17]. A classical drawback to these solutions is
the low aspect quality of the results: jagged paths and sharp
corners. A solution consists in post-processing the solution
paths, which increases computation time. Our approach falls
into the deterministic class by decomposing the environment
into a set of 3D navigable cells. However, we compute
this decomposition from a discrete space representation.
Decomposition methods have already been used for crowd
simulation, like in [18], and proved to be efficient. Our
method improves such approaches by considering a larger
class of terrains (uneven and/or multi-layered), by extending
data structures to efficient navigation, neighborhood and
visibility queries, and by providing scalable simulations.

III. NAVIGATION GRAPHS

A. Principle

A Navigation Graph (NG) results from a cell decomposi-
tion of the navigable parts Cnav of a considered environment.
As in classical decomposition methods, NG vertices are cells
free of obstacle and adjacent cells are linked by an edge. The
decomposition is not exact as the computation is based on
a discrete representation of the obstacles (see next section).
The method is dedicated to entities moving on a floor or
terrain. Cnav is thus the union of the environment surfaces:

• flat enough: for a surface to be navigable, its slope must
be within the bounds of a user defined limit angle,

• free of obstacle,
• with a high enough free-space above them - still ac-

cording to considered entities characteristics.
Cells are cylinders laying on Cnav and are theNG vertices.

Cells are adjacent when the corresponding cylinders overlap.
Adjacency is naturally modeled by the NG edges. In order
to capture Cnav in a compact manner, cylinders are centered
on the Voronoı̈ diagram [19] of the navigable surfaces and
their center is excluded from any other cell. As for others
decomposition-based techniques, a property of NG is that
any point belonging to a given navigable cell can reach any
point belonging to an adjacent cell, passing by any point
of their intersection (depending on conditions). Thus, the
navigation planning is reduced to a graph search problem.

Fig. 1 schematically illustrates a NG computed for a
simple 2D environment. However, a novelty of our method
is to fit 3D environments, even for those combining uneven
and multi-layered surfaces.

B. NG computation

We previously introduced a technique to compute NGs
[20] using an intermediate grid and graphics hardware-based
operators. The method consists in 5 main steps:

1) environment geometry sampling: we create a regular
grid of points matching the environment surfaces.
As multi-layered environments may be considered, a
simple elevation is insufficient since several elevations
may correspond to given horizontal coordinates.

2) grid mesh: two neighboring grid points are intercon-
nected when the slope of the in-between space is
beneath the user-defined maximum slope angle and
free of obstacle. With this stage, we provide a mesh
capturing Cnav in a discrete manner.

3) clearance map: we compute the clearance for each grid
point, i.e. the distance to the nearest obstacle or high-
slope. Given the the grid mesh computation method,
this distance is approximated by the distance to the
nearest grid point not connected to all of its direct
neighbors. Indeed, The lack of connection reveals the
presence of an obstacle or a high-slope.

4) NG deduction: we then use a subset of grid points to
compute the NG vertices. A graph vertex (cylinder)
is created from a grid point by using it as centre and
its corresponding clearance as radius. The grid point
with maximum clearance is selected to create the graph
vertex and all the grid points covered by the vertex are
disabled for selection. The process is then reiterated
until no more grid points remain for selection. Doing
so, a majority of cylinders are centered on the Voronoı̈
diagram corresponding to the environment.

5) visibility pre-computation: for each NG vertex, we
compute the visibility of all other vertices according
to the four main cardinal points. We can then use
this information for visibility queries between moving
entities.

Some examples of environments and corresponding NG,
as well as computing times, are given in the Results section.

C. Data Structures

In order to allow the implementation of our method, and
for a better understanding of the algorithms we use, we here
detail the contents of our data structures. NG captures the
following information:

1) For each vertex. Navigable cylinder geometry: center,
radius and height. Local elevation map: the portion
of the intermediate grid - used for NG computation
- located under the cylinder is copied and stored. As
NG handles multi-layered environments, this allows
to solve elevation queries efficiently. Visible vertices:
the list of all vertices that can be partially or totally
seen from the current vertex. This allows to solve
visibility queries efficiently. Included moving entities:
the list of all moving entities currently navigating in
the vertex. This information is managed and updated
by the simulation loop. Adjacent vertices: the list of

ThD10.1

3063

vertices sharing an edge with the current vertex. This
allows to solve neighbor queries efficiently.

2) For each edge. Linked vertices: the pair of vertices
sharing this edge. Gate geometry: the coordinates of a
line segment at the linked cylinders’ intersection. Cost:
the distance between the two linked cylinders’ centers.

3) For each mobile entity. Steering methods: able to
steer the mobile entity toward a way-point, whilst
avoiding other mobile entities. Optionally, we can
scale the steering method, i.e., we can change its
complexity and precision with a parameter. This will
be discussed in the Simulation part of the next section.
Currently crossed vertex: in order to know in which
navigable area the mobile entity is currently located.
This information is managed by the simulation loop.
Currently followed path: resulting from a navigation
query. Currently followed way-point: which is selected
along the currently followed path.

D. Discussion

As mentioned before, our method is inspired by cell-
decomposition motion planning techniques. However, our
method is not perfectly accurate: the decomposition does not
capture the complete navigable space, and the graph com-
putation uses a discrete representation of the environment.
A high-precision grid may therefore be required in order to
capture narrow passages, which results in long comuptations.
Nevertheless, advantages of our method are its robustness
(we have tested it on many environments whose meshes
were crude from design), its ability to consider both uneven
and multi-layered environments, and the lack of need for
expertise to use it.

Another advantage of our method is its use of very
simple geometric expressions to model the navigable space:
cylinders and line segments for the graph vertices and edges
respectively. This representation is not perfect in all cases:
for example, long corridors require many adjacent cylinders
to be captured. However, our model allows to solve basic
queries efficiently. For example, a simple distance test allows
to determine if a moving entity is contained in a vertex or
not. It equally requires little memory for storage.

The next section illustrates the use of NG for crowd
navigation planning.

IV. NAVIGATIO AND OTHER INTERACTIVE
QUERIES

A. Navigation Planning Queries

We use 2 navigation planning algorithms, one to plan the
navigation of a single entity between two locations (Alg. 1)
and one to create a navigation flow between two locations,
i.e., for a large number of entities all moving between
identical locations (Alg. 2).

We solve Single Navigation Queries (Alg. 1) in a classical
manner: given a navigation graph NG, and two locations to
join (for which the corresponding NG vertices vi and vd

are found), we launch a Dijkstra’s shortest path search. We
deduce the resulting path from the set of edges between both

Fig. 2. Solution paths to a navigation flow query between locations 1 and
2: the proposed algorithm provides several solutions to a single query. The
objective is to dispatch many entities moving between identical locations.
Each entity can select its own path, and use the full width of the corridors
composing the path to obtain a unique trajectory.

Algorithm 1: Single Navigation Query
Data: current location pinit, destination pdest and NG
Result: a solution path (set of edges)

Psol = {e1, ..., en}
begin1

vi ← the vertex including pinit2

vd ← the vertex including pdest3

Psol ← Dijkstra(vi, vd,NG)4

end5

locations. As edges are line segments (we also call them
gates), we can model the path as a corridor between the
two desired locations. An example of Navigation Query is
illustrated in Fig. 2. This first algorithm provides path 1 as
unique solution.

Another problem is to compute a trajectory for a moving
entity which is always confined to the free space. For
example, if way-points are picked within each successive
gate and a linear steering is used to join them, the trajectory
is contained in the solution path (the solution corridor).
However, in the case of mechanical constraints (e.g. non-
holonomy), the user must take care of this issue.

Our objective is to address the problem of numerous
entities navigating in a same environment and particularly,
the case were many of them navigate between identical
destinations. In this case we create a Navigation Flow
between the two locations. We avoid the concentration of all
entities on a same trajectory in order to limit the potential
number of inter-collisions (solving interactions also has a
high computational cost) and increase realism. In order to do
this, we can exploit corridor width to dispatch the entities.
However, this can be insufficient, especially when the gates
are narrow: a congestion may appear. The second navigation
planning algorithm Alg. 2 is aimed at providing a second
level of variety by answering queries with a set of paths
instead of a single one. As in Alg. 1, the shortest path is our
first solution path. We then search for an alternative path
avoiding the narrowest gate: the gate’s cost is increased and
Dijkstra’s search is invoked again. Edge cost can only be
modified once and the algorithm stops when no more edge
cost can be modified. Optionally, the process stops when a

ThD10.1

3064

Algorithm 2: Navigation Flow Query
Data: current position pinit, destination pdest, NG and

optionally a max. number of paths to find Nmax

Result: a set of solution paths Fsol = {Psol1 , ..., Psoln}
begin1

vi ← the vertex including pinit2

vd ← the vertex including pdest3

Einc ← {∅}4

Stop← false5

while Stop is false and card(Fsol) < Nmax do6

Stop← true7

Psol ← Dijkstra(vi, vd,NG)8

if Psol /∈ Fsol then9

Fsol ← Fsol

⋃
{Psol}10

if11

∃e \ e← Thinnest({e | e ∈ Psol ∧ e /∈ Einc})
then

e cost = e cost× 1012

Einc ← Einc

⋃
{e}13

Stop← false14

end15

number of solution paths is reached. Note that we developed
a variant stop criterion where the relative path lengths are
used: the algorithms stop when the last found path length is
a times longer than the first and shortest one, a ∈ [1..∞].

At the end of the planning stage, the data structure is
completed: the entities are placed at their initial location
and each vertex’s list of included moving entities is setup
accordingly. The currently crossed vertex, followed path and
way-point are listed for each entity as well. The real-time
simulation, i.e., the iterative udpate of the situation for each
entity according to the results of the planning stage then
starts.

B. Simulation

The objectives of our simulation loop are specific. We
want the highest performance possible in order to allow real-
time updates (25Hz at least) along with visualization. In
our case, we look for believability. A spectator observing
the scene with moving entities should be presented with a
simulation of the best quality level on the foreground. For
background areas, we want the entities to achieve their goal,
but assumptions and simplifications are permitted.

Algorithm 3 is looped to update the simulation. Whereas
classical solutions loop over each moving entity, a specificity
of our simulation is to consider each area successively. These
areas are delimited by the NG vertices. Before update (line
2), Levels of Simulation (LoS) are computed. A LoS is a
score assigned to each NG vertex which depends on the the
point of view location (view centrality and distance). Vertices
having a high LoS are close to the point of view and located
in the central part of the screen. Vertices having low LoS are
far from the point of view, on the borders of the screen or

Algorithm 3: Simulation Loop
Data: simulation initialized
Result: updated situation
begin1

ComputeLoS2

for all vertex V ∈ NG do3

if UpdateRequired then4

for all MovingEntity M∈ V do5

SteeringMethod6

if WayPointReached then7

if EndOfPath then8

GoBackward9

ChooseCurrentBestPath10

ComputeNewWayPoint11

MoveToNextVertex12

UpdatePathsCosts13

RenderScene14

end15

even invisible.
When a vertex is visited, update is required or not (line 4),

depending on the LoS. If the LoS is high, update is required
frequently (25Hz). On the contrary, if the LoS is low, the
udpate is done at lower frequencies (from 1 to 15Hz).

When update is required, the position of each moving
entity included in the vertex is updated. Once again, update
quality depends on the LoS (line 6). For low LoS, entities
are steered in a simplified manner: we use linear steering
and do not consider collisions between entities since we
assume they are not detectable at a far distance and even
less in invisible areas. For high LoS, we steer entities using
smooth trajectories and velocity accelerations. We equally
take into account inter-collisions by using Reynolds’ [21]
steering method.

Steering methods require way-points to lead the entities
along the followed corridors. For a given entity, once the
tracked way-point is reached, a new one is picked within
the next gate to be crossed (line 7). We use an individual
parameter to compute the way-point (line 11), so that the
entity crosses a gate always on the same side (the parameter
continuously changes from 0 to 1 while the way-point
position in the gate line segment continuously moves from
left to right). The moment a gate has just been crossed also
corresponds to a change of area for the entity. The vertices
included moving entities lists are updated accordingly (line
12), as well as the other entity-related variables. Doing so,
we always know where a given entity is, and which entities
are in a given place. This consists in crucial information
in order to solve interactive queries, presented in the next
section.

If the end of the path is reached, the entity turns around
and is sent back to its original location. Entities go back
and forth indefinitely. However, new goals can be assigned

ThD10.1

3065

interactively. A different path can be assigned to the entity,
within the set of solutions provided by Alg. 2. The best
solution is not necessarily the shortest one. We consider the
current occupation of each path to compute the best solution.
We take into account both the distance to a given edge and
the local population density to compute an average travel
time. The lowest travel time path is selected and assigned to
the entity. The paths’ travel times are recomputed at the end
of the update loop (line 13) if necessary: as it is not a highly
dynamic variable, it can be updated at low rates. Finally, the
situation is rendered to the screen, however, this is not this
paper’s main issue.

C. Neighbor and Visibility Queries

During the simulation we use neighbor queries in order
to solve collisions between moving entities. Alg. 4 allows
to compute the list of moving entities potentially in contact
with a considered entity E. As each vertex stores the list
of entities currently included in it, the complete list can be
computed with a limited number of distance tests. Note that
adjacent vertices are visited since they may contain close
enough entities. Recursively, the search may be extended to
other linked vertices, at a deeper level, if neighboring entities
at a farther distance are to be searched for.

Algorithm 4: Neighbor Query
Data: an entity E
Result: list of entities Lneighb potentially in collision
begin1

VE ← E :: current vertex2

for all entity ei ∈ VE :: included entities do3

if DistanceTest(E, ei) then4

Add ei to Lneighb5

for all vertex vi ∈ VE :: linked vertices do6

for all entity ei ∈ vi :: included entities do7

if DistanceTest(E, ei) then8

Add ei to Lneighb9

end10

Each NG vertex equally refers to a list of visible areas. A
list of visible entities to a given entity E can be computed
with a limited number of tests (Alg. 5). Such queries may
remain too complex to be solved interactively in the case
of complex environments and high density areas. Indeed,
visibility tests (line 5) complexity depend on the number
of triangles composing the environment. Tests may be done
by casting rays (using a collision checker) or by occlusion
tests using OpenGL extensions.

V. RESULTS

We have applied our technique to crowds of virtual pedes-
trians. Fig. 3 illustrates some of the tested environments, with
snapshots of the computed NG. Outcomes to Navigation
Queries are also shown. The Stonehenge-like environment
is representative: the presence of pillars in the middle of

Algorithm 5: Visibility Query
Data: an entity E
Result: the list of all visible entities Lvis

begin1

VE ← E :: current vertex2

for all vertex vi ∈ VE :: visible vertices do3

for all entity ei ∈ vi :: included entities do4

if VisibilityTest(E, ei) then5

Add ei to Lvis6

end7

Fig. 3. left column: A Stonehenge-like environment and a set of paths
solution to a Navigation Flow query with varying maximum relative path
length values (Alg. 2). right column: A virtual city, a set of paths solution
to a Navigation Flow query and a crowd navigating in the city.

the scene creates many congestion points. In such a case, it
is important to obtain alternative solutions to a navigation
flow query. Indeed, many entities navigating along a single
solution path would result in congestions whereas parts of the
environment close to the pedestrians would remain empty.
This would seem very unrealistic to a spectator. Figure 3
shows solutions to a query for which we have limited the
number of solutions (limitation is stronger in the middle
image). Without limitation, the union of solution paths covers
the whole environment, as shown in the accompanying video.
The accelerated part of the video illustrates a real-time sim-
ulation of 1000 pedestrians all navigating between identical
locations, but dispatched according to the distribution done
line 10 of the Algorithm 3. In the virtual city environment,
our simulator is able to reach a 35’000 pedestrians crowd
with interactive rates (10-20Hz, including rendering tasks,
according to the point of view). The obtained performance

ThD10.1

3066

is possible thanks to the scalable simulation and rendering:
at the forefront, complex articulated characters are rendered
whereas in the background simplified representations of
humans are used. The crowd is dispatched on the whole city
using 7 Navigation Flows of 5’000 pedestrians each, joining
main buildings (hotel, church, train station, circus, etc.). Each
navigation flow is created in a second (the correspondingNG
is made of 1’500 vertices), which allows interactive crowd
setup. The environment geometries are complex: 10’000
and 100’000 triangles approximately for the Stonehenge-like
and the City examples respectively. NG allows to abstract
the geometries of the environment and the complexity of
both our planning and simulation. Complexity then becomes
mainly dependent on the number of vertices and edges
composing the graph.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented a method to plan and simulate the
navigation of crowds of moving entities in large virtual
environments. Our solution is based on a structure called
Navigation Graphs, which decomposes an environment of
any kind in sets of interconnected navigable areas. A specific
navigation planning technique allows to dispatch a crowd
of moving entities navigating between any pair of given
locations. We have also introduced a scalable simulation
loop, which allows crowd situation update while distributing
the available computational resources in space and time.
We have equally been able to preserve quality at its best
in the foreground of the central area of the screen as well
as real-time rates. Finally, we have presented algorithms to
solve useful neighbor and visibility queries. Our method is
efficient in the case of large crowds. Indeed, the moving
entities’ positions are updated block by block, according to
their current relative position to the actual observation point
of view. We save precious computation time by not accessing
each of the entities at each update loop. Our method is
demonstrated on crowds of virtual pedestrians with real-time
visualization experience, however, its principle is general.

In Robotics, the method is applicable to the simulation of a
robot in presence of a crowd of virtual humans (VHs). The
simulation of VHs can then be scaled using our method:
their behavior is complex enough to simulate interactions
with the robot, while VHs in the background only execute
a navigation task. Another application for the Robotics field
is to adapt the navigation flow algorithm to obtain several
solutions to a single query. Thus, additive criteria could be
used to select a solution path to a robot navigation query:
width of the passages to cross, visibility over given areas
along the path, access goal destination from given direction,
etc.

Further works are in progress to address dynamic envi-
ronments, and more specifically to treat the case in which a
passage is partially or totally obstructed by a new obstacle
(permanently or not) while the simulation runs. In this case,
the Navigation Graph must be adapted interactively (deletion,
split or addition of vertices and edges) and previously com-
puted paths must be reconfigured (validity checks, new path

searches), as well as moving entities’ path reconfiguration.

VII. ACKNOWLEDGMENTS

The authors would like to thank Barbara Yersin and
Jonathan Maı̈m for developing the crowd simulator we have
used to produce the images in Figure 3 and for their help
during experiments, Mireille Clavien and Renaud Krumme-
nacher for environment design, and Mireille again for video
production.

REFERENCES

[1] J.-C. Latombe. Robot Motion Planning. Boston: Kluwer Academic
Publishers, 1991.

[2] Jean-Paul P. Laumond. Robot Motion Planning and Control. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1998.

[3] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[4] Xuejun Sheng. Motion planning for computer animation and virtual
reality applications. CA, 00:56, 1995.

[5] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotics Research, 5(1):90–98, 1986.

[6] Parris K. Egbert and Scott H. Winkler. Collision-free object movement
using vector fields. IEEE Computer Graphics and Applications,
16(4):18–24, 1996.

[7] Tomas Lozano-Perez. Spatial planning: A configuration space ap-
proach. IEEE Transactions on Computers, 32(2):108–120, 1983.

[8] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
Proceedings of IEEE Transactions on Robotics and Automation, pages
566–580, 1996.

[9] James Kuffner and Steven LaValle. Rrt-connect : An efficient approach
to single-query path planning. In IEEE International Conference on
Robotics and Automation, 2000.

[10] M.G. Choi, J. Lee, and S.Y. Shin. Planning biped locomotion using
motion capture data and probabilistic roadmaps. SIGGRAPH’03: ACM
Transactions on Graphics, 22(2):182–203, 2003.

[11] Julien Pettré, Jean Paul Laumond, and Thierry Siméon. A 2-stages
locomotion planner for digital actors. SCA’03: Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pages 258–264, 2003.

[12] A. Kamphuis and M.H. Overmars. Finding paths for coherent
groups using clearance. SCA’04: Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 19–
28, 2004.

[13] M. Sung, L. Kovar, and M. Gleicher. Fast and accurate goal-directed
motion synthesis for crowds. SCA’05: Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages
291–300, 2005.

[14] Steve Rabin. AI Game Programming Wisdom. Charles River Media,
Inc., Rockland, MA, USA, 2002.

[15] James Kuffner. Goal-directed navigation for animated characters using
real-time path planning and control. CAPTECH, pages 171–186, 1998.

[16] R. Bohlin. Path planning in practice; lazy evaluation on a multi-
resolution grid. In Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2001.

[17] W. Shao and D. Terzopoulos. Autonomous pedestrians. SCA’05:
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 19–28, 2005.

[18] F. Lamarche and S. Donikian. Crowds of virtual humans : a new
approach for real time navigation in complex and structured environ-
ments. Eurographics’04: Computer Graphics Forum, 23(3):509–518,
September 2004.

[19] S. J. Fortune. Voronoi diagrams and delaunay triangulations. CRC
Handbook of Discrete and Computational Geometry, pages 377–388,
1997.

[20] Julien Pettré, Pablo de Heras Ciechomski, Jonathan Maı̈m, Barbara
Yersin, Jean-Paul Laumond, and Daniel Thalmann. Real-time navi-
gating crowds: scalable simulation and rendering: Research articles.
Comput. Animat. Virtual Worlds, 17(3-4):445–455, 2006.

[21] C. W. Reynolds. Steering behaviors for autonomous characters. Proc.
of Game Developers Conference, pages 763–782, 1999.

ThD10.1

3067

